1
|
Karam M, Aqel S, Haider MZ, Fathima A, Charafedine A, Daher MA, Shaito A, El-Sabban M, Saliba J. Beyond the Injury: How Does Smoking Impair Stem Cell-Mediated Repair Mechanisms? A Dual Review of Smoking-Induced Stem Cell Damage and Stem Cell-Based Therapeutic Applications. Stem Cell Rev Rep 2025:10.1007/s12015-025-10886-9. [PMID: 40279029 DOI: 10.1007/s12015-025-10886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
While the literature on molecular and clinical effects of smoking on the lungs and other organs has been expansively reviewed, there is no comprehensive compilation of the effects of smoking on stem cell (SC) populations. Recent research has shown that tobacco exposure severely compromises the function of SC populations, particularly those involved in tissue regeneration: mesenchymal SCs (MSCs), neural progenitors, and hematopoietic SCs. SC-based therapies have emerged as a promising approach to counteract smoking-related damage. In particular, MSCs have been extensively studied for their immunomodulatory properties, demonstrating the ability to repair damaged tissues, reduce inflammation, and slow disease progression in conditions such as chronic obstructive pulmonary disease. Combination therapies, which integrate pharmaceuticals with SC treatments, have shown potential in enhancing regenerative outcomes. This review examines the impact of smoking on SC biology, describes the processes impairing SC-mediated repair mechanisms and highlights recent advancements in SC-based therapies in the treatment of smoking-induced diseases. This review has two prongs: (1) it attempts to explain potential smoking-related disease etiology, and (2) it addresses a gap in the literature on SC-mediated repair mechanisms in chronic smokers.
Collapse
Affiliation(s)
- Mario Karam
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Translational Cancer Medicine, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Helsinki, Finland
| | - Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Z Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aseela Fathima
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Adib Charafedine
- College Of Pharmacy, American University of Iraq-Baghdad, Baghdad, Iraq
| | - Mira Abou Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Biomedical Research Center and Department of Biomedical Sciences at College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jessica Saliba
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Sin El Fil, PO Box: 55251, Beirut, Lebanon.
- Department of Biology, Faculty of Science, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
2
|
McLaughlin D, Sasaki M, Hoffmann C, Brewster L, E Hekman K. Smoking Status Impacts Mitochondrial Function and Synthetic Function in Mesenchymal Stem Cells Derived from Diabetics with Arterial Insufficiency. Adv Wound Care (New Rochelle) 2024. [PMID: 39706587 DOI: 10.1089/wound.2024.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Objective: Diabetes and smoking are frequently co-morbid conditions leading to arterial insufficiency, significantly increasing the risk of non-healing wounds and subsequent major amputation. Autologous patient-specific mesenchymal stem cells (MSCs) present a novel tool for regenerative therapy to treat advanced stages of arterial insufficiency. The regenerative performance of cells from diabetics with impaired arterial perfusion is known to be reduced, but the impact of additional patient factors such as smoking remains poorly understood. Approach: MSCs were harvested from amputees under IRB approval. Mitochondria were evaluated for mitophagy and bioenergetic function. MSC growth, reactive oxygen species (ROS), and synthetic function were measured. Exogenous nicotine was used to mimic smoking byproducts. Data were analyzed by one-way analysis of variance with p < 0.05 considered statistically significant. Results: Four MSC patient lines were from smokers and four were from non-smokers. All were male, diabetic, and matched for age. Mitochondrial turnover, ROS production, proliferation, and doubling time were comparable between groups. Smoking status significantly decreased glycolytic capacity, maximal mitochondrial respiration, and the synthetic function of MSCs compared with non-smokers (p < 0.05). Acute nicotine exposure in non-smoker MSCs significantly increased mitochondrial function, an effect that incompletely resolved with nicotine withdrawal (p < 0.001). Innovation: This study implicates mitochondrial dysfunction in smoking-mediated impairment of MSC synthetic function. Conclusion: Smoking alters mitochondrial bioenergetics and synthetic function of MSCs from diabetic patients with arterial insufficiency. Restoring mitochondrial function may improve synthetic function and therapeutic capabilities of smoker MSCs. Targeted rejuvenation strategies may be required based on smoking status for autologous MSC therapies for patients with arterial insufficiency.
Collapse
Affiliation(s)
- Dylan McLaughlin
- Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Maiko Sasaki
- Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Carson Hoffmann
- Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Luke Brewster
- Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Katherine E Hekman
- Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Salah B, Shahin D, Sarhan M, Al-Karmi J, Al-Kurdi B, Al-Atoom R, Ismail MA, Hammad N, Jafar H, Awidi A, Ababneh NA. Effect of cigarette smoke on the proliferation, viability, gene expression, and cellular functions of adipose-derived mesenchymal stem cells from smoking and non-smoking donors. Biol Open 2024; 13:bio061665. [PMID: 39625294 PMCID: PMC11646114 DOI: 10.1242/bio.061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 12/16/2024] Open
Abstract
Cigarette smoking negatively impacts mesenchymal stem cell functionality, including proliferation, viability, and differentiation potential. Adipose-derived mesenchymal stem cells (ADMSCs) are increasingly used for therapeutic purposes, but the specific effects of smoking in vivo on these cells are poorly understood. This study investigates the effects of cigarette smoke on the proliferation, viability, gene expression, and cellular functions of ADMSCs from smoking and non-smoking donors. In this study, ADMSCs were isolated from healthy smokers and non-smokers, and cell proliferation was assessed using the MTT assay, viability with apoptosis assays, mitochondrial membrane potential (MMP), and gene expression related to oxidative stress and cellular functions. Cell cycle analysis was also conducted. Our findings reveal a significant decrease in the proliferation of ADMSCs from smokers. Apoptosis assays showed reduced viable cells in smokers without a significant change in MMP, suggesting alternative pathways contributing to decreased viability. Gene expression analysis indicated the upregulation of genes associated with oxidative stress response and cellular defense mechanisms and the downregulation of genes related to inflammatory signaling, detoxification, and cellular metabolism. Cell cycle analysis indicates cycle arrest or delay in smokers, possibly due to stress and potential DNA damage. Smoking negatively affects ADMSCs' proliferation, viability, and function through oxidative stress and gene expression alterations. These findings highlight the importance of considering smoking status in ADMSC therapies and the need for further research to mitigate the effect of smoking on stem cells.
Collapse
Affiliation(s)
- Bareqa Salah
- General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, the University of Jordan, 11942
| | - Diana Shahin
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
| | - Momen Sarhan
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
- School of Medicine, the University of Jordan, Amman, Jordan, 11942
| | - Joud Al-Karmi
- School of Medicine, the University of Jordan, Amman, Jordan, 11942
| | - Ban Al-Kurdi
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
| | - Renata Al-Atoom
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
| | | | - Nouran Hammad
- School of Medicine, Jordan University of Science and Technology, Al-Ramtha, Jordan, 22110
| | - Hanan Jafar
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
| | - Abdalla Awidi
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
- Hemostasis and Thrombosis Laboratory, School of Medicine, the University of Jordan, Amman, Jordan, 11942
- Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan, 11492
| | - Nidaa A. Ababneh
- Cell Therapy Center, the University of Jordan, Amman, Jordan, 11942
| |
Collapse
|
4
|
Gheisari M, Nosrati S, Zare S, Dara M, Zolghadri S, Razeghian-Jahromi I. The impact of high nicotine concentrations on the viability and cardiac differentiation of mesenchymal stromal cells: a barrier to regenerative therapy for smokers. Front Cell Dev Biol 2024; 12:1323691. [PMID: 38638529 PMCID: PMC11024539 DOI: 10.3389/fcell.2024.1323691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background: Current treatment methods are not successful in restoring the lost cardiomyocytes after injury. Stem cell-based strategies have attracted much attention in this regard. Smoking, as a strong cardiovascular risk factor, not only affects the cardiac cells adversely but also deteriorates the function of stem cells. Since mesenchymal stem cells (MSCs) are one of the popular candidates in cardiovascular disease (CVD) clinical trials, we investigated the impact of nicotine on the regenerative properties (viability and cardiac differentiation) of these cells. Methods: MSCs were isolated from rat bone marrow and characterized based on morphology, differentiation capability, and the expression of specific mesenchymal markers. The MTT assay was used to assess the viability of MSCs after being exposed to different concentrations of nicotine. Based on MTT findings and according to the concentration of nicotine in smokers' blood, the growth curve and population doubling time were investigated for eight consecutive days. Cells were treated with 5-azacytidine (an inducer of cardiac differentiation), and then the expressions of cardiac-specific markers were calculated by qPCR. Results: MSCs were spindle-shaped, capable of differentiating into adipocyte and osteocyte, and expressed CD73 and CD90. The viability of MSCs was reduced upon exposure to nicotine in a concentration- and time-dependent manner. The growth curve showed that nicotine reduced the proliferation of MSCs, and treated cells needed more time to double. In addition, the expressions of GATA4 and troponin were downregulated in nicotine-treated cells on day 3. However, these two cardiac markers were overexpressed on day 7. Conclusion: Nicotine decreased normal growth and reduced the expression of cardiac markers in MSCs. This aspect is of eminent importance to smokers with cardiovascular disease who are candidates for stem cell therapy.
Collapse
Affiliation(s)
- Maryam Gheisari
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shadi Nosrati
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | |
Collapse
|
5
|
Jiang Y, Yang K, Jia B, Gao Y, Chen Y, Chen P, Lu X, Zhang W, Wang X. Nicotine destructs dental stem cell-based periodontal tissue regeneration. J Dent Sci 2024; 19:231-245. [PMID: 38303843 PMCID: PMC10829564 DOI: 10.1016/j.jds.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/18/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Nicotine is a widely known addictive and toxic substance in cigarette that exacerbates periodontitis. However, its deleterious effects on dental stem cells and subsequent implications in tissue regeneration remain unclear. This study aimed to explore the effects of nicotine on the regenerative capacity of human periodontal ligament stem cells (hPDLSCs) based on transcriptomics and proteomics, and determined possible targeted genes associated with smoking-related periodontitis. Materials and methods hPDLSCs were treated with different concentrations of nicotine ranging from 10-3 to 10-8 M. Transcriptomics and proteomics were performed and confirmed employing Western blot, 5-ethynyl-2'-deoxyuridine (EdU), and alkaline phosphatase (ALP) staining. A ligature-induced periodontitis mouse model was established and administrated with nicotine (16.2 μg/10 μL) via gingival sulcus. The bone resorption was assessed by micro-computed tomography and histological staining. Key genes were identified using multi-omics analysis with verifications in hPDLSCs and human periodontal tissues. Results Based on enrichments analysis, nicotine-treated hPDLSCs exhibited decreased proliferation and differentiation abilities. Local administration of nicotine in mouse model significantly aggravated bone resorption and undermined periodontal tissue regeneration by inhibiting the endogenous dental stem cells regenerative ability. HMGCS1, GPNMB, and CHRNA7 were hub-genes according to the network analysis and corelated with proliferation and differentiation capabilities, which were also verified in both cells and tissues. Conclusion Our study investigated the destructive effects of nicotine on the regeneration of periodontal tissues from aspects of in vitro and in vivo with the supporting information from both transcriptome and proteome, providing novel targets into the molecular mechanisms of smoking-related periodontitis.
Collapse
Affiliation(s)
- Yuran Jiang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kuan Yang
- School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Bo Jia
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Forth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Forth Military Medical University, Xi'an, Shaanxi, China
- School of Biomedical Science, Li Ka-shing School of Medicine, Hong Kong University, Hong Kong, China
| | - Yujiang Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxi Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Forth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaojing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Al-Azab M, Idiiatullina E, Safi M, Hezam K. Enhancers of mesenchymal stem cell stemness and therapeutic potency. Biomed Pharmacother 2023; 162:114356. [PMID: 37040673 DOI: 10.1016/j.biopha.2023.114356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a range of cell types, including osteoblasts, chondrocytes, myocytes, and adipocytes. Multiple preclinical investigations and clinical trials employed enhanced MSCs-dependent therapies in treatment of inflammatory and degenerative diseases. They have demonstrated considerable and prospective therapeutic potentials even though the large-scale use remains a problem. Several strategies have been used to improve the therapeutic potency of MSCs in cellular therapy. Treatment of MSCs utilizing pharmaceutical compounds, cytokines, growth factors, hormones, and vitamins have shown potential outcomes in boosting MSCs' stemness. In this study, we reviewed the current advances in enhancing techniques that attempt to promote MSCs' therapeutic effectiveness in cellular therapy and stemness in vivo with potential mechanisms and applications.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Elina Idiiatullina
- Department of Immunology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China; Department of Therapy and Nursing, Bashkir State Medical University, Ufa 450008, Russia
| | - Mohammed Safi
- Department of Respiratory Diseases, Shandong Second Provincial General Hospital, Shandong University, Shandong, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China; Department of Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| |
Collapse
|
7
|
Boronat-Toscano A, Vañó I, Monfort-Ferré D, Menacho M, Valldosera G, Caro A, Espina B, Mañas MJ, Marti M, Espin E, Saera-Vila A, Serena C. Smoking Suppresses the Therapeutic Potential of Adipose Stem Cells in Crohn’s Disease Patients through Epigenetic Changes. Cells 2023; 12:cells12071021. [PMID: 37048094 PMCID: PMC10093550 DOI: 10.3390/cells12071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Patients with Crohn’s disease (CD) who smoke are known to have a worse prognosis than never-smokers and a higher risk for post-surgical recurrence, whereas patients who quit smoking after surgery have significantly lower post-operative recurrence. The hypothesis was that smoking induces epigenetic changes that impair the capacity of adipose stem cells (ASCs) to suppress the immune system. It was also questioned whether this impairment remains in ex-smokers with CD. ASCs were isolated from non-smokers, smokers and ex-smokers with CD and their interactions with immune cells were studied. The ASCs from both smokers and ex-smokers promoted macrophage polarization to an M1 pro-inflammatory phenotype, were not able to inhibit T- and B-cell proliferation in vitro and enhanced the gene and protein expression of inflammatory markers including interleukin-1b. Genome-wide epigenetic analysis using two different bioinformatic approaches revealed significant changes in the methylation patterns of genes that are critical for wound healing, immune and metabolic response and p53-mediated DNA damage response in ASCs from smokers and ex-smokers with CD. In conclusion, cigarette smoking induces a pro-inflammatory epigenetic signature in ASCs that likely compromises their therapeutic potential.
Collapse
|
8
|
Cozzolino C, Picchio V, Floris E, Pagano F, Saade W, Peruzzi M, Frati G, Chimenti I. Modified Risk Tobacco Products and Cardiovascular Repair: Still Very "Smoky". Curr Stem Cell Res Ther 2023; 18:440-444. [PMID: 35927909 DOI: 10.2174/1574888x17666220802142532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Smoking habits represent a cardiovascular risk factor with a tremendous impact on health. Other than damaging differentiated and functional cells of the cardiovascular system, they also negatively affect reparative mechanisms, such as those involved in cardiac fibrosis and in endothelial progenitor cell (EPC) activation. In recent years, alternative smoking devices, dubbed modified tobacco risk products (MRPs), have been introduced, but their precise impact on human health is still under evaluation. Also, they have not been characterized yet about the possible negative effects on cardiovascular reparative and regenerative cells, such as EPCs or pluripotent stem cells. In this perspective, we critically review the still scarce available data on the effects of MRPs on molecular and cellular mechanisms of cardiovascular repair and regeneration.
Collapse
Affiliation(s)
- Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo (RM), Italy
| | - Wael Saade
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Mediterranea Cardiocentro, 80133 Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- IRCCS NeuroMed, Pozzilli (IS), Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80133 Napoli, Italy
| |
Collapse
|
9
|
Yamaguchi S, Yoshida M, Horie N, Satoh K, Fukuda Y, Ishizaka S, Ogawa K, Morofuji Y, Hiu T, Izumo T, Kawakami S, Nishida N, Matsuo T. Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010033. [PMID: 36671605 PMCID: PMC9854681 DOI: 10.3390/bioengineering10010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Stem cell therapy for ischemic stroke holds great promise for the treatment of neurological impairment and has moved from the laboratory into early clinical trials. The mechanism of action of stem cell therapy includes the bystander effect and cell replacement. The bystander effect plays an important role in the acute to subacute phase, and cell replacement plays an important role in the subacute to chronic phase. Intraarterial (IA) transplantation is less invasive than intraparenchymal transplantation and can provide more cells in the affected brain region than intravenous transplantation. However, transplanted cell migration was reported to be insufficient, and few transplanted cells were retained in the brain for an extended period. Therefore, the bystander effect was considered the main mechanism of action of IA stem cell transplantation. In most clinical trials, IA transplantation was performed during the acute and subacute phases. Although clinical trials of IA transplantation demonstrated safety, they did not demonstrate satisfactory efficacy in improving patient outcomes. To increase efficacy, increased migration of transplanted cells and production of long surviving and effective stem cells would be crucial. Given the lack of knowledge on this subject, we review and summarize the mechanisms of action of transplanted stem cells and recent advancements in preclinical and clinical studies to provide information and guidance for further advancement of acute/subacute phase IA stem cell transplantation therapy for ischemic stroke.
Collapse
Affiliation(s)
- Susumu Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
- Correspondence: ; Tel.: +81-095-819-7375
| | - Michiharu Yoshida
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Department of Neurosurgery, Sasebo General Hospital, Nagasaki 857-8511, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Hiroshima University, Hiroshima 734-8551, Japan
| | - Katsuya Satoh
- Department of Occupational Therapy Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Yuutaka Fukuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shunsuke Ishizaka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
10
|
Srinivasan A, Sathiyanathan P, Yin L, Liu TM, Lam A, Ravikumar M, Smith RAA, Loh HP, Zhang Y, Ling L, Ng SK, Yang YS, Lezhava A, Hui J, Oh S, Cool SM. Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy 2022; 24:456-472. [PMID: 35227601 DOI: 10.1016/j.jcyt.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Therapies using mesenchymal stromal cells (MSCs) to treat immune and inflammatory conditions are now at an exciting stage of development, with many MSC-based products progressing to phase II and III clinical trials. However, a major bottleneck in the clinical translation of allogeneic MSC therapies is the variable immunomodulatory properties of MSC products due to differences in their tissue source, donor heterogeneity and processes involved in manufacturing and banking. This variable functionality of MSC products likely contributes to the substantial inconsistency observed in the clinical outcomes of phase III trials of MSC therapies; several trials have failed to reach the primary efficacy endpoint. In this review, we discuss various strategies to consistently maintain or enhance the immunomodulatory potency of MSCs during ex vivo expansion, which will enable the manufacture of allogeneic MSC banks that have high potency and low variability. Biophysical and biochemical priming strategies, the use of culture additives such as heparan sulfates, and genetic modification can substantially enhance the immunomodulatory properties of MSCs during in vitro expansion. Furthermore, robust donor screening, the use of biomarkers to select for potent MSC subpopulations, and rigorous quality testing to improve the release criteria for MSC banks have the potential to reduce batch-to-batch heterogeneity and enhance the clinical efficacy of the final MSC product. Machine learning approaches to develop predictive models of individual patient response can enable personalized therapies and potentially establish correlations between in vitro potency measurements and clinical outcomes in human trials.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lu Yin
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Tong Ming Liu
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Maanasa Ravikumar
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Han Ping Loh
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Ying Zhang
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Ling Ling
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, A*STAR, Singapore
| | | | - Alexander Lezhava
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - James Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, Singapore.
| | - Simon M Cool
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
11
|
Abaricia JO, Whitehead AJ, Kandalam S, Shah AH, Hotchkiss KM, Morandini L, Olivares-Navarrete R. E-cigarette Aerosol Mixtures Inhibit Biomaterial-Induced Osseointegrative Cell Phenotypes. MATERIALIA 2021; 20:101241. [PMID: 34778733 PMCID: PMC8589285 DOI: 10.1016/j.mtla.2021.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | - Suraj Kandalam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Arth H. Shah
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lais Morandini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
12
|
Morris TM, Marlborough FJ, Montgomery RJ, Allison KP, Eardley WGP. Smoking and the patient with a complex lower limb injury. Injury 2021; 52:814-824. [PMID: 33495022 DOI: 10.1016/j.injury.2020.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Smoking is known to increase the risk of peri-operative complications in Orthoplastic surgery by impairing bone and wound healing. The effects of nicotine replacement therapies (NRTs) and electronic cigarettes (e-cigarettes) has been less well established. Previous reviews have examined the relationship between smoking and bone and wound healing separately. This review provides surgeons with a comprehensive and contemporaneous account of how smoking in all forms interacts with all aspects of complex lower limb trauma. We provide a guide for surgeons to refer to during the consent process to enable them to tailor information towards smokers in such a way that the patient may understand the risks involved with their surgical treatment. We update the literature with recently discovered methods of monitoring and treating the troublesome complications that occur more commonly in smokers effected by trauma.
Collapse
Affiliation(s)
- Timothy M Morris
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW.
| | - Fergal J Marlborough
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Richard J Montgomery
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Keith P Allison
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - William G P Eardley
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| |
Collapse
|
13
|
Andjelkov K, Conde-Green A, Mosahebi A. Smoking and Physical Activity Significantly Influence Stromal Vascular Fraction Cell Yield and Viability. Aesthetic Plast Surg 2021; 45:315-321. [PMID: 33083844 DOI: 10.1007/s00266-020-02008-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Subcutaneous tissue is an abundant source of adipose-derived regenerative cells. It is readily available and easy to extract by means of liposuction, making it one of the most popular sources for tissue engineering and regenerative medical applications. METHODS The stromal vascular fraction (SVF) cell yield and viability of the lipoaspirate obtained from 43 patients undergoing elective liposuction were examined in correlation with their age, gender, body mass index, smoking status, and physical activity. The lipoaspirate was processed with the Celution® 800/CRS system to isolate the SVF and a few drops of the obtained pellet were used for cell counting with NecleoCounter® NC-100TM. RESULTS Twenty-eight (65.1%) were men and 15 (34.9%) were women with an average age of 40.7 ± 10.4 years (women) and 38.9 ± 11.8 years (men). Viable SVF cells/g fat was significantly correlated with smoking level (negative correlation, ρ= - 0.312, P < 0.05) and with marginal significance with female gender. Cell viability showed a significant negative correlation with physical activity level (ρ = - 0.432, P < 0.01); borderline significance for correlation of this parameter with smoking level should not be neglected. Other parameters did not influence the cell yield nor the viability of the stromal vascular fraction. CONCLUSION Many factors may influence SVF cell yield and viability. Our findings indicate that age and smoking significantly influenced SVF cell yield, age positively while smoking negatively. Increased physical activity had a negative correlation with SVF cell viability. LEVEL OF EVIDENCE N/A This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Katarina Andjelkov
- Faculty of Medicine, University of Belgrade, BelPrime Clinic, 16 Brane Crncevica, 11000, Belgrade, Serbia.
| | | | | |
Collapse
|
14
|
Nguyen B, Alpagot T, Oh H, Ojcius D, Xiao N. Comparison of the effect of cigarette smoke on mesenchymal stem cells and dental stem cells. Am J Physiol Cell Physiol 2021; 320:C175-C181. [PMID: 33175571 DOI: 10.1152/ajpcell.00217.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The persistent prevalence of cigarette smoking continues to contribute to preventable disease and death in the United States. Although much is known about the deleterious systemic effects of cigarette smoke and nicotine, some clinically relevant areas, such as the impact of cigarette smoke and nicotine on stem cells and the subsequent implications in regenerative medicine, still remain unclear. This review focuses on recent studies on the effect of cigarette smoke and one of its deleterious components, nicotine, on mesenchymal stem cells, with an emphasis on dental stem cells.
Collapse
Affiliation(s)
- Brandon Nguyen
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Heesoo Oh
- Department of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - David Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| |
Collapse
|
15
|
Pourakbari R, Ahmadi H, Yousefi M, Aghebati-Maleki L. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure. Life Sci 2020; 258:118181. [DOI: 10.1016/j.lfs.2020.118181] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
|
16
|
Dadras M, May C, Wagner JM, Wallner C, Becerikli M, Dittfeld S, Serschnitzki B, Schilde L, Guntermann A, Sengstock C, Köller M, Seybold D, Geßmann J, Schildhauer TA, Lehnhardt M, Marcus K, Behr B. Comparative proteomic analysis of osteogenic differentiated human adipose tissue and bone marrow-derived stromal cells. J Cell Mol Med 2020; 24:11814-11827. [PMID: 32885592 PMCID: PMC7579700 DOI: 10.1111/jcmm.15797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells are promising candidates for regenerative applications upon treatment of bone defects. Bone marrow‐derived stromal cells (BMSCs) are limited by yield and donor morbidity but show superior osteogenic capacity compared to adipose‐derived stromal cells (ASCs), which are highly abundant and easy to harvest. The underlying reasons for this difference on a proteomic level have not been studied yet. Human ASCs and BMSCs were characterized by FACS analysis and tri‐lineage differentiation, followed by an intraindividual comparative proteomic analysis upon osteogenic differentiation. Results of the proteomic analysis were followed by functional pathway analysis. 29 patients were included with a total of 58 specimen analysed. In these, out of 5148 identified proteins 2095 could be quantified in >80% of samples of both cell types, 427 in >80% of ASCs only and 102 in >80% of BMSCs only. 281 proteins were differentially regulated with a fold change of >1.5 of which 204 were higher abundant in BMSCs and 77 in ASCs. Integrin cell surface interactions were the most overrepresented pathway with 5 integrins being among the proteins with highest fold change. Integrin 11a, a known key protein for osteogenesis, could be identified as strongly up‐regulated in BMSC confirmed by Western blotting. The integrin expression profile is one of the key distinctive features of osteogenic differentiated BMSCs and ASCs. Thus, they represent a promising target for modifications of ASCs aiming to improve their osteogenic capacity and approximate them to that of BMSCs.
Collapse
Affiliation(s)
- Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Lukas Schilde
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Annika Guntermann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Christina Sengstock
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Manfred Köller
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Dominik Seybold
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Jan Geßmann
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
17
|
Kenmochi H, Yamasaki T, Koizumi S, Sameshima T, Namba H. Nicotine does not affect stem cell properties requisite for suicide gene therapy against glioma. Neurol Res 2020; 42:818-827. [PMID: 32588772 DOI: 10.1080/01616412.2020.1782123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE: Glioblastoma is one of the most lethal tumors in adult central nervous system with a median survival of a year and half and effective therapeutic strategy is urgently needed. For that reason, stem cell-based suicide gene therapies have attracted much interest because of potent tumor tropism of stem cells and bystander effect. In this current clinical situation, stem cells are promising delivery tool of suicide genes for glioma therapy. Since habitual cigarette smoking still prevails worldwide, we investigated the effect of nicotine on stem cell tropism toward glioma and gap junctional intercellular communication (GJIC) function between glioma and stem cells, both of which are important for suicide gene therapies. Methods: Mouse induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) and human dental pulp mesenchymal stem cells (DPSCs) were used. The effect of nicotine on tumor tropism to glioma-conditioned medium (CM) at a non-cytotoxic concentration was assessed with Matrigel invasion assay. Nicotine effect on GJIC was assessed with the scrape loading/dye transfer (SL/DT) assay for co-culture of glioma and stem cells and the parachute assay among glioma cells using high-content analysis. Results: Tumor tropism of iPS-NSCs toward GL261-CM and DPSCs toward U251-CM was not affected by nicotine (0.1 and 1 µM). Nicotine at the concentrations equivalent to habitual smoking (1 µM) did not affect GJIC of iPS-NSC/GL261 and DPSC/U251 and GJIC among each glioma cells. Conclusions: The study demonstrated that non-cytotoxic concentrations of nicotine did not significantly change the stem cell properties requisite for stem cell-based suicide gene therapy.
Collapse
Affiliation(s)
- Hiroaki Kenmochi
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Tetsuro Sameshima
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine , Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
18
|
Lin Y, Nan J, Shen J, Lv X, Chen X, Lu X, Zhang C, Xiang P, Wang Z, Li Z. Canagliflozin impairs blood reperfusion of ischaemic lower limb partially by inhibiting the retention and paracrine function of bone marrow derived mesenchymal stem cells. EBioMedicine 2020; 52:102637. [PMID: 31981975 PMCID: PMC6992997 DOI: 10.1016/j.ebiom.2020.102637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Canagliflozin (CANA) administration increases the risk of lower limb amputation in the clinic. The present study aimed to investigate whether and how CANA interferes with the intracellular physiological processes of bone marrow derived mesenchymal stem cells (BM-MSCs) and its contribution to ischaemic lower limb. Methods The in vivo blood flow recovery in ischaemic lower limbs following CANA treatment was evaluated. The cellular function of BM-MSCs after CANA treatment were also assessed in vitro. In silico docking analysis and mutant substitution assay were conducted to confirm the interaction of CANA with glutamate dehydrogenase 1 (GDH1). Findings Following CANA treatment, attenuated angiogenesis and hampered blood flow recovery in the ischaemic region were detected in diabetic and non-diabetic mice, and inhibition of the proliferation and migration of BM-MSCs were also observed. CANA was involved in mitochondrial respiratory malfunction in BM-MSCs and the inhibition of ATP production, cytochrome c release and vessel endothelial growth factor A (VEGFA) secretion, which may contribute to reductions in the tissue repair capacity of BM-MSCs. The detrimental effects of CANA on MSCs result from the inhibition of GDH1 by CANA (evidenced by in silico docking analysis and H199A-GDH1/N392A-GDH1 mutant substitution). Interpretation Our work highlights that the inhibition of GDH1 activity by CANA interferes with the metabolic activity of the mitochondria, and this interference deteriorates the retention of and VEGFA secretion by MSCs. Funding National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province and Wenzhou Science and Technology Bureau Foundation.
Collapse
Affiliation(s)
- Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jian Shen
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xinhuang Lv
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xiao Chen
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Xingmei Lu
- Department of Pathology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chi Zhang
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Pingping Xiang
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Zhiting Wang
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Zhengzheng Li
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
19
|
Cruz T, López-Giraldo A, Noell G, Guirao A, Casas-Recasens S, Garcia T, Saco A, Sellares J, Agustí A, Faner R. Smoking Impairs the Immunomodulatory Capacity of Lung-Resident Mesenchymal Stem Cells in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:575-583. [DOI: 10.1165/rcmb.2018-0351oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tamara Cruz
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Guillaume Noell
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Angela Guirao
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Tamara Garcia
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Adela Saco
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Jacobo Sellares
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Alvar Agustí
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Rosa Faner
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| |
Collapse
|
20
|
Wang J, Liu C, Fujino M, Tong G, Zhang Q, Li XK, Yan H. Stem Cells as a Resource for Treatment of Infertility-related Diseases. Curr Mol Med 2019; 19:539-546. [PMID: 31288721 PMCID: PMC6806537 DOI: 10.2174/1566524019666190709172636] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Worldwide, infertility affects 8-12% of couples of reproductive age and has become a common problem. There are many ways to treat infertility, including medication, intrauterine insemination, and in vitro fertilization. In recent years, stem-cell therapy has raised new hope in the field of reproductive disability management. Stem cells are self-renewing, self-replicating undifferentiated cells that are capable of producing specialized cells under appropriate conditions. They exist throughout a human’s embryo, fetal, and adult stages and can proliferate into different cells. While many issues remain to be addressed concerning stem cells, stem cells have undeniably opened up new ways to treat infertility. In this review, we describe past, present, and future strategies for the use of stem cells in reproductive medicine
Collapse
Affiliation(s)
- Jing Wang
- Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Chi Liu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Guoqing Tong
- Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinxiu Zhang
- Department of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hua Yan
- Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Zahedi A, Phandthong R, Chaili A, Leung S, Omaiye E, Talbot P. Mitochondrial Stress Response in Neural Stem Cells Exposed to Electronic Cigarettes. iScience 2019; 16:250-269. [PMID: 31200115 PMCID: PMC6562374 DOI: 10.1016/j.isci.2019.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells provide a sensitive model to study exposure to toxicants, such as cigarette smoke. Electronic cigarettes (ECs) are popular nicotine delivery devices, often targeted to youth and pregnant mothers. However, little is known about how chemicals in ECs might affect neural stem cells, and in particular their mitochondria, organelles that maintain cell functionality and health. Here we show that the mechanism underlying EC-induced stem cell toxicity is stress-induced mitochondrial hyperfusion (SIMH), a transient survival response accompanied by increased mitochondrial oxidative stress. We identify SIMH as a survival response to nicotine, now widely available in EC refill fluids and in pure form for do-it-yourself EC products. These observed mitochondrial alterations combined with autophagy dysfunction to clear damaged mitochondria could lead to faulty stem cell populations, accelerate cellular aging, and lead to acquired mitochondriopathies. Any nicotine-containing product may likewise stress stem cells with long-term repercussions for users and passively exposed individuals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Atena Zahedi
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Angela Chaili
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Sara Leung
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Esther Omaiye
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Prue Talbot
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA.
| |
Collapse
|
22
|
Laroye C, Boufenzer A, Jolly L, Cunat L, Alauzet C, Merlin JL, Yguel C, Bensoussan D, Reppel L, Gibot S. Bone marrow vs Wharton's jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther 2019; 10:192. [PMID: 31248453 PMCID: PMC6598309 DOI: 10.1186/s13287-019-1295-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) is being extensively studied in clinical trials in the setting of various diseases including diabetes, stroke, and progressive multiple sclerosis. The unique immunomodulatory properties of MSCs also point them as a possible therapeutic tool during sepsis and septic shock, a devastating syndrome associated with 30-35% mortality. However, MSCs are not equal regarding their activity, depending on their tissue origin. Here, we aimed at comparing the in vivo properties of MSCs according to their tissue source (bone marrow (BM) versus Wharton's jelly (WJ)) in a murine cecal ligation and puncture (CLP) model of sepsis that mimics a human peritonitis. We hypothesized that MSC properties may vary depending on their tissue source in the setting of sepsis. METHODS CLP, adult, male, C57BL/6 mice were randomized in 3 groups receiving respectively 0.25 × 106 BM-MSCs, 0.25 × 106 WJ-MSCs, or 150 μL phosphate-buffered saline (PBS) intravenously 24 h after the CLP procedure. RESULTS We observed that both types of MSCs regulated leukocyte trafficking and reduced organ dysfunction, while only WJ-MSCs were able to improve bacterial clearance and survival. CONCLUSION This study highlights the importance to determine the most appropriate source of MSCs for a given therapeutic indication and suggests a better profile for WJ-MSCs during sepsis.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | | | - Lucie Jolly
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, 54000 Nancy, France
- Service de Biopathologie - Unité de Biologie des Tumeurs, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Clémence Yguel
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
23
|
Kim CW, Go RE, Hwang KA, Jeung EB, Choi SJ, Choi KC. Apoptotic effects of cigarette smoke extracts on mouse embryonic stem cells via oxidative stress. ENVIRONMENTAL TOXICOLOGY 2019; 34:689-698. [PMID: 30742351 DOI: 10.1002/tox.22735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have reported that cigarette smoke and cigarette smoke extract (CSE) have negative effects on embryonic development. However, no studies have investigated the mechanism through which CSE affects the cellular signaling pathway leading to apoptosis and oxidative stress in embryonic cells, or how the two pathways are cross-linked. Thus, we studied the effects of CSE on apoptosis and oxidative stress in mouse embryonic stem cells (mESCs). Specifically, we measured changes in cell viability in response to CSEs (3R4F and two domestic cigarettes CSE 1 and 2) using a water soluble tetrazolium (WST) assay and a neutral red uptake (NRU) assay, which revealed that cell viability decreased in a concentration-dependent manner. Western blot analysis revealed that the expression of cyclin D1 and cyclin E1 was decreased and that of p21 and p27 was increased by CSE. Additionally, the number of terminal deoxynucleotidyl transferase (TUNEL)-stained cells was increased by CSE, while the levels of Bax and Caspase-3 increased and Bcl-2 decreased. Moreover, a 2',7'-dichlorofluorescin diacetate (DCF-DA) assay and reactive oxygen species (ROS)-Glo H2 O2 assay confirmed that ROS were generated in response to CSE and that they were associated with up-regulated Keaf-1 and CHOP. Overall, the results revealed that cigarette smoke extract (CSE) inhibited cell proliferation by regulating cell cycle-related protein expression and increased oxidative stress by regulating the expression of Kelch-like ECH-associated protein 1 (Keap-1) and CCAAT/enhancer-binding protein homologous protein (CHOP), resulting in apoptosis in mESCs.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seong-Jin Choi
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeonbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
24
|
Wang D, Lin KM, Burge AJ, Balazs GC, Williams RJ. Bone Marrow Aspirate Concentrate Does Not Improve Osseous Integration of Osteochondral Allografts for the Treatment of Chondral Defects in the Knee at 6 and 12 Months: A Comparative Magnetic Resonance Imaging Analysis. Am J Sports Med 2019; 47:339-346. [PMID: 30543757 DOI: 10.1177/0363546518813915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Poor osseous integration after fresh osteochondral allograft transplantation (OCA) may be associated with graft subsidence and subchondral bone collapse after implantation. The augmentation of OCA with bone marrow aspirate concentrate (BMAC) has been hypothesized to improve osseous incorporation of the implanted allograft. PURPOSE To evaluate the effect of autogenous BMAC treatment on osseous integration at the graft-host bony interface after OCA. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS A retrospective review of patients treated with OCA+BMAC or OCA alone for full-thickness chondral defects of the distal femur from March 2015 to December 2016 was conducted. Seventeen knees treated with OCA+BMAC and 16 knees treated with OCA alone underwent magnetic resonance imaging (MRI) in the early postoperative phase (mean, 6 months). Eighteen knees treated with OCA+BMAC and 16 knees treated with OCA alone underwent MRI in the late postoperative phase (mean, 12 months). Bone, cartilage, and ancillary features on MRI were graded using the Osteochondral Allograft MRI Scoring System (OCAMRISS) by a musculoskeletal radiologist blinded to the patient's history and treatment. RESULTS There were no significant differences in the demographics or lesion characteristics between treatment groups in either postoperative phase. In the early postoperative phase, the mean OCAMRISS bone score was 3.0 ± 0.7 and 3.3 ± 0.7 for the OCA+BMAC group and OCA alone group, respectively ( P = .76); 71% (OCA+BMAC) and 81% (OCA alone) of MRI scans demonstrated discernible clefts at the graft-host junction ( P = .69), and 41% (OCA+BMAC) and 25% (OCA alone) of MRI scans demonstrated cystic changes at the graft and graft-host junction ( P = .46). In the late postoperative phase, the mean OCAMRISS bone score was 2.7 ± 0.8 and 2.9 ± 0.8 for the OCA+BMAC group and OCA alone group, respectively ( P = .97); 44% (OCA+BMAC) and 63% (OCA alone) of MRI scans demonstrated discernible clefts at the graft-host junction ( P = .33), and 50% (OCA+BMAC) and 31% (OCA alone) of MRI scans demonstrated the presence of cystic changes at the graft and graft-host junction ( P = .32). The mean OCAMRISS cartilage, ancillary, and total scores were not significantly different between groups in either postoperative phase. CONCLUSION OCA augmented with BMAC was not associated with improved osseous integration; decreased cystic changes; or other bone, cartilage, and ancillary feature changes compared with OCA alone.
Collapse
Affiliation(s)
- Dean Wang
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA
- Sports Medicine Service, Hospital for Special Surgery, New York, New York, USA
| | - Kenneth M Lin
- Sports Medicine Service, Hospital for Special Surgery, New York, New York, USA
| | - Alissa J Burge
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - George C Balazs
- Sports Medicine Service, Hospital for Special Surgery, New York, New York, USA
| | - Riley J Williams
- Sports Medicine Service, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|