1
|
Li A, Yi Z, Ma C, Sun B, Zhao L, Cheng X, Hui L, Xia Y. Innate immune recognition in hepatitis B virus infection. Virulence 2025; 16:2492371. [PMID: 40253712 PMCID: PMC12013422 DOI: 10.1080/21505594.2025.2492371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Hepatitis B virus (HBV) remains a major global public health challenge, with approximately 254 million individuals chronically infected worldwide. The interaction between HBV and the innate immune system has garnered significant attention within the scientific community, with numerous studies exploring this relationship over the past several decades. While some research suggests that HBV infection activates the host's innate immune response, other studies indicate that HBV suppresses innate immune signaling pathways. These conflicting findings underscore the complexity of the HBV-innate immunity interaction, which remains inadequately understood. This review aims to clarify this interplay by examining it from three perspectives: (a) studies showing HBV activation of innate immunity; (b) evidence suggesting HBV suppression of innate immunity; and (c) findings that support HBV's role as a stealth virus. By synthesizing these perspectives, we aim to deepen the understanding of virus-host interactions that are crucial to HBV persistence and immune evasion, with potential implications for developing new therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Aixin Li
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Zhengjun Yi
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Chunqiang Ma
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Bangyao Sun
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Li Zhao
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lixia Hui
- School of Laboratory Medicine, Shandong Second Medical University, Weifang, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Biosafety, Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
- Pingyuan Laboratory, Henan, China
| |
Collapse
|
2
|
Yao T, Li Y, Zhang Y, Sun Y, Guo Y, Wang J, Song X, Zhang W, Wei B, Bai J, Wang H, Yu W, Wang H, Jiao L, Diao Y, Liu L, Shi S, Yang J, Ren X, Liu W, Fang J, Liang X, Wang S, Feng Y. Immunogenicity, Safety, and Persistence Induced by Triple- and Standard-Strength 4-Dose Hepatitis B Vaccination Regimens in Patients Receiving Hemodialysis. J Infect Dis 2025; 231:1049-1059. [PMID: 39378326 DOI: 10.1093/infdis/jiae494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Patients receiving hemodialysis represent a high-risk group for hepatitis B virus (HBV) infection. It is crucial to administer hepatitis B vaccination and stimulate higher and more sustained levels of hepatitis B surface antibodies (anti -HBs). Our aim is to enhance the immunogenicity and persistence by implementing high-dose and prolonged hepatitis B vaccine schedules in patients receiving hemodialysis. METHODS We conducted this multicenter, randomized, parallel-controlled trial between July 2020 and February 2023 at 11 hospitals in Shanxi province, China. A total of 504 patients receiving hemodialysis were enrolled. All participants were randomly allocated in a ratio of 1:1:1 to receive recombinant HBV vaccine of 3 standard doses (20 μg) at 0, 1, and 6 months (IM20 × 3 group), 4 standard doses at 0, 1, 2, and 6 months (IM20 × 4 group), or 4 triple doses (60 μg) at 0, 1, 2, and 6 months (IM60 × 4 group). RESULTS The vaccine-elicited antibody response peaked at month 7. The follow-up from month 7 to 30 revealed that response rates of anti-HBs decreased from 85.9% (134/156) to 33.0% (33/100) in IM20 × 3 group, from 92.5% (135/146) to 53.9% (56/104) in IM20 × 4 group, and from 95.4% (145/152) to 57.3% (55/96) in IM60 × 4 group. The duration of vaccine-induced response with 75% of patients maintained protective antibodies were 21.0 months in IM20 × 3 group, 25.7 months in IM20 × 4 group (vs IM20 × 3 group, P = .056), and 29.2 months in IM60 × 4 group (vs IM20 × 3 group, P = .034). All the adverse reactions were mild. CONCLUSIONS The triple-strength 4-dose hepatitis B vaccination regimens could enhance the immunogenicity and 2-year duration in patients receiving hemodialysis.Clinical Trials Registration. NCT03962881.
Collapse
Affiliation(s)
- Tian Yao
- First Hospital/First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Yandi Li
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yidan Zhang
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yangle Sun
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yana Guo
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Jianmin Wang
- Department of Nephrology, Linfen Central Hospital, Linfen, China
| | - Xiaohui Song
- Department of Nephrology, Shanxi Fenyang Hospital, Fenyang, China
| | - Wei Zhang
- Department of Nephrology, Heji Hospital of Changzhi Medical College, Changzhi, China
| | - Baozhu Wei
- Department of Nephrology, Hongtong County People's Hospital, Hongtong, China
| | - Jingen Bai
- Department of Nephrology, Lvliang People's Hospital, Lvliang, China
| | - Hui Wang
- Department of Nephrology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Weimin Yu
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Huiyuan Wang
- Department of Nephrology, Wenshui County People's Hospital, Wenshui, China
| | - Lu Jiao
- Department of Nephrology, Linfen People's Hospital, Linfen, China
| | - Yinqiang Diao
- Department of Nephrology, Hongtong County Hospital of Traditional Chinese Medicine, Hongtong, China
| | - Liming Liu
- Department of Nephrology, Linfen Central Hospital, Linfen, China
| | - Shuaishuai Shi
- Department of Nephrology, Heji Hospital of Changzhi Medical College, Changzhi, China
| | - Jie Yang
- Department of Nephrology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojun Ren
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Wenyuan Liu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Liang
- Institute of Vaccine Industry, Jinan University, Guangzhou, China
- Institute of Disease Control and Prevention, Jinan University, Guangzhou, China
- Chinese Preventive Medicine Association, Beijing, China
| | - Suping Wang
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yongliang Feng
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| |
Collapse
|
3
|
Pondé RADA, Amorim GDSP. Elimination of the hepatitis B virus: A goal, a challenge. Med Res Rev 2024; 44:2015-2034. [PMID: 38528684 DOI: 10.1002/med.22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The hepatitis B elimination is a goal proposed by the WHO to be achieved by 2030 through the adoption of synergistic measures for the prevention and chronic HBV infection treatment. Complete cure is characterized by the HBV elimination from the body and is the goal of the chronic hepatitis B treatment, which once achieved, will enable the hepatitis B elimination. This, today, has been a scientific challenge. The difficulty in achieving a complete cure is due to the indefinite maintenance of a covalently closed episomal circular DNA (cccDNA) reservoir and the maintenance and persistence of an insufficient and dysfunctional immune response in chronically infected patients. Among the measures adopted to eliminate hepatitis B, two have the potential to directly interfere with the virus cycle, but with limited effect on HBV control. These are conventional vaccines-blocking transmission and antiviral therapy-inhibiting replication. Vaccines, despite their effectiveness in protecting against horizontal transmission and preventing mother-to-child vertical transmission, have no effect on chronic infection or potential to eliminate the virus. Treatment with antivirals suppresses viral replication, but has no curative effect, as it has no action against cccDNA. Therapeutic vaccines comprise an additional approach in the chronic infection treatment, however, they have only a modest effect on the immune system, enhancing it temporarily. This manuscript aims to address (1) the cccDNA persistence in the hepatocyte nucleus and the immune response dysfunction in chronically infected individuals as two primary factors that have hampered the treatment and HBV elimination from the human body; (2) the limitations of antiviral therapy and therapeutic vaccines, as strategies to control hepatitis B; and (3) the possibly promising therapeutic approaches for the complete cure and elimination of hepatitis B.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde-SES, Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil
- Department of Microbiology, Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
4
|
Zhang Y, Mou Y, Chen M, Lin X, Zhao Y, Luo X. Binary split fluorescent biosensor based on lettuce DNA aptamer for label-free and enzyme-free analysis of hepatitis B viral DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4561-4569. [PMID: 38912590 DOI: 10.1039/d4ay00713a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Hepatitis B virus (HBV) acts as a severe public health threat, causing chronic liver diseases. Although the quantified evaluation of HBV infection can be obtained by estimating the capacity of the HBV DNA genome, it still lacks an effective and robust detection method without using enzymes or chemical labeling. Herein, we have designed a binary split fluorescent DNA aptasensor (bsFDA) by rationally splitting the lettuce aptamer into two functional DNA short chains and utilizing the HBV DNA segment complementary sequences (HDs). In this strategy, the bsFDA has been investigated to specifically recognize the HDs, forming a triplex DNA with the lettuce aptamer structure. Meanwhile, the turn-on fluorescence of bsFDA is obtained upon formation of a fluorescent complex between DFHO and the triplex DNA structure, allowing the enzyme-free, label-free, fast-responsive, and reliable fluorescence readout for detecting HDs and the potential HDs mutants. Moreover, bsFDA has been applied for spiked HDs analysis in different real matrixes, including human serum and cell lysate. The satisfactory recovery rates and reproducibility of the bsFDA reveal its potential detection efficacy for HDs analysis in biological samples. Overall, bsFDA holds great potential in developing functionalized aptasensors and realizing viral genome analysis in biological research.
Collapse
Affiliation(s)
- Yanfei Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yue Mou
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Meiyun Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinru Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Yujie Zhao
- Medical College, Guangxi University, Nanning 530004, P. R. China.
| | - Xingyu Luo
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
5
|
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnology 2024; 22:315. [PMID: 38840207 PMCID: PMC11151510 DOI: 10.1186/s12951-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Ying Shi
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
6
|
Sánchez‐Cerrillo I, Calzada‐Fraile D, Triguero‐Martínez A, Calvet‐Mirabent M, Popova O, Delgado‐Arévalo C, Valdivia‐Mazeyra M, Ramírez‐Huesca M, de Luis EV, Benguría A, Aceña‐Gonzalo T, Moreno‐Vellisca R, de Llano MA, de la Fuente H, Tsukalov I, Delgado‐Wicke P, Fernández‐Ruiz E, Roy‐Vallejo E, Tejedor‐Lázaro R, Ramiro A, Iborra S, Sánchez‐Madrid F, Dopazo A, Álvaro IG, Castañeda S, Martin‐Gayo E. MICa/b-dependent activation of natural killer cells by CD64 + inflammatory type 2 dendritic cells contributes to autoimmunity. EMBO J 2023; 42:e113714. [PMID: 37916875 PMCID: PMC10690448 DOI: 10.15252/embj.2023113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is an inflammatory autoimmune disorder largely mediated by type I and II interferon (IFN). The potential contribution of innate immune cells, such as natural killer (NK) cells and dendritic cells (DC), to the pSS pathology remains understudied. Here, we identified an enriched CD16+ CD56hi NK cell subset associated with higher cytotoxic function, as well as elevated proportions of inflammatory CD64+ conventional dendritic cell (cDC2) subtype that expresses increased levels of MICa/b, the ligand for the activating receptor NKG2D, in pSS individuals. Circulating cDC2 from pSS patients efficiently induced activation of cytotoxic NK cells ex vivo and were found in proximity to CD56+ NK cells in salivary glands (SG) from pSS patients. Interestingly, transcriptional activation of IFN signatures associated with the RIG-I/DDX60 pathway, IFN I receptor, and its target genes regulate the expression of NKG2D ligands on cDC2 from pSS patients. Finally, increased proportions of CD64hi RAE-1+ cDC2 and NKG2D+ CD11b+ CD27+ NK cells were present in vivo in the SG after poly I:C injection. Our study provides novel insight into the contribution and interplay of NK and cDC2 in pSS pathology and identifies new potential therapy targets.
Collapse
Affiliation(s)
- Ildefonso Sánchez‐Cerrillo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Diego Calzada‐Fraile
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Ana Triguero‐Martínez
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Marta Calvet‐Mirabent
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Olga Popova
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Cristina Delgado‐Arévalo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | | | - Marta Ramírez‐Huesca
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Alberto Benguría
- Genomic UnitCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Teresa Aceña‐Gonzalo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | | | | | - Hortensia de la Fuente
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- CIBER Cardiovascular, Instituto de Salud Carlos IIIMadridSpain
| | - Ilya Tsukalov
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Pablo Delgado‐Wicke
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Elena Fernández‐Ruiz
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Emilia Roy‐Vallejo
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Reyes Tejedor‐Lázaro
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Almudena Ramiro
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Salvador Iborra
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Francisco Sánchez‐Madrid
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER Cardiovascular, Instituto de Salud Carlos IIIMadridSpain
| | - Ana Dopazo
- Vascular Pathophysiology DepartmentCentro Nacional de Investigaciones CardiovascularesMadridSpain
- Genomic UnitCentro Nacional de Investigaciones CardiovascularesMadridSpain
- CIBER Cardiovascular, Instituto de Salud Carlos IIIMadridSpain
| | - Isidoro González Álvaro
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
| | - Santos Castañeda
- Rheumatology UnitHospital Universitario La Princesa, Instituto de Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- Cátedra UAM‐Roche, EPID‐Future, Department of MedicineUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Enrique Martin‐Gayo
- Immunology UnitHospital Universitario La Princesa, Medicine Department, Universidad Autónoma de Madrid, Instituto Investigación Sanitaria‐Princesa IIS‐IPMadridSpain
- CIBER Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
7
|
Bai Q, Hong X, Lin H, He X, Li R, Hassan M, Berger H, Tacke F, Engelmann C, Hu T. Single-cell landscape of immune cells in human livers affected by HBV-related cirrhosis. JHEP Rep 2023; 5:100883. [PMID: 37860052 PMCID: PMC10582775 DOI: 10.1016/j.jhepr.2023.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 10/21/2023] Open
Abstract
Background & Aims HBV infection is one of the leading causes of liver cirrhosis. However, the immune microenvironment in patients with HBV cirrhosis remains elusive. Methods Single-cell RNA sequencing was used to analyse the transcriptomes of 76,210 immune cells in the livers of six healthy individuals and in five patients with HBV cirrhosis. Results Patients with HBV cirrhosis have a unique immune ecosystem characterised by an accumulation of macrophage-CD9/IL18, macrophage-C1QA, NK Cell-JUNB, CD4+ T cell-IL7R, and a loss of B cell-IGLC1 clusters. Furthermore, our analysis predicted enhanced cell communication between myeloid cells and all immune cells in patients with HBV-related cirrhosis. Pseudo-time analysis of myeloid cells, natural killer (NK) cells, and B cells demonstrated a significant accumulation of mature cells and a depletion of naive cells in HBV cirrhosis. In addition, we observed an increase in antigen processing and presentation capacities in myeloid cells in patients with HBV cirrhosis, whereas NK cell-mediated cytotoxicity was substantially reduced. Conclusions Our results provide valuable insight into the immune landscape of HBV cirrhosis, suggesting that HBV cirrhosis is associated with the accumulation of activated myeloid cells and impaired cytotoxicity in NK cells. Impact and implications The absence of single-cell transcriptome profiling of immune cells in HBV cirrhosis hinders our understanding of the underlying mechanisms driving disease progression. To address this knowledge gap, our study unveils a distinctive immune ecosystem in HBV cirrhosis and represents a crucial advancement in elucidating the impact of the immune milieu on the development of this condition. These findings constitute significant strides towards the identification of more effective therapeutic approaches for HBV cirrhosis and are relevant for healthcare professionals, researchers, and pharmaceutical developers dedicated to combating this disease.
Collapse
Affiliation(s)
- Qingquan Bai
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Xiaoting Hong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Han Lin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao He
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Runyang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Mohsin Hassan
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hilmar Berger
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Shenzhen Research Institute, Xiamen University, Shenzhen, China
| |
Collapse
|
8
|
Tang L, Li Q, Chen L, Li X, Gu S, He W, Pan Q, Wang L, Sun J, Yi X, Li Y. IL-21 collaborates with anti-TIGIT to restore NK cell function in chronic HBV infection. J Med Virol 2023; 95:e29142. [PMID: 37815034 DOI: 10.1002/jmv.29142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Available therapies for chronic hepatitis B virus (HBV) infection are not satisfying, and interleukin-21 (IL-21) and checkpoint inhibitors are potential therapeutic options. However, the mechanism underlying IL-21 and checkpoint inhibitors in treating chronic HBV infection is unclear. To explore whether IL-21 and checkpoint inhibitors promote HBV clearance by modulating the function of natural killer (NK) cells, we measured the phenotypes and functions of NK cells in chronic HBV-infected patients and healthy controls on mRNA and protein levels. We found that chronic HBV infection disturbed the transcriptome of NK cells, including decreased expression of KLRK1, TIGIT, GZMA, PRF1, and increased expression of CD69. We also observed altered phenotypes and functions of NK cells in chronic HBV-infected patients, characterized by decreased NKG2D expression, increased TIGIT expression and impaired interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α) production. Furthermore, these alterations cannot be restored by telbivudine treatment but can be partially restored by IL-21 and anti-TIGIT stimulation. IL-21 upregulated the expression of activating receptor CD16, CD69, and NKG2D on NK cells, enhanced IFN-γ production, cytolysis, and proliferation of NK cells, while anti-TIGIT promoted IFN-γ production in CD56dim subset exclusively in chronic HBV infected patients. Additionally, IL-21 was indispensable for anti-TIGIT in HBsAg clearance in mice bearing HBV. It enhanced IFN-γ production in splenic NK cells rather than intrahepatic NK cells, indicating a brand-new mechanism of IL-21 in HBV clearance when combined with anti-TIGIT. Overall, our findings contribute to the design of immunotherapy through enhancing the antiviral efficacy of NK cells in chronic HBV infection.
Collapse
Affiliation(s)
- Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quanrun Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Infectious Diseases Laboratory (Preparatory) of Yunnan Provincial Department of Education, Department of Infectious Diseases, School of Clinical Medicine, The First Affiliated Yunnan Provincial Clinical Medical Center (Branch) for Infectious Diseases, Hospital of Dali University, Dali University, Dali, Yunnan, China
| | - Liang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiying He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingqing Pan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianru Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wang WX, Jia R, Jin XY, Li X, Zhou SN, Zhang XN, Zhou CB, Wang FS, Fu J. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients. Front Immunol 2023; 14:1121778. [PMID: 36756119 PMCID: PMC9899895 DOI: 10.3389/fimmu.2023.1121778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objective The aim of this study was to explore the profile of cytokine changes during the combination therapy with pegylated interferon alpha (PEG-IFN-α) and its relationship with HBsAg loss in nucleos(t)ide analogs (NAs)-suppressed chronic hepatitis B patients. Methods Seventy-six patients with chronic hepatitis B with HBsAg less than 1,500 IU/ml and HBV DNA negative after receiving ≥ 1-year NAs therapy were enrolled. Eighteen patients continued to take NAs monotherapy (the NAs group), and 58 patients received combination therapy with NAs and PEG-IFN-α (the Add-on group). The levels of IFNG, IL1B, IL1RN, IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2, CCL3, CCL5, CXCL8, CXCL10, TNF, and CSF2 in peripheral blood during treatment were detected. Results At week 48, 0.00% (0/18) in the NAs group and 25.86% (15/58) in the Add-on group achieved HBsAg loss. During 48 weeks of combined treatment, there was a transitory increase in the levels of ALT, IL1RN, IL2, and CCL2. Compared to the NAs group, CXCL8 and CXCL10 in the Add-on group remain higher after rising, yet CCL3 showed a continuously increasing trend. Mild and early increases in IL1B, CCL3, IL17A, IL2, IL4, IL6, and CXCL8 were associated with HBsAg loss or decrease >1 log, while sustained high levels of CCL5 and CXCL10 were associated with poor responses to Add-on therapy at week 48. Conclusions The serum cytokine change profile is closely related to the response to the combination therapy with PEG-IFN-α and NAs, and may help to reveal the mechanism of functional cure and discover new immunological predictors and new therapeutic targets.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Rui Jia
- Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of Chinese PLA, Taiyuan, China
| | - Xue-Yuan Jin
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiaoyan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Ning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| |
Collapse
|
10
|
Ren S, Wang W, Lu J, Wang K, Ma L, Zheng Y, Zheng S, Chen X. Effect of the change in antiviral therapy indication on identifying significant liver injury among chronic hepatitis B virus infections in the grey zone. Front Immunol 2022; 13:1035923. [PMID: 36389814 PMCID: PMC9647141 DOI: 10.3389/fimmu.2022.1035923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE In clinical practice, a substantial proportion of chronic hepatitis B virus (HBV) infections that do not fit into any of the usual immune states are considered to be in the "grey zone (GZ)". This study aimed to investigate the effect of the change in antiviral therapy indication on identifying significant hepatic injury among GZ patients. METHODS Patients with chronic HBV infections and a persistent normal alanine aminotransferase (ALT) level (PNALT) who underwent ultrasonography-guided percutaneous liver biopsy were examined retrospectively. Evidenced hepatic injury (EHI) was defined as an inflammation grade ≥2 (≥G2) and/or fibrosis stage ≥2 (≥F2). Complete clinical data, liver inflammation, and fibrosis grades were collected, and the levels of cytokines were detected by the Luminex technique, all of which were analysed to investigate the immune and histopathology states of the liver. RESULTS A total of 347 patients with chronic HBV infections and PNALT were categorized into immune tolerant (IT, n = 108), inactive HBV surface antigen (HBsAg) carrier (IHC, n = 61), GZ-1 (HBeAg positive in GZ, n = 92), and GZ-2 (HBeAg negative in GZ, n = 68) phases. Among them, 51.3% were in the GZ phase, and 50.1% presented with EHI. The IL-6 levels were higher in the EHI group than in the non-EHI group (2.77 vs. 1.53 pg/ml, Z = -13.32, p = 0.028). The monocyte chemoattractant protein 1 (MCP-1) level was positively correlated with HBV DNA (R = 0.64, p < 0.001) and HBeAg (R = 0.5, p < 0.001) but negatively correlated with fibrosis grade (R = -0.26, p = 0.048). The ratio of EHI in the GZ phase was 60.55%, which was significantly higher than that in patients in the IT (39.8%) and IHC phases (37.7%) (χ2 = 10.4, p = 0.006). A total of 46.69% of all patients exceeded the new ALT antiviral treatment threshold (30 U/L for men and 19 U/L for women). The EHI values in the IT and IHC phases below the new ALT threshold were 32.6% and 37.8%, respectively, whereas higher EHI values of 67.4% and 68.4% were seen in GZ-1 and GZ-2 patients, respectively, exceeding the new ALT threshold, and the difference was statistically significant (χ2 = 11.13, p < 0.001; χ2 = 14.22, p = 0.002). The median age in our cohort was 38.91 years, and only 21.03% were less than 30 years old. The EHI values in the IT and IHC patients <30 years old were 32.4% and 35.8%, respectively, while the ratio of EHI increased to 43.2% once patients were older than 30 years but still in the IT and IHC stages. CONCLUSION Setting 30 years old as a cut-off and lowering the ALT threshold could facilitate screening for the presence of significant liver injury, especially for GZ patients. IL-6 was a good indicator of EHI, and MCP-1 was significantly positively correlated with HBV DNA but negatively correlated with liver fibrosis.
Collapse
Affiliation(s)
- Shan Ren
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junfeng Lu
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Kefei Wang
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lina Ma
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yanhong Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Chen
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Du Y, Wu J, Liu J, Zheng X, Yang D, Lu M. Toll-like receptor-mediated innate immunity orchestrates adaptive immune responses in HBV infection. Front Immunol 2022; 13:965018. [PMID: 35967443 PMCID: PMC9372436 DOI: 10.3389/fimmu.2022.965018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a substantial global burden, especially for end-stage liver diseases. It is well accepted that HBV-specific T and B cells are essential for controlling HBV infection. Toll-like receptors (TLRs) represent one of the major first-line antiviral defenses through intracellular signaling pathways that induce antiviral inflammatory cytokines and interferons, thereby shaping adaptive immunity. However, HBV has evolved strategies to counter TLR responses by suppressing the expression of TLRs and blocking the downstream signaling pathways, thus limiting HBV-specific adaptive immunity and facilitating viral persistence. Recent studies have stated that stimulation of the TLR signaling pathway by different TLR agonists strengthens host innate immune responses and results in suppression of HBV replication. In this review, we will discuss how TLR-mediated responses shape HBV-specific adaptive immunity as demonstrated in different experimental models. This information may provide important insight for HBV functional cure based on TLR agonists as immunomodulators.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu,
| |
Collapse
|
12
|
Cao W, Xie S, Zhang L, Bi X, Lin Y, Yang L, Lu Y, Liu R, Chang M, Wu S, Shen G, Dong J, Xie Y, Li M. Expression of Functional Molecule on Plasmacytoid Dendritic Cells Is Associated With HBsAg Loss in HBeAg-Positive Patients During PEG-IFN α-2a Treatment. Front Immunol 2022; 13:891424. [PMID: 35663955 PMCID: PMC9160736 DOI: 10.3389/fimmu.2022.891424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
Objective The ideal endpoint of antiviral therapy in chronic hepatitis B (CHB) patients is to clear hepatitis B surface antigen (HBsAg). This study aimed to evaluate whether the expression of functional molecules on plasmacytoid dendritic cells (pDCs) is associated with HBsAg loss in HBeAg-positive patients during peginterferon alpha-2a (PEG IFN α-2a) therapy. Methods A single-center prospective cohort study was performed in HBeAg-positive CHB patients who were treated with PEG-IFN α-2a and followed up for 4 years. HBsAg clearance, HBeAg loss and undetectable HBV DNA achieved by PEG-IFN α-2a therapy was considered as functional cure. The frequencies of pDC and CD86+ pDC in peripheral blood, and the mean fluorescence intensity of CD86 (CD86MFI) on the surface of pDC were measured at starting therapy, after 12 and 24 weeks of therapy. Results Of 63 patients enrolled, 17 patients achieved HBsAg loss. The baseline HBV DNA load in Non-functional-cure group was significantly higher than that in Functional cure group, and the CD86+ pDC% was significantly lower in patients without functional cure. HBV DNA load (OR=0.146, P = 0.002) and CD86+ pDC% (OR=1.183, P = 0.025) were independent factors associated with functional cure confirmed by binary logistic regression analysis. In the Functional cure group, HBsAg, HBeAg, and HBV DNA loads decreased remarkably after 12 weeks and 24 weeks of treatment compared to baseline. In Non-functional-cure group, CD86+ pDC% and CD86MFI increased significantly from baseline after 12 weeks of treatment. In the Functional cure group, compared with baseline, pDC% increased significantly at 24 weeks, while CD86MFI increased significantly after 24 weeks of treatment. Conclusion The lower the baseline HBV DNA load and the more the baseline CD86+ pDC%, the easier it is for patients to obtain functional cure.
Collapse
Affiliation(s)
- Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Infectious Diseases, Miyun Teaching Hospital, Capital Medical University, Beijing, China
| | - Si Xie
- Division of Hepatology, Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
13
|
Li M, Zhang L, Xie S, Sun F, Zeng Z, Deng W, Jiang T, Bi X, Lin Y, Yang L, Lu Y, Shen G, Liu R, Wu S, Chang M, Hu L, Dong J, Yi W, Xie Y. Dynamic Changes of Cytokine Profiles and Virological Markers Associated With HBsAg Loss During Peginterferon Alpha-2a Treatment in HBeAg-Positive Chronic Hepatitis B Patients. Front Immunol 2022; 13:892031. [PMID: 35603222 PMCID: PMC9114800 DOI: 10.3389/fimmu.2022.892031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore dynamic changes of cytokines and virological markers associated with hepatitis B surface antigen (HBsAg) loss during peginterferon alpha-2a (PEG-IFN α-2a) treatment in hepatitis B e antigen (HBeAg) positive chronic hepatitis B (CHB) patients. Methods It was a single-center prospective cohort study. HBeAg-positive CHB patients were prospectively and consecutively enrolled. Cytokines were detected at baseline, week 12 and 24 of PEG-IFN treatment. HBsAg disappearance rate was the primary evaluation index at 48 weeks of PEG-IFN treatment. Results Among 100 patients who completed the 48-week PEG-IFN α-2a treatment, 38 patients achieved serum HBeAg disappearance, 25 patients achieved HBeAg seroconversion, 9 patients achieved functional cure, 37 patients had HBsAg decline of ≥1 log IU/ml, and 8 patients produced hepatitis B surface antibody (HBsAb). Albumin (ALB), fms-like tyrosine kinase 3 ligand (FLT3-L) and interferon-alpha2 (IFN-α2) in the clinical cure group were significantly lower than those in the non-clinical-cure group at baseline. After 12 weeks of treatment, HBsAg in the clinical cure group was significantly lower than that in the non-clinical-cure group (median 1.14 vs. 3.45 log10IU/ml, Z=-4.355, P < 0.001). The decrease of HBsAg and hepatitis B virus desoxyribose nucleic acid (HBV DNA) in the clinical cure group was significantly higher than that in non-clinical-cure group (median: HBsAg 1.96 vs. 0.33 log10IU/ml, Z=-4.703, P< 0.001; HBV DNA 4.49 vs.3.13 log10IU/ml, Z=-3.053, P=0.002). The increase of IFN-α2 in the cure group was significantly higher than that in the non-clinical-cure group (497.89 vs. 344.74, Z=-2.126, P=0.034). After 24 weeks of treatment, HBsAg, HBeAg, Flt3-L, and IL-10 in the clinical cure group were significantly lower than those in the non-clinical-cure group (median: HBsAg 0.70 vs. 3.15 log10IU/ml, Z=-4.535, P< 0.001; HBeAg 1.48 vs. 13.72 S/CO, Z = 2.512, P = 0.012; Flt3-l 0.00 vs 2.24 pg/ml, Z = 3.137, P=0.002; IL-10 0.70 vs. 2.71 pg/ml, Z=-4.067, P < 0.001). HBsAg decreased significantly in the clinical cure group compared with non-clinical-cure group (median 3.27 vs. 0.45, Z=-4.463, P < 0.001). Conclusion Dynamic changes of cytokines and virology markers during early PEG IFN α-2a treatment were associated with HBsAg loss in HBeAg-positive CHB patients.
Collapse
Affiliation(s)
- Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Luxue Zhang
- Infectious Disease Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Si Xie
- Division of Hepatology, Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
14
|
Wang D, Peng L, Hua L, Li J, Liu Y, Zhou Y. Mapk14 is a Prognostic Biomarker and Correlates with the Clinicopathological Features and Immune Infiltration of Colorectal Cancer. Front Cell Dev Biol 2022; 10:817800. [PMID: 35141222 PMCID: PMC8818961 DOI: 10.3389/fcell.2022.817800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common gastrointestinal tumors, ranking in the top 5 of all common tumors in terms of incidence and mortality. However, the mechanisms driving the evolution of colorectal cancer remain unclear. Therefore, we investigated the association between Mapk14 expression and clinicopathological and tumor-infiltrating immune cells. Methods: In this study, we collected CRC patient data from The Cancer Genome Atlas (TCGA), compared the expression level in CRC and normal colorectal tissue using the Wilcoxon rank sum test and assessed the relationship between Mapk14 and clinicopathological features using the Welch one-way ANOVA test. Kaplan-Meier and timeROC GSE17537 datasets were obtained from the Gene Expression Omnibus (GEO) dataset to assess the prognostic impact of the Mapk14 gene on colorectal cancer. Second, we further explored the methylation level of Mapk14 and its influencing factors. Single-cell sequencing of Mapk14 in the tumor immune microenvironment (TIME) was analyzed using the GSE108989 dataset. Further analyses based on the TIMER method were performed to assess the correlation between Mapk14 and tumor immune infiltration, immune checkpoints, tumor mutational load and microsatellite instability. Finally, the results of the bioinformatics analysis were verified by an immunohistochemical analysis. Results: The results showed that the expression of Mapk14 was upregulated in CRC tumor tissues compared with normal colorectal tissues and the high expression of Mapk14 was associated with poor clinicopathological features and poor prognoses in the CRC array. In addition, cg05798012 and cg25375420 of Mapk14 are the main DNA methylation sites affecting OS. Single-cell sequencing of the tumor immune microenvironment showed that the abundance and cell state of dysfunctional T cells changed greatly. Importantly, the abnormal overexpression of Mapk14 in colorectal cancer is related to the level of immune infiltration of immune cells (including CD8+ T cells, neutrophils, dendritic cells, B cells, CD4+ T cells, and macrophages). The high expression of Mapk14 was significantly correlated with immune checkpoints (including SIGLEC15, TIGIT, LAG3, CTLA4 and PDCDILG2), while the high expression of Mapk14 was negatively correlated with TMB and MSI but mostly positively correlated with drug sensitivity. Finally, the immunohistochemical results confirmed that the clinical stage (Ⅰ, Ⅱ, Ⅲ and Ⅳ) and M stage (M0 and M1) affected the abnormally high expression of Mapk14. Conclusion: A comprehensive bioinformatics study and experimental validation revealed that Mapk14 could serve as a novel prognostic biomarker associated with immune infiltration and pharmacotherapy and may represent a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
| | | | | | | | - Yifei Liu
- *Correspondence: Yifei Liu, ; Yanhong Zhou,
| | | |
Collapse
|
15
|
Xu Z, Lin JZ, Zeng YF, Yang XH, Wu ZB, Hu ZX, Zhao QY, Liu J, Gao ZL. Changes of cytokine levels and T cell surface molecules in patients with chronic hepatitis B and the association with functional cure. J Med Virol 2021; 93:4966-4974. [PMID: 33913556 DOI: 10.1002/jmv.27041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022]
Abstract
This study aimed to examine changes in levels of cytokine and T cell surface molecules in chronic hepatitis B (CHB) patients receiving sequential interferon therapy following 1-year nucleos(t)ide analogs (NAs) treatment. Cytokine levels were measured in 30 patients, and T cell surface molecule expression was measured in 48 patients receiving sequential interferon therapy and 24 patients only receiving NA mono-therapy. An HBsAg titer of <0.05 IU/ml was defined as a "functional cure." In the cured group (HBsAg < 0.05 IU/ml), a decreasing probability was observed in IFN-γ (after Week 0), and IL-22 and IP-10 (after Week 12). In the non-cured group (HBsAg ≥ 0.05 IU/ml), a probability of slightly decreasing was observed for IFN-γ (after Week 12), and a probability of increasing IP-10 concentration (after Week 0) was observed. Generalized estimating equation (GEE) analyses showed significant differences in the levels of IL-10, IL-23, CCL-3, IL-1β, IL-2, and IL-12P70 between the two groups. In GEE analysis, there were significant differences in expressions of CD45RO+ between the cured group and the non-cured group. The frequencies of T cells expressing Tim-3, CD62L, and CD152 were significantly lower in the sequential interferon therapy group than in the NA mono-therapy group. Changes in cytokine levels (IFN-γ, IP-10, IL-10, IL-23, CCL-3, IL-1β, IL-2, and IL-12P70) and T cell surface molecules (CD45RO+ ) may predict HBsAg seroconversion in CHB patients receiving sequential interferon therapy. The period from Weeks 12 to 24 during sequential interferon therapy may be a critical time of immune status change.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ji-Zong Lin
- Department of General Surgery, Lingnan Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying-Fu Zeng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Hua Yang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhe-Bin Wu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhao-Xia Hu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi-Yi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Liu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Liang Gao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Asadi-Asadabad S, Sarvnaz H, Amiri MM, Mobini M, Khoshnoodi J, Hojjat-Farsangi M, Jeddi-Tehrani M, Golsaz-Shirazi F, Shokri F. Influence of Pattern Recognition Receptor Ligands on Induction of Innate Immunity and Control of Hepatitis B Virus Infection. Viral Immunol 2021; 34:531-541. [PMID: 34030480 DOI: 10.1089/vim.2021.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Failure of current therapies to cure chronic hepatitis B has led to renewed interest in therapies that stimulate the host immune system. APOBEC3 (A3) family enzymes have been shown to induce mutations in hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) leading to inhibition of HBV transcription and replication. Pattern recognition receptor (PRR) agonists have been reported to suppress HBV, but it is unclear whether these agonists induce A3 gene expression in hepatocytes. We, therefore, evaluated whether PRR signaling activates the expression of A3 genes and other innate immunity genes and restricts HBV infection. HepG2-sodium taurocholate cotransporting polypeptide (NTCP) cells were infected with HBV and treated with various PRR agonists. The level of HBV infection was subsequently assessed by measurement of HBV biomarkers, including HBV DNA, cccDNA, HBs, and HBe antigens in infected hepatocytes. Among all tested PRR ligands, only Poly(I:C)-HMW/LyoVec and Poly(I:C)-HMW significantly inhibited hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), HBV DNA, and cccDNA, whereas R848 and lipopolysaccharide (LPS) only showed significant inhibition on HBsAg and HBeAg, but not virus DNA. CpG and Pam3CSK4, on the other hand, had no significant inhibitory effect on any of the HBV infection parameters. Moreover, Poly(I:C)-HMW/LyoVec and Poly(I:C)-HMW were the only ligands that significantly increased IL-8 secretion. Interestingly, HBV infection reduced IL-8 secretion induced by Poly(I:C)-HMW and to a lesser extent Poly(I:C)-HMW/LyoVec. Poly(I:C)-HMW/LyoVec had a significant effect on increasing the expression level of A3F, A3G, A3H, TLR3, RIG-1, and MDA5 genes. Our data suggest that PRR agonists may control HBV infection through different mechanisms. The RIG-1 and MDA5 agonist, Poly(I:C)-HMW/LyoVec, seems to downregulate HBV infection through induction of A3 genes.
Collapse
Affiliation(s)
- Sahar Asadi-Asadabad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Sarvnaz
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
17
|
The Characteristics of Natural Killer Cells in Chronic Hepatitis B Patients Who Received PEGylated-Interferon versus Entecavir Therapy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2178143. [PMID: 33575322 PMCID: PMC7857883 DOI: 10.1155/2021/2178143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/17/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Background To explore the role of natural killer (NK) cells in the process of hepatitis B virus (HBV) clearance and whether their phenotype is related to antiviral treatment outcome in chronic hepatitis B (CHB) patients. Method We performed a single-center prospective cohort study to analyze changes of NK cells at weeks 12 and 24 from baseline in CHB patients who received PEGylated-interferon- (PEG-IFN-) α-2a versus entecavir. The frequencies of NK, CD56bright, CD56dim, IFNAR2+, NKp46+, NKp46bright, and NKp46dim NK cells and mean fluorescence intensity (MFI) of receptors NKp46 and IFNAR2 on the surface of NK cells were measured. Subgroup analyses were performed by comparing treatment responders versus nonresponders with aforementioned parameters in each group. Results In PEG-IFN-α-treated patients, posttreatment CD56bright NK cell frequency increased, but CD56dim NK cell frequency decreased. Additionally, receptor NKp46 and IFNAR2 expression enhanced. In entecavir-treated patients, although NK cell frequency increased, CD56bright and CD56dim NK cell frequencies and IFNAR2 expression did not differ between baseline and posttreatment. In subgroup analyses, posttreatment CD56bright NK cell frequency and IFNAR2 expression significantly increased in PEG-IFN-α responders from baseline, while changes were absent in PEG-IFN-α nonresponders and entecavir treatment responders. Among patients with HBV viremia after entecavir therapy, NK cell frequency significantly increased, whereas NKp46bright and IFNAR2+ NK frequency and IFNAR2 MFI significantly decreased at 12 and 24 weeks from baseline. Conclusions In CHB patients, PEG-IFN-α treatment significantly enhanced NK cell frequency and function when compared to entacavir. Positive treatment responses to either interferon or entecavir were associated with NK cell function improvement. This trial is registered with clinical trial registration no. NCT03208998.
Collapse
|
18
|
B cells were related to HBsAg seroconversion in inactive HBsAg carriers following peginterferon therapy. PLoS One 2020; 15:e0242559. [PMID: 33264330 PMCID: PMC7710096 DOI: 10.1371/journal.pone.0242559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Our recent study showed high rate of HBsAg seroconversion achieved in inactive HBsAg carriers (IHCs) treated with peginterferon (PEG-IFN). To better understand the immune-mediated component to the HBsAg seroconversion, we investigated the role of B cells in this study. A total of 44 IHCs were given 48 weeks of PEG-IFN. Fifteen cases achieve HBsAg seroconversion (R group), whereas 29 failed (NR group). The proportion of total B cells and plasma B cells were measured before and during treatment. We found that the proportion of total B cells and plasma B cells was no significant between R group and NR group at baseline, but significantly higher in R group than NR group during PEG-IFN treatment, even when the exact age-, sex-, and treatment period-match was made. In conclusion, we demonstrated the increase of total B cell and plasma B cells during PEG-IFN treatment favored HBsAg seroconversion for IHC, and B cells may play a role in HBV seroconversion.
Collapse
|
19
|
Li MH, Chen QQ, Zhang L, Lu HH, Sun FF, Zeng Z, Lu Y, Yi W, Xie Y. Association of cytokines with hepatitis B virus and its antigen. J Med Virol 2020; 92:3426-3435. [PMID: 32662892 DOI: 10.1002/jmv.26301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/02/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
To investigate the characteristics of cytokines in patients with different HBV infection status and their correlation with HBV DNA, HBsAg, and HBeAg levels. Peripheral blood samples were collected from patients with chronic HBV infection in immune tolerance phase (IT), HBeAg-positive chronic hepatitis B (CHB), and acute hepatitis B (AHB) groups, and levels of cytokines were detected by Luminex technique, and analyzed by FLEXMAP 3D analyzer. The correlation between cytokines and HBV DNA load, HBsAg, HBeAg, and alanine aminotransferase (ALT) level in patients with chronic HBV infection was analyzed. In total 312 subjects (184 males and 128 females) were enrolled in the study. There were significant differences among IT, CHB, and AHB groups in Flt-3L value (P = .003; H = 12.312), IFN-γ (P = .001; H = 11.723), IL-10 (P = .001; H = 18.736), IL-17A ((P = .001; H = 12.735), and TGF-β1 (P = .001; Z = 48.571). IFN-α2 levels in CHB group were significantly higher than those in IT and AHB groups (15.24 vs 35.78 pg/mL, P = .000; Z = 3.727; 13.88 vs 35.78 pg/mL, P = .024; Z = -2.258. In CHB group, the levels of HBsAg and ALT were positively correlated with the levels of IL-10 (r = .173; P = .006; r = 0.176; P = .006, respectively), while HBeAg level was positively correlated with the IFN-α2 level (r = .153; P = .016). In AHB group, the HBsAg level was positively correlated with Flt-3L, IFN-α2, IL-10, and IL-6 (r = .402; P = .023; r = .436; P = .016; r = .524, P = .002; r = .405; P = .022, respectively). HBeAg level was positively correlated with IFN-γ and IL-17A levels (r = .400; P = .023; r = .373; P = .036, respectively), and ALT level was positively correlated with IL-6 levels (r = .367; P = .039). In either AHB or CHB group, HBV DNA load was only related to TGF-β level (r = .493; P = .004; r = -.218, P = 0.009 respectively). The correlation between Flt-3L and HBsAg (F = 7.422; P = .007); IL-17, IL-6, and HBeAg (F = 5.757; P = .017; F = 6.156; P = .014) were statistically significant. There was significant correlation between TGF-β2 and HBV DNA (F = 11.795; P = .001), and between ALT and HBsAg, HBV DNA (F = 26.089; P = .000; F = 4.724; P = .031). HBsAg, HBeAg, and HBV DNA were correlated with cytokines and ALT in patients with HBV infection. The level of IFN-α2 was significantly higher in patients with CHB. HBV DNA load was only correlated with the level of TGF-β in acute or CHB.
Collapse
Affiliation(s)
- Ming-Hui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Qi-Qi Chen
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hui-Hui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fang-Fang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
20
|
Quantitative HBcrAg and HBcAb versus HBsAg and HBV DNA in predicting liver fibrosis levels of chronic hepatitis B patients. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 43:526-536. [PMID: 32921478 DOI: 10.1016/j.gastrohep.2020.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the performance of the quantitative markers of hepatitis B core-related antigen (HBcrAg) and anti-hepatitis B core antigen antibodies HbcAb versus hepatitis B surface antigen (HBsAg) and hepatitis B virus DNA (HBV DNA) in predicting liver fibrosis levels in chronic hepatitis B patients. METHODS Two hundred and fifty hepatitis B e antigen (HBeAg)-positive and 245 HBeAg-negative patients were enrolled. With reference to the Scheuer standard, stage 2 or higher and stage 4 liver disease were defined as significant fibrosis and cirrhosis, respectively. A receiver operating characteristic (ROC) curve was used to evaluate the performance of the HBV markers investigated. RESULTS The areas under the ROC curves (AUCs) of HBcrAg in predicting significant fibrosis and cirrhosis in HBeAg-positive patients (0.577 and 0.700) were both close to those of HBsAg (0.617 and 0.762) (both P> 0.05). In HBeAg-negative patients (0.797 and 0.837), they were both significantly greater than those of HBV DNA (0.723 and 0.738) (P=0.0090 and P=0.0079). The AUCs of HBcAb in predicting significant fibrosis and cirrhosis in HBeAg-positive patients (0.640 and 0.665) were both close to those of HBsAg. In HBeAg-negative patients (0.570 and 0.621), they were both significantly less than those of HBcrAg (P <0.0001 and P=0.0001). Specificity in predicting significant fibrosis and sensitivity in predicting cirrhosis in HBeAg-positive patients, using a single cut-off of HBsAg ≤5,000 IU/ml, were 76.5% and 72.7%, respectively. In HBeAg-negative patients, using a single cut-off of HBcrAg>80kU/ml, they were 85.9% and 81.3%, respectively. CONCLUSIONS HBsAg has good performance in predicting liver fibrosis levels in HBeAg-positive and HBeAg-negative patients, and HBcrAg has very good performance in predicting liver fibrosis levels in HBeAg-negative patients.
Collapse
|
21
|
Soto JA, Gálvez NMS, Andrade CA, Pacheco GA, Bohmwald K, Berrios RV, Bueno SM, Kalergis AM. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Front Immunol 2020; 11:1513. [PMID: 32765522 PMCID: PMC7378533 DOI: 10.3389/fimmu.2020.01513] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of innate immune cells with major relevance in the establishment of an adaptive response, as they are responsible for the activation of lymphocytes. Since their discovery, several reports of their role during infectious diseases have been performed, highlighting their functions and their mechanisms of action. DCs can be categorized into different subsets, and each of these subsets expresses a wide arrange of receptors and molecules that aid them in the clearance of invading pathogens. Interferon (IFN) is a cytokine -a molecule of protein origin- strongly associated with antiviral immune responses. This cytokine is secreted by different cell types and is fundamental in the modulation of both innate and adaptive immune responses against viral infections. Particularly, DCs are one of the most important immune cells that produce IFN, with type I IFNs (α and β) highlighting as the most important, as they are associated with viral clearance. Type I IFN secretion can be induced via different pathways, activated by various components of the virus, such as surface proteins or genetic material. These molecules can trigger the activation of the IFN pathway trough surface receptors, including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3. Here, we discuss various types of dendritic cells found in humans and mice; their contribution to the activation of the antiviral response triggered by the secretion of IFN, through different routes of the induction for this important antiviral cytokine; and as to how DCs are involved in human infections that are considered highly frequent nowadays.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas M S Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roslye V Berrios
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Instituto Milenio de Inmunología e Inmunoterapia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Infections as triggers of flares in systemic autoimmune diseases: novel innate immunity mechanisms. Curr Opin Rheumatol 2020; 31:525-531. [PMID: 31135383 DOI: 10.1097/bor.0000000000000630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The innate immune response (IIR) has to be immediate facing pathogens, and effective to induce a long-lasting adaptive immunity and immune memory. In genetically susceptible individuals, beyond a first defense, a chronically activated by infections IIR may represent a trigger for the onset or flares in systemic autoimmune diseases. This article reviews the recent scientific literature in this regard and highlights the key issues needing investigation. RECENT FINDINGS Thanks to its high specificity mediated by pattern recognition receptors, the IIR is not called unspecific anymore. The discovery of these increasingly accurate recognizing molecular mechanisms has also evidenced their involvement in breaking self-immune tolerance and to maintain chronic inflammation in autoimmune responses. Neutrophil extracellular traps (NETS) as the main source of antinuclear antibodies; the 'neutrophils-pDC activation loop' theory; and the Th1/Th2/Th17 misbalances induced by microbial products because of chronically activated innate immune cells, are some of the recent uncovered IIR origins involved in infectious-induced systemic autoimmune diseases. SUMMARY A deeper understanding of the genetic predisposition and the pathogen-derived factors responsible to exacerbate the IIR might potentially provide therapeutic targets to counteract flares in systemic autoimmune diseases. VIDEO ABSTRACT.
Collapse
|
23
|
Chang L, Wang L, Ling N, Peng H, Chen M. Increase in liver γδ T cells with concurrent augmentation of IFN-β production during the early stages of a mouse model of acute experimental hepatitis B virus infection. Exp Ther Med 2019; 19:67-78. [PMID: 31853274 PMCID: PMC6909674 DOI: 10.3892/etm.2019.8197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
The role of γδ T cells in acute hepatitis B virus (HBV) infection remains unclear. For the present study, a mouse model of acute HBV infection was constructed using hydrodynamic injection-based transfection of an HBV DNA plasmid (pHBV). Subsequent changes in the percentages of γδ T cells, expression of activation molecules (CD25 and CD69) and the production of the inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) by liver γδ T cells were investigated using fluorescence-activated cell sorting (FACS). Additionally, the immune responses in the mouse liver were evaluated dynamically by measuring cytokine mRNA expression (IFN-α, IFN-β, IFN-γ or TNF-α) using reverse transcription-quantitative PCR, and other populations of immune cells, including CD4+T, CD8+T, natural killer (NK) or natural killer T (NKT) cells, using FACS. On day 1 following acute HBV infection, the percentage of liver γδ T cells was significantly increased along with the high expression of HBV markers. Additionally, liver γδ T cells displayed peak expression of the activation marker CD69 and peak IFN-γ production within this timeframe. IFN-β mRNA expression and the percentage of NK cells were elevated significantly on day 1 in liver tissues. However, there were no significant changes in the spleen or peripheral γδ T cells. Therefore, these data suggested that during the early stages of acute HBV infection, significantly increased numbers of liver γδ T cells may be involved in the enhanced immune response to the increased expression of HBV markers in the liver.
Collapse
Affiliation(s)
- Lin Chang
- Department of Clinical Laboratory, People's Hospital of Bishan District, Chongqing 402760, P.R. China
| | - Lei Wang
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ning Ling
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hui Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|