1
|
Choi JH, Park YG, Ju J, Park SJ, Moon SH. Optimal Production of 3D Neuronal Lineage Population by Morphological Classification. Tissue Eng Regen Med 2025:10.1007/s13770-025-00721-0. [PMID: 40358835 DOI: 10.1007/s13770-025-00721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The increasing prevalence of neurodegenerative diseases and toxic substance exposure highlights the need for neuronal cell models that closely mimic human neurons in vivo. Compared to traditional models, human pluripotent stem cell (hPSC)-derived three-dimensional models mimic human physiological characteristics and complex nervous system interactions. These models enable patient-specific treatments and improve the predictive accuracy of drug toxicity evaluations. However, differentiation efficiency varies based on organoid size, structure, and cell line characteristics, necessitating standardized protocols for consistent outcome. METHODS The morphological characteristics of hPSC-derived embryonic bodies (EBs) formed by concave microwells were analyzed at the early stage of neuronal differentiation. Criteria were established to identify cells with high differentiation efficiency, enabling the optimization of differentiation methods applicable across various cell lines. Neuronal organoids were generated using a microfluidic-concave chip, and their suitability for drug toxicity testing was assessed. RESULTS EBs, formed in 500 µm concave microwells, exhibited the highest efficiency for neuronal cell differentiation. Cavity-like EBs were more suitable for neuronal differentiation and maturation than cystic-like forms. The optimal neuronal lineage differentiation method was established, and the drug toxicity sensitivity of organoids generated from this method was validated. CONCLUSIONS This study identified EB structures suitable for neuronal lineage differentiation based on morphological classification. Furthermore, this study suggested an optimal method for generating neuronal organoids. This method can be applied to various cell lines, enabling its precise use in patient-specific treatments and drug toxicity tests.
Collapse
Affiliation(s)
- Ji-Hee Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Korea
| | - Yun-Gwi Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Korea
| | - Jongil Ju
- Department of Physics, College of Science and Technology, Dankook University, Cheonan, Chungnam, Korea
- Department of R&D, ABM Labs Co. Ltd, Cheonan, Korea
| | | | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Korea.
| |
Collapse
|
2
|
Chen Y, Xu H, Xiao L, Zhang M, Yan N. Single-cell RNA sequencing in the study of human retinal organoids. Exp Eye Res 2025; 256:110417. [PMID: 40320034 DOI: 10.1016/j.exer.2025.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/26/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed the study of retinal development and diseases by enabling a detailed analysis of cellular diversity within retinal organoids (ROs). ROs generated from pluripotent stem cells mimic the essential characteristics of the human retina and provide a valuable in vitro model for investigating retinal development, cell interactions, and disease mechanisms. This review summarizes the application of scRNA-seq on RO research, emphasizing its capacity to identify distinct cell populations, uncover developmental trajectories, and reveal the molecular signatures of retinal diseases. scRNA-seq provides new insights into retinal neurogenesis, cellular diversity, and the pathophysiology of retinal degenerative diseases. This technology has enabled the identification of novel biomarkers and potential therapeutic targets. Integrating scRNA-seq with other technologies, such as spatial transcriptomics and CRISPR-based screening, can further deepen our understanding of retinal biology and improve treatment strategies.
Collapse
Affiliation(s)
- Yi Chen
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanyue Xu
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lirong Xiao
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Naihong Yan
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Khan I, Ramzan F, Tayyab H, Damji KF. Rekindling Vision: Innovative Strategies for Treating Retinal Degeneration. Int J Mol Sci 2025; 26:4078. [PMID: 40362317 PMCID: PMC12072091 DOI: 10.3390/ijms26094078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Retinal degeneration, characterized by the progressive loss of photoreceptors, retinal pigment epithelium cells, and/or ganglion cells, is a leading cause of vision impairment. These diseases are generally classified as inherited (e.g., retinitis pigmentosa, Stargardt disease) or acquired (e.g., age-related macular degeneration, diabetic retinopathy, glaucoma) ocular disorders that can lead to blindness. Available treatment options focus on managing symptoms or slowing disease progression and do not address the underlying causes of these diseases. However, recent advancements in regenerative medicine offer alternative solutions for repairing or protecting degenerated retinal tissue. Stem and progenitor cell therapies have shown great potential to differentiate into various retinal cell types and can be combined with gene editing, extracellular vesicles and exosomes, and bioactive molecules to modulate degenerative cellular pathways. Additionally, gene therapy and neuroprotective molecules play a crucial role in enhancing the efficacy of regenerative approaches. These innovative strategies hold the potential to halt the progression of retinal degenerative disorders, repair or replace damaged cells, and improve visual function, ultimately leading to a better quality of life for those affected.
Collapse
Affiliation(s)
- Irfan Khan
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan
| | - Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan;
| | - Haroon Tayyab
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
| | - Karim F. Damji
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Sindh, Pakistan;
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
4
|
Brunet AA, James RE, Swanson P, Carvalho LS. A review of the 661W cell line as a tool to facilitate treatment development for retinal diseases. Cell Biosci 2025; 15:41. [PMID: 40170180 PMCID: PMC11959731 DOI: 10.1186/s13578-025-01381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
Retinal diseases encompass a diverse group of disorders that affect the structure and function of the retina, leading to visual impairment and, in some cases, irreversible vision loss. The investigation of retinal diseases is crucial for understanding their underlying mechanisms, identifying potential therapeutic targets, and developing effective treatments. The use of in vitro cell models has become instrumental in advancing our knowledge of these disorders, but given that these conditions usually affect retinal neuronal cell types, access to appropriate cell models can be potentially challenging. Among the available in vitro cell models, the 661W cone-like cell line has emerged as a valuable tool for studying various retinal diseases, ranging from monogenic conditions, such as inherited retinal diseases, to complex conditions such as age-related macular degeneration (AMD), diabetic retinopathy, amongst others. Developed from immortalized murine photoreceptor cells, and freely available for academics from its creator, the 661W cell line has offered visual scientists and clinicians around the world a reliable and well-characterised platform for investigating disease pathogenesis, exploring disease-specific molecular signatures, and evaluating potential therapeutic interventions. This review aims to provide an overview of the 661W cell line and its applications in the study of both inherited and acquired retinal diseases. By examining the applications and limitations of this unique cell line, we may gain valuable insights into its contributions in unravelling the complexities of retinal diseases and its potential impact on the development of novel treatments for these diseases.
Collapse
Affiliation(s)
- Alicia A Brunet
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
| | - Rebekah E James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Petria Swanson
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia.
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Ouaidat S, Bellapianta A, Ammer-Pickhardt F, Taghipour T, Bolz M, Salti A. Exploring organoid and assembloid technologies: a focus on retina and brain. Expert Rev Mol Med 2025; 27:e14. [PMID: 40145178 PMCID: PMC12011387 DOI: 10.1017/erm.2025.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The recent emergence of three-dimensional organoids and their utilization as in vitro disease models confirmed the complexities behind organ-specific functions and unravelled the importance of establishing suitable human models for various applications. Also, in light of persistent challenges associated with their use, researchers have been striving to establish more advanced structures (i.e. assembloids) that can help address the limitations presented in the current organoids. METHODS In this review, we discuss the distinct organoid types that are available to date, with a special focus on retinal and brain organoids, and highlight their importance in disease modelling. RESULTS We refer to published research to explore the extent to which retinal and brain organoids can serve as potential alternatives to organ/cell transplants and direct our attention to the topic of photostimulation in retinal organoids. Additionally, we discuss the advantages of incorporating microfluidics and organ-on-a-chip devices for boosting retinal organoid performance. The challenges of organoids leading to the subsequent development of assembloid fusion models are also presented. CONCLUSION In conclusion, organoid technology has laid the foundation for generating upgraded models that not only better replicate in vivo systems but also allow for a deeper comprehension of disease pathophysiology.
Collapse
Affiliation(s)
- Sara Ouaidat
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Alessandro Bellapianta
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Franziska Ammer-Pickhardt
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Department of Biosciences & Medical Biology, Paris-Lodron-University of Salzburg (PLUS), Salzburg, Austria
| | - Tara Taghipour
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Bolz
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Ahmad Salti
- Research Group Cellular and Molecular Ophthalmology, University Clinic for Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
6
|
Zabiegalov O, Berger A, Kamdar D, Adamou K, Tian C, Mbefo M, Quinodoz M, Udry F, Rivolta C, Kostic C, Arsenijevic Y. Generation of a Double Reporter mES Cell Line to Simultaneously Trace the Generation of Retinal Progenitors and Photoreceptors. Cells 2025; 14:252. [PMID: 39996725 PMCID: PMC11854395 DOI: 10.3390/cells14040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Three-dimensional retinal culture systems help to understand eye development and the pathology of disorders. There is a need for reporter stem cell lines to allow in vitro studies on retinal progenitors and photoreceptors and their developmental dynamics or properties and to test therapeutic approaches. The isolation of pure progenitor populations or photoreceptor precursors may serve for drug, gene, and cell therapy development. Here, we generated a dual-reporter mouse embryonic stem cell line Crx-GFP;Rax-mCherry enabling the visualization or isolation of photoreceptors and retinal progenitors from retinal organoid settings. From day 4 organoids, we isolated mCherry-positive cells to assess their early retinal progenitor identity with proliferation tests as well as transcriptomic and proteomic profiling. The timing of eye field transcription factor expression at the transcriptomic and protein levels is in accordance with mouse retinogenesis. This new line will be helpful for rapidly investigating biological questions or testing therapeutics before using human induced pluripotent stem cells (iPSCs), which require a much longer time for retinal organoid formation.
Collapse
Affiliation(s)
- Oleksandr Zabiegalov
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Adeline Berger
- Unit of Epigenetics of Ocular Diseases, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland;
| | - Dhryata Kamdar
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Kabirou Adamou
- Group for Retinal Disorders Research, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (K.A.); (C.K.)
| | - Chuanxi Tian
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Martial Mbefo
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Mathieu Quinodoz
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Florian Udry
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Carlo Rivolta
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorders Research, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (K.A.); (C.K.)
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| |
Collapse
|
7
|
Shen S, Werner T, Lukowski SW, Andersen S, Sun Y, Shim WJ, Mizikovsky D, Kobayashi S, Outhwaite J, Chiu HS, Chen X, Chapman G, Martin EMMA, Xia D, Pham D, Su Z, Kim D, Yang P, Tan MC, Sinniah E, Zhao Q, Negi S, Redd MA, Powell JE, Dunwoodie SL, Tam PPL, Bodén M, Ho JWK, Nguyen Q, Palpant NJ. Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure. Nat Commun 2025; 16:1356. [PMID: 39904980 PMCID: PMC11794859 DOI: 10.1038/s41467-025-56533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Pluripotent stem cells provide a scalable approach to analyse molecular regulation of cell differentiation across developmental lineages. Here, we engineer barcoded induced pluripotent stem cells to generate an atlas of multilineage differentiation from pluripotency, encompassing an eight-day time course with modulation of WNT, BMP, and VEGF signalling pathways. Annotation of in vitro cell types with reference to in vivo development reveals diverse mesendoderm lineage cell types including lateral plate and paraxial mesoderm, neural crest, and primitive gut. Interrogation of temporal and signalling-specific gene expression in this atlas, evaluated against cell type-specific gene expression in human complex trait data highlights the WNT-inhibitor gene TMEM88 as a regulator of mesendodermal lineages influencing cardiovascular and anthropometric traits. Genetic TMEM88 loss of function models show impaired differentiation of endodermal and mesodermal derivatives in vitro and dysregulated arterial blood pressure in vivo. Together, this study provides an atlas of multilineage stem cell differentiation and analysis pipelines to dissect genetic determinants of mammalian developmental physiology.
Collapse
Affiliation(s)
- Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Tessa Werner
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey Andersen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sakurako Kobayashi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer Outhwaite
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ella M M A Martin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Di Xia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Duy Pham
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Men Chee Tan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Queensland Facility for Advanced Genome Editing, The University of Queensland, St Lucia, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sumedha Negi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales, Cellular Genomics Futures Institute, Sydney, NSW, Australia
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
8
|
Dorgau B, Collin J, Rozanska A, Boczonadi V, Moya-Molina M, Unsworth A, Hussain R, Coxhead J, Dhanaseelan T, Armstrong L, Queen R, Lako M. Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level. iScience 2024; 27:109397. [PMID: 38510120 PMCID: PMC10952046 DOI: 10.1016/j.isci.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Molecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation, presence of a putative ciliary margin zone, emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data, we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development, and to show that chromatin accessibility is highly correlated to the developing human retina, but with some differences in the temporal emergence and abundance of some of the retinal neurons.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Veronika Boczonadi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marina Moya-Molina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Newcells Biotech, Newcastle upon Tyne NE4 5BX, UK
| | - Adrienne Unsworth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Tamil Dhanaseelan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
9
|
Spirig SE, Renner M. Toward Retinal Organoids in High-Throughput. Cold Spring Harb Perspect Med 2024; 14:a041275. [PMID: 37217280 PMCID: PMC10910359 DOI: 10.1101/cshperspect.a041275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human retinal organoids recapitulate the cellular diversity, arrangement, gene expression, and functional aspects of the human retina. Protocols to generate human retinal organoids from pluripotent stem cells are typically labor intensive, include many manual handling steps, and the organoids need to be maintained for several months until they mature. To generate large numbers of human retinal organoids for therapy development and screening purposes, scaling up retinal organoid production, maintenance, and analysis is of utmost importance. In this review, we discuss strategies to increase the number of high-quality retinal organoids while reducing manual handling steps. We further review different approaches to analyze thousands of retinal organoids with currently available technologies and point to challenges that still await to be overcome both in culture and analysis of retinal organoids.
Collapse
Affiliation(s)
- Stefan Erich Spirig
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Heredero Berzal A, Wagstaff EL, ten Asbroek ALMA, ten Brink JB, Bergen AA, Boon CJF. The Analysis of Embryoid Body Formation and Its Role in Retinal Organoid Development. Int J Mol Sci 2024; 25:1444. [PMID: 38338722 PMCID: PMC10855324 DOI: 10.3390/ijms25031444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development. In this study, our aim is to understand whether starting cell conditions, specifically those involved in embryoid body formation, affect the development of retinal organoids in terms of differentiation capacity and reproducibility. To investigate this, we used the popular 3D floating culture method to generate retinal organoids from stem cells. This method starts with either small clumps of stem cells generated from larger clones (clumps protocol, CP) or with an aggregation of single cells (single cells protocol, SCP). Using histological analysis and gene-expression comparison, we found a retention of the pluripotency capacity on embryoid bodies generated through the SCP compared to the CP. Nonetheless, these early developmental differences seem not to impact the final retinal organoid formation, suggesting a potential compensatory mechanism during the neurosphere stage. This study not only facilitates an in-depth exploration of embryoid body development but also provides valuable insights for the selection of the most suitable protocol in order to study retinal development and to model inherited retinal disorders in vitro.
Collapse
Affiliation(s)
- Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Jacoline B. ten Brink
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Carido M, Völkner M, Steinheuer LM, Wagner F, Kurth T, Dumler N, Ulusoy S, Wieneke S, Norniella AV, Golfieri C, Khattak S, Schönfelder B, Scamozzi M, Zoschke K, Canzler S, Hackermüller J, Ader M, Karl MO. Reliability of human retina organoid generation from hiPSC-derived neuroepithelial cysts. Front Cell Neurosci 2023; 17:1166641. [PMID: 37868194 PMCID: PMC10587494 DOI: 10.3389/fncel.2023.1166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.
Collapse
Affiliation(s)
- Madalena Carido
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Manuela Völkner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lisa Maria Steinheuer
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Felix Wagner
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Core Facility Electron Microscopy and Histology, TU Dresden, Dresden, Germany
| | - Natalie Dumler
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Selen Ulusoy
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Stephanie Wieneke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | | | - Cristina Golfieri
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Molecular and Cellular Bioengineering (CMCB), Stem Cell Engineering Facility, TU Dresden, Dresden, Germany
| | - Bruno Schönfelder
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Maria Scamozzi
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Katja Zoschke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Sebastian Canzler
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Mike O Karl
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|
12
|
Chakrabarty K, Nayak D, Debnath J, Das D, Shetty R, Ghosh A. Retinal organoids in disease modeling and drug discovery: Opportunities and challenges. Surv Ophthalmol 2023:S0039-6257(23)00127-3. [PMID: 37778668 DOI: 10.1016/j.survophthal.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Diseases leading to retinal cell loss can cause severe visual impairment and blindness. The lack of effective therapies to address retinal cell loss and the absence of intrinsic regeneration in the human retina leads to an irreversible pathological condition. Progress in recent years in the generation of human three-dimensional retinal organoids from pluripotent stem cells makes it possible to recreate the cytoarchitecture and associated cell-cell interactions of the human retina in remarkable detail. These human three-dimensional retinal organoid systems made of distinct retinal cell types and possessing contextual physiological responses allow the study of human retina development and retinal disease pathology in a way animal model and two-dimensional cell cultures were unable to achieve. We describe the derivation of retinal organoids from human pluripotent stem cells and their application for modeling retinal disease pathologies, while outlining the opportunities and challenges for its application in academia and industry.
Collapse
Affiliation(s)
- Koushik Chakrabarty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| | - Divyani Nayak
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Jayasree Debnath
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Cheng YM, Ma C, Jin K, Jin ZB. Retinal organoid and gene editing for basic and translational research. Vision Res 2023; 210:108273. [PMID: 37307693 DOI: 10.1016/j.visres.2023.108273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The rapid evolution of two technologies has greatly transformed the basic, translational, and clinical research in the mammalian retina. One is the retinal organoid (RO) technology. Various induction methods have been created or adapted to generate species-specific, disease-specific, and experimental-targeted retinal organoids (ROs). The process of generating ROs can highly mimic the in vivo retinal development, and consequently, the ROs resemble the retina in many aspects including the molecular and cellular profiles. The other technology is the gene editing, represented by the classical CRISPR-Cas9 editing and its derivatives such as prime editing, homology independent targeted integration (HITI), base editing and others. The combination of ROs and gene editing has opened up countless possibilities in the study of retinal development, pathogenesis, and therapeutics. We review recent advances in the ROs, gene editing methodologies, delivery vectors, and related topics that are particularly relevant to retinal studies.
Collapse
Affiliation(s)
- You-Min Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Chao Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| |
Collapse
|
14
|
Kelley RA, Wu Z. Utilization of the retinal organoid model to evaluate the feasibility of genetic strategies to ameliorate retinal disease(s). Vision Res 2023; 210:108269. [PMID: 37295270 DOI: 10.1016/j.visres.2023.108269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Organoid models have quickly become a popular research tool to evaluate novel therapeutics on 3-D recapitulated tissue. This has enabled researchers to use physiologically relevant human tissue in vitro to augment the standard use of immortalized cells and animal models. Organoids can also provide a model when an engineered animal cannot recreate a specific disease phenotype. In particular, the retinal research field has taken advantage of this burgeoning technology to provide insight into inherited retinal disease(s) mechanisms and therapeutic intervention to ameliorate their effects. In this review we will discuss the use of both wild-type and patient-specific retinal organoids to further gene therapy research that could potentially prevent retinal disease(s) progression. Furthermore, we will discuss the pitfalls of current retinal organoid technology and present potential solutions that could overcome these hurdles in the near future.
Collapse
Affiliation(s)
- Ryan A Kelley
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA.
| | - Zhijian Wu
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA
| |
Collapse
|
15
|
Kim HJ, O'Hara-Wright M, Kim D, Loi TH, Lim BY, Jamieson RV, Gonzalez-Cordero A, Yang P. Comprehensive characterization of fetal and mature retinal cell identity to assess the fidelity of retinal organoids. Stem Cell Reports 2023; 18:175-189. [PMID: 36630901 PMCID: PMC9860116 DOI: 10.1016/j.stemcr.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Characterizing cell identity in complex tissues such as the human retina is essential for studying its development and disease. While retinal organoids derived from pluripotent stem cells have been widely used to model development and disease of the human retina, there is a lack of studies that have systematically evaluated the molecular and cellular fidelity of the organoids derived from various culture protocols in recapitulating their in vivo counterpart. To this end, we performed an extensive meta-atlas characterization of cellular identities of the human eye, covering a wide range of developmental stages. The resulting map uncovered previously unknown biomarkers of major retinal cell types and those associated with cell-type-specific maturation. Using our retinal-cell-identity map from the fetal and adult tissues, we systematically assessed the fidelity of the retinal organoids in mimicking the human eye, enabling us to comprehensively benchmark the current protocols for retinal organoid generation.
Collapse
Affiliation(s)
- Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michelle O'Hara-Wright
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - To Ha Loi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Benjamin Y Lim
- Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Robyn V Jamieson
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Eye Genetics Research Unit, Children's Medical Research Institute, Sydney Children's Hospitals Network, Save Sight Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Anai Gonzalez-Cordero
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
16
|
Generation of Human iPSC-Derived Retinal Organoids for Assessment of AAV-Mediated Gene Delivery. Methods Mol Biol 2022; 2560:287-302. [PMID: 36481905 DOI: 10.1007/978-1-0716-2651-1_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human retinal organoids derived from induced pluripotent stem cells (iPSCs) serve as a promising preclinical model for testing the safety and efficacy of viral gene therapy. Retinal organoids recapitulate the stratified multilayered epithelium structure of the developing and maturating human retina. As such, retinal organoids are unique tools to model retinal disease and to test therapeutic interventions toward their amelioration. Here, we describe a method for the generation of human iPSC-derived retinal organoids and how they can be utilized for the assessment of recombinant adeno-associated viral (rAAV)-mediated gene delivery.
Collapse
|
17
|
Onyak JR, Vergara MN, Renna JM. Retinal organoid light responsivity: current status and future opportunities. Transl Res 2022; 250:98-111. [PMID: 35690342 DOI: 10.1016/j.trsl.2022.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
The ability to generate human retinas in vitro from pluripotent stem cells opened unprecedented opportunities for basic science and for the development of therapeutic approaches for retinal degenerative diseases. Retinal organoid models not only mimic the histoarchitecture and cellular composition of the native retina, but they can achieve a remarkable level of maturation that allows them to respond to light stimulation. However, studies evaluating the nature, magnitude, and properties of light-evoked responsivity from each cell type, in each retinal organoid layer, have been sparse. In this review we discuss the current understanding of retinal organoid function, the technologies used for functional assessment in human retinal organoids, and the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - M Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado.
| | - Jordan M Renna
- Department of Biology, The University of Akron, Akron, Ohio.
| |
Collapse
|
18
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
19
|
Jones MK, Agarwal D, Mazo KW, Chopra M, Jurlina SL, Dash N, Xu Q, Ogata AR, Chow M, Hill AD, Kambli NK, Xu G, Sasik R, Birmingham A, Fisch KM, Weinreb RN, Enke RA, Skowronska-Krawczyk D, Wahlin KJ. Chromatin Accessibility and Transcriptional Differences in Human Stem Cell-Derived Early-Stage Retinal Organoids. Cells 2022; 11:3412. [PMID: 36359808 PMCID: PMC9657268 DOI: 10.3390/cells11213412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023] Open
Abstract
Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.
Collapse
Affiliation(s)
- Melissa K. Jones
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Devansh Agarwal
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin W. Mazo
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Shawna L. Jurlina
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Qianlan Xu
- Center for Translational Vision Research, University of California Irvine, Irvine, CA 92617, USA
| | - Anna R. Ogata
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Chow
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex D. Hill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Netra K. Kambli
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biotechnology, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | | | - Karl J. Wahlin
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Looking into the Eyes—In Vitro Models for Ocular Research. Int J Mol Sci 2022; 23:ijms23169158. [PMID: 36012421 PMCID: PMC9409455 DOI: 10.3390/ijms23169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Animal research undoubtedly provides scientists with virtually unlimited data but inflicts pain and suffering on animals. Currently, legislators and scientists alike are promoting alternative in vitro approaches allowing for an accurate evaluation of processes occurring in the body without animal sacrifice. Historically, one of the most infamous animal tests is the Draize test, mainly performed on rabbits. Even though this test was considered the gold standard for around 50 years, the Draize test fails to mimic human response mainly due to human and rabbit eye physiological differences. Therefore, many alternative assays were developed to evaluate ocular toxicity and drug effectiveness accurately. Here we review recent achievements in tissue engineering of in vitro 2D, 2.5D, 3D, organoid and organ-on-chip ocular models, as well as in vivo and ex vivo models in terms of their advantages and limitations.
Collapse
|
21
|
Hall JC, Paull D, Pébay A, Lidgerwood GE. Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clin Exp Ophthalmol 2022; 50:667-677. [PMID: 35739648 PMCID: PMC9546239 DOI: 10.1111/ceo.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 12/05/2022]
Abstract
Human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC‐derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age‐related macular degeneration. Here, we will review the current knowledge gained in understanding the molecular events involved in retinal disease using hPSC‐derived retinal models, in particular RPE models. We will provide examples of various conditions to illustrate the scope of applications associated with the use of hPSC‐derived RPE models.
Collapse
Affiliation(s)
- Jenna C Hall
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute New York New York USA
| | - Alice Pébay
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
- Department of Surgery, Royal Melbourne Hospital The University of Melbourne Parkville Victoria Australia
| | - Grace E. Lidgerwood
- Department of Anatomy and Physiology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
22
|
Xue Y, Lin B, Chen JT, Tang WC, Browne AW, Seiler MJ. The Prospects for Retinal Organoids in Treatment of Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:314-327. [PMID: 36041146 PMCID: PMC9966053 DOI: 10.1097/apo.0000000000000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) is a significant cause of incurable blindness worldwide. Photoreceptors and retinal pigmented epithelium are irreversibly damaged in advanced RD. Functional replacement of photoreceptors and/or retinal pigmented epithelium cells is a promising approach to restoring vision. This paper reviews the current status and explores future prospects of the transplantation therapy provided by pluripotent stem cell-derived retinal organoids (ROs). This review summarizes the status of rodent RD disease models and discusses RO culture and analytical tools to evaluate RO quality and function. Finally, we review and discuss the studies in which RO-derived cells or sheets were transplanted. In conclusion, methods to derive ROs from pluripotent stem cells have significantly improved and become more efficient in recent years. Meanwhile, more novel technologies are applied to characterize and validate RO quality. However, opportunity remains to optimize tissue differentiation protocols and achieve better RO reproducibility. In order to screen high-quality ROs for downstream applications, approaches such as noninvasive and label-free imaging and electrophysiological functional testing are promising and worth further investigation. Lastly, transplanted RO-derived tissues have allowed improvements in visual function in several RD models, showing promises for clinical applications in the future.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, CA
- Stem Cell Research Center, University of California, Irvine, CA
| | - Bin Lin
- Stem Cell Research Center, University of California, Irvine, CA
| | - Jacqueline T. Chen
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
| | - William C. Tang
- Biomedical Engineering, University of California, Irvine, CA
| | - Andrew W. Browne
- Biomedical Engineering, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Institute for Clinical and Translational Science, University of California, Irvine, CA
| | - Magdalene J. Seiler
- Stem Cell Research Center, University of California, Irvine, CA
- Gavin Herbert Eye Institute Ophthalmology, University of California, Irvine, CA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA
| |
Collapse
|
23
|
Regent F, Batz Z, Kelley RA, Gieser L, Swaroop A, Chen HY, Li T. Nicotinamide Promotes Formation of Retinal Organoids From Human Pluripotent Stem Cells via Enhanced Neural Cell Fate Commitment. Front Cell Neurosci 2022; 16:878351. [PMID: 35783089 PMCID: PMC9247291 DOI: 10.3389/fncel.2022.878351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) recapitulate key features of retinogenesis and provide a promising platform to study retinal development and disease in a human context. Although multiple protocols are currently in use, hPSCs exhibit tremendous variability in differentiation efficiency, with some cell lines consistently yielding few or even no ROs, limiting their utility in research. We report here that early nicotinamide (NAM) treatment significantly improves RO yield across 8 hPSC lines from different donors, including some that would otherwise fail to generate a meaningful number of ROs. NAM treatment promotes neural commitment of hPSCs at the expense of non-neural ectodermal cell fate, which in turn increases eye field progenitor generation. Further analysis suggests that this effect is partially mediated through inhibition of BMP signaling. Our data encourage a broader use of human ROs for disease modeling applications that require the use of multiple patient-specific cell lines.
Collapse
|
24
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
25
|
Eintracht J, Harding P, Lima Cunha D, Moosajee M. Efficient embryoid-based method to improve generation of optic vesicles from human induced pluripotent stem cells. F1000Res 2022; 11:324. [PMID: 35811797 PMCID: PMC9218590 DOI: 10.12688/f1000research.108829.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 01/02/2023] Open
Abstract
Animal models have provided many insights into ocular development and disease, but they remain suboptimal for understanding human oculogenesis. Eye development requires spatiotemporal gene expression patterns and disease phenotypes can differ significantly between humans and animal models, with patient-associated mutations causing embryonic lethality reported in some animal models. The emergence of human induced pluripotent stem cell (hiPSC) technology has provided a new resource for dissecting the complex nature of early eye morphogenesis through the generation of three-dimensional (3D) cellular models. By using patient-specific hiPSCs to generate in vitro optic vesicle-like models, we can enhance the understanding of early developmental eye disorders and provide a pre-clinical platform for disease modelling and therapeutics testing. A major challenge of in vitro optic vesicle generation is the low efficiency of differentiation in 3D cultures. To address this, we adapted a previously published protocol of retinal organoid differentiation to improve embryoid body formation using a microwell plate. Established morphology, upregulated transcript levels of known early eye-field transcription factors and protein expression of standard retinal progenitor markers confirmed the optic vesicle/presumptive optic cup identity of in vitro models between day 20 and 50 of culture. This adapted protocol is relevant to researchers seeking a physiologically relevant model of early human ocular development and disease with a view to replacing animal models.
Collapse
Affiliation(s)
- Jonathan Eintracht
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Philippa Harding
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Dulce Lima Cunha
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- The Francis Crick Institute, London, NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- Great Ormond Street Hospital for Children, London, WC1N 3JH, UK
| |
Collapse
|
26
|
Salbaum KA, Shelton ER, Serwane F. Retina organoids: Window into the biophysics of neuronal systems. BIOPHYSICS REVIEWS 2022; 3:011302. [PMID: 38505227 PMCID: PMC10903499 DOI: 10.1063/5.0077014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 03/21/2024]
Abstract
With a kind of magnetism, the human retina draws the eye of neuroscientist and physicist alike. It is attractive as a self-organizing system, which forms as a part of the central nervous system via biochemical and mechanical cues. The retina is also intriguing as an electro-optical device, converting photons into voltages to perform on-the-fly filtering before the signals are sent to our brain. Here, we consider how the advent of stem cell derived in vitro analogs of the retina, termed retina organoids, opens up an exploration of the interplay between optics, electrics, and mechanics in a complex neuronal network, all in a Petri dish. This review presents state-of-the-art retina organoid protocols by emphasizing links to the biochemical and mechanical signals of in vivo retinogenesis. Electrophysiological recording of active signal processing becomes possible as retina organoids generate light sensitive and synaptically connected photoreceptors. Experimental biophysical tools provide data to steer the development of mathematical models operating at different levels of coarse-graining. In concert, they provide a means to study how mechanical factors guide retina self-assembly. In turn, this understanding informs the engineering of mechanical signals required to tailor the growth of neuronal network morphology. Tackling the complex developmental and computational processes in the retina requires an interdisciplinary endeavor combining experiment and theory, physics, and biology. The reward is enticing: in the next few years, retina organoids could offer a glimpse inside the machinery of simultaneous cellular self-assembly and signal processing, all in an in vitro setting.
Collapse
Affiliation(s)
| | - Elijah R. Shelton
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
27
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
28
|
Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT, Nistor G, Chen JT, Chew K, Lee N, Keirstead HS, Seiler MJ. Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy. Front Cell Neurosci 2021; 15:796903. [PMID: 34955757 PMCID: PMC8707055 DOI: 10.3389/fncel.2021.796903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids’ (RtOgs’) long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.
Collapse
Affiliation(s)
- Yuntian Xue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew W Browne
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Delgado
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Jacqueline T Chen
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Kaylee Chew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Nicolas Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | | | - Magdalene J Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
29
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
30
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Guy B, Zhang JS, Duncan LH, Johnston RJ. Human neural organoids: Models for developmental neurobiology and disease. Dev Biol 2021; 478:102-121. [PMID: 34181916 PMCID: PMC8364509 DOI: 10.1016/j.ydbio.2021.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Human organoids stand at the forefront of basic and translational research, providing experimentally tractable systems to study human development and disease. These stem cell-derived, in vitro cultures can generate a multitude of tissue and organ types, including distinct brain regions and sensory systems. Neural organoid systems have provided fundamental insights into molecular mechanisms governing cell fate specification and neural circuit assembly and serve as promising tools for drug discovery and understanding disease pathogenesis. In this review, we discuss several human neural organoid systems, how they are generated, advances in 3D imaging and bioengineering, and the impact of organoid studies on our understanding of the human nervous system.
Collapse
Affiliation(s)
- Brian Guy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Jingliang Simon Zhang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Leighton H Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
32
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
33
|
Xue Y, Seiler MJ, Tang WC, Wang JY, Delgado J, McLelland BT, Nistor G, Keirstead HS, Browne AW. Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance. LAB ON A CHIP 2021; 21:3361-3377. [PMID: 34236056 PMCID: PMC8387452 DOI: 10.1039/d1lc00011j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Retinal degeneration is a leading cause of vision impairment and blindness worldwide and medical care for advanced disease does not exist. Stem cell-derived retinal organoids (RtOgs) became an emerging tool for tissue replacement therapy. However, existing RtOg production methods are highly heterogeneous. Controlled and predictable methodology and tools are needed to standardize RtOg production and maintenance. In this study, we designed a shear stress-free micro-millifluidic bioreactor for nearly labor-free retinal organoid maintenance. We used a stereolithography (SLA) 3D printer to fabricate a mold from which Polydimethylsiloxane (PDMS) was cast. We optimized the chip design using in silico simulations and in vitro evaluation to optimize mass transfer efficiency and concentration uniformity in each culture chamber. We successfully cultured RtOgs at three different differentiation stages (day 41, 88, and 128) on an optimized bioreactor chip for more than 1 month. We used different quantitative and qualitative techniques to fully characterize the RtOgs produced by static dish culture and bioreactor culture methods. By analyzing the results from phase contrast microscopy, single-cell RNA sequencing (scRNA seq), quantitative polymerase chain reaction (qPCR), immunohistology, and electron microscopy, we found that bioreactor-cultured RtOgs developed cell types and morphology comparable to static cultured ones and exhibited similar retinal genes expression levels. We also evaluated the metabolic activity of RtOgs in both groups using fluorescence lifetime imaging (FLIM), and found that the outer surface region of bioreactor cultured RtOgs had a comparable free/bound NADH ratio and overall lower long lifetime species (LLS) ratio than static cultured RtOgs during imaging. To summarize, we validated an automated micro-millifluidic device with significantly reduced shear stress to produce RtOgs of comparable quality to those maintained in conventional static culture.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Döpper H, Menges J, Bozet M, Brenzel A, Lohmann D, Steenpass L, Kanber D. Differentiation Protocol for 3D Retinal Organoids, Immunostaining and Signal Quantitation. ACTA ACUST UNITED AC 2021; 55:e120. [PMID: 32956559 DOI: 10.1002/cpsc.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structures resembling whole organs, called organoids, are generated using pluripotent stem cells and 3D culturing methods. This relies on the ability of cells to self-reorganize after dissociation. In combination with certain supplemented factors, differentiation can be directed toward the formation of several organ-like structures. Here, a protocol for the generation of retinal organoids containing all seven retinal cell types is described. This protocol does not depend on Matrigel, and by keeping the organoids single and independent at all times, fusion is prevented and monitoring of differentiation is improved. Comprehensive phenotypic characterization of the in vitro-generated retinal organoids is achieved by the protocol for immunostaining outlined here. By comparing different stages of retinal organoids, the decrease and increase of certain cell populations can be determined. In order to be able to detect even small differences, it is necessary to quantify the immunofluorescent signals, for which we have provided a detailed protocol describing signal quantitation using the image-processing program Fiji. © 2020 The Authors. Basic Protocol 1: Differentiation protocol for 3D retinal organoids Basic Protocol 2: Immunostaining protocol for cryosections of retinal organoids Support Protocol: Embedding and sectioning protocol for 3D retinal organoids Basic Protocol 3: Quantitation protocol using Fiji.
Collapse
Affiliation(s)
- Hannah Döpper
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Menges
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Morgane Bozet
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Brenzel
- Institute for Experimental Immunology and Imaging, Imaging Center Essen (LMU), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dietmar Lohmann
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Present address: Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Deniz Kanber
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
36
|
Vielle A, Park YK, Secora C, Vergara MN. Organoids for the Study of Retinal Development and Developmental Abnormalities. Front Cell Neurosci 2021; 15:667880. [PMID: 34025363 PMCID: PMC8131530 DOI: 10.3389/fncel.2021.667880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 02/01/2023] Open
Abstract
The cumulative knowledge of retina development has been instrumental in the generation of retinal organoid systems from pluripotent stem cells; and these three-dimensional organoid models, in turn, have provided unprecedented opportunities for retinal research and translational applications, including the ability to model disease in a human setting and to apply these models to the development and validation of therapeutic drugs. In this review article, we examine how retinal organoids can also contribute to our understanding of retinal developmental mechanisms, how this knowledge can be applied to modeling developmental abnormalities, and highlight some of the avenues that remain to be explored.
Collapse
Affiliation(s)
- Anne Vielle
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, Aurora, CO, United States
| | - Yuna K Park
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Conner Secora
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, Aurora, CO, United States.,Master of Science in Modern Human Anatomy Program, Aurora, CO, United States
| | - M Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, Aurora, CO, United States
| |
Collapse
|
37
|
Völkner M, Kurth T, Schor J, Ebner LJA, Bardtke L, Kavak C, Hackermüller J, Karl MO. Mouse Retinal Organoid Growth and Maintenance in Longer-Term Culture. Front Cell Dev Biol 2021; 9:645704. [PMID: 33996806 PMCID: PMC8114082 DOI: 10.3389/fcell.2021.645704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Using retinal organoid systems, organ-like 3D tissues, relies implicitly on their robustness. However, essential key parameters, particularly retinal growth and longer-term culture, are still insufficiently defined. Here, we hypothesize that a previously optimized protocol for high yield of evenly-sized mouse retinal organoids with low variability facilitates assessment of such parameters. We demonstrate that these organoids reliably complete retinogenesis, and can be maintained at least up to 60 days in culture. During this time, the organoids continue to mature on a molecular and (ultra)structural level: They develop photoreceptor outer segments and synapses, transiently maintain its cell composition for about 5-10 days after completing retinogenesis, and subsequently develop pathologic changes - mainly of the inner but also outer retina and reactive gliosis. To test whether this organoid system provides experimental access to the retina during and upon completion of development, we defined and stimulated organoid growth by activating sonic hedgehog signaling, which in patients and mice in vivo with a congenital defect leads to enlarged eyes. Here, a sonic hedgehog signaling activator increased retinal epithelia length in the organoid system when applied during but not after completion of development. This experimentally supports organoid maturation, stability, and experimental reproducibility in this organoid system, and provides a potential enlarged retina pathology model, as well as a protocol for producing larger organoids. Together, our study advances the understanding of retinal growth, maturation, and maintenance, and further optimizes the organoid system for future utilization.
Collapse
Affiliation(s)
- Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Jana Schor
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lynn J A Ebner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lara Bardtke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mike O Karl
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Zerti D, Hilgen G, Dorgau B, Collin J, Ader M, Armstrong L, Sernagor E, Lako M. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit conventional and unusual light responses in mice with advanced retinal degeneration. STEM CELLS (DAYTON, OHIO) 2021; 39:882-896. [PMID: 33657251 DOI: 10.1002/stem.3365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022]
Abstract
Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.
Collapse
Affiliation(s)
- Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Microscopy Centre and Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Gerrit Hilgen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Evelyne Sernagor
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
40
|
Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches. Genes (Basel) 2021; 12:genes12010112. [PMID: 33477675 PMCID: PMC7831942 DOI: 10.3390/genes12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.
Collapse
|
41
|
Passaro AP, Stice SL. Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Front Neurosci 2021; 14:622137. [PMID: 33510616 PMCID: PMC7835643 DOI: 10.3389/fnins.2020.622137] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Brain organoids, or cerebral organoids, have become widely used to study the human brain in vitro. As pluripotent stem cell-derived structures capable of self-organization and recapitulation of physiological cell types and architecture, brain organoids bridge the gap between relatively simple two-dimensional human cell cultures and non-human animal models. This allows for high complexity and physiological relevance in a controlled in vitro setting, opening the door for a variety of applications including development and disease modeling and high-throughput screening. While technologies such as single cell sequencing have led to significant advances in brain organoid characterization and understanding, improved functional analysis (especially electrophysiology) is needed to realize the full potential of brain organoids. In this review, we highlight key technologies for brain organoid development and characterization, then discuss current electrophysiological methods for brain organoid analysis. While electrophysiological approaches have improved rapidly for two-dimensional cultures, only in the past several years have advances been made to overcome limitations posed by the three-dimensionality of brain organoids. Here, we review major advances in electrophysiological technologies and analytical methods with a focus on advances with applicability for brain organoid analysis.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
42
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
43
|
O'Hara-Wright M, Gonzalez-Cordero A. Retinal organoids: a window into human retinal development. Development 2020; 147:147/24/dev189746. [PMID: 33361444 PMCID: PMC7774906 DOI: 10.1242/dev.189746] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal development and maturation are orchestrated by a series of interacting signalling networks that drive the morphogenetic transformation of the anterior developing brain. Studies in model organisms continue to elucidate these complex series of events. However, the human retina shows many differences from that of other organisms and the investigation of human eye development now benefits from stem cell-derived organoids. Retinal differentiation methods have progressed from simple 2D adherent cultures to self-organising micro-physiological systems. As models of development, these have collectively offered new insights into the previously unexplored early development of the human retina and informed our knowledge of the key cell fate decisions that govern the specification of light-sensitive photoreceptors. Although the developmental trajectories of other retinal cell types remain more elusive, the collation of omics datasets, combined with advanced culture methodology, will enable modelling of the intricate process of human retinogenesis and retinal disease in vitro. Summary: Retinal organoid systems derived from human pluripotent stem cells are micro-physiological systems that offer new insights into previously unexplored human retina development.
Collapse
Affiliation(s)
- Michelle O'Hara-Wright
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, 2145, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, 2145, NSW, Australia .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| |
Collapse
|
44
|
Toualbi L, Toms M, Moosajee M. USH2A-retinopathy: From genetics to therapeutics. Exp Eye Res 2020; 201:108330. [PMID: 33121974 PMCID: PMC8417766 DOI: 10.1016/j.exer.2020.108330] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023]
Abstract
Bilallelic variants in the USH2A gene can cause Usher syndrome type 2 and non-syndromic retinitis pigmentosa. In both disorders, the retinal phenotype involves progressive rod photoreceptor loss resulting in nyctalopia and a constricted visual field, followed by subsequent cone degeneration, leading to the loss of central vision and severe visual impairment. The USH2A gene raises many challenges for researchers and clinicians due to a broad spectrum of mutations, a large gene size hampering gene therapy development and limited knowledge on its pathogenicity. Patients with Usher type 2 may benefit from hearing aids or cochlear implants to correct their hearing defects, but there are currently no approved treatments available for the USH2A-retinopathy. Several treatment strategies, including antisense oligonucleotides and translational readthrough inducing drugs, have shown therapeutic promise in preclinical studies. Further understanding of the pathogenesis and natural history of USH2A-related disorders is required to develop innovative treatments and design clinical trials based on reliable outcome measures. The present review will discuss the current knowledge about USH2A, the emerging therapeutics and existing challenges.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|
45
|
Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron 2020; 107:1000-1013. [PMID: 32970995 DOI: 10.1016/j.neuron.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Human organoid models of the central nervous system, including the neural retina, are providing unprecedented opportunities to explore human neurodevelopment and neurodegeneration in controlled culture environments. In this Perspective, we discuss how the single-cell multi-omic toolkit has been used to identify features and limitations of brain and retina organoids and how these tools can be deployed to study congenital brain malformations and vision disorders in organoids. We also address how to improve brain and retina organoid protocols to revolutionize in vitro disease modeling.
Collapse
|
46
|
Bell CM, Zack DJ, Berlinicke CA. Human Organoids for the Study of Retinal Development and Disease. Annu Rev Vis Sci 2020; 6:91-114. [DOI: 10.1146/annurev-vision-121219-081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in stem cell engineering have led to an explosion in the use of organoids as model systems for studies in multiple biological disciplines. Together with breakthroughs in genome engineering and the various omics, organoid technology is making possible studies of human biology that were not previously feasible. For vision science, retinal organoids derived from human stem cells allow differentiating and mature human retinal cells to be studied in unprecedented detail. In this review, we examine the technologies employed to generate retinal organoids and how organoids are revolutionizing the fields of developmental and cellular biology as they pertain to the retina. Furthermore, we explore retinal organoids from a clinical standpoint, offering a new platform with which to study retinal diseases and degeneration, test prospective drugs and therapeutic strategies, and promote personalized medicine. Finally, we discuss the range of possibilities that organoids may bring to future retinal research and consider their ethical implications.
Collapse
Affiliation(s)
- Claire M. Bell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
| | - Donald J. Zack
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
47
|
Zhang X, Thompson JA, Zhang D, Charng J, Arunachalam S, McLaren TL, Lamey TM, De Roach JN, Jennings L, McLenachan S, Chen FK. Characterization of CRB1 splicing in retinal organoids derived from a patient with adult-onset rod-cone dystrophy caused by the c.1892A>G and c.2548G>A variants. Mol Genet Genomic Med 2020; 8:e1489. [PMID: 32931148 PMCID: PMC7667350 DOI: 10.1002/mgg3.1489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mutations in the human crumbs homologue 1 (CRB1) gene are associated with a spectrum of inherited retinal diseases. However, functional studies demonstrating the impact of individual CRB1 mutations on gene expression are lacking for most variants. Here, we investigated the effect of two CRB1 variants on pre-mRNA splicing using neural retinal organoids (NRO) derived from a patient with recessive rod-cone dystrophy caused by compound heterozygous mutations in CRB1 (c.1892A>G and c.2548G>A). METHODS The patient received ophthalmological examinations including multimodal imaging. NRO were differentiated from induced pluripotent stem cells (iPSCs) derived from the patient and a control subject. CRB1 transcripts were characterized by RT-PCR and Sanger sequencing. RESULTS The Patient displayed retinal thickening with disorganization of retinal layers and preservation of para-arteriolar retinal pigment epithelium. Both patient and control iPSC produced NRO containing photoreceptor progenitor cells expressing CRB1 mRNA. Patient NRO expressed a novel CRB1 transcript displaying skipping of exon 6. CRB1 transcripts containing the c.2548G>A substitution in exon 7 were expressed in patient NRO. CONCLUSIONS Together, these results confirm the pathogenicity of the c.1892A>G and c.2548G>A CRB1 variants in a family with recessive adult-onset rod-cone dystrophy and further demonstrate the effects of these variants on pre-mRNA splicing. This data provide important insights into the pathogenic mechanisms associated with these variants.
Collapse
Affiliation(s)
- Xiao Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Dan Zhang
- Lions Eye Institute, Nedlands, WA, Australia
| | | | | | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Tina M Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - John N De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, Australia.,Lions Eye Institute, Nedlands, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
48
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
49
|
Chichagova V, Dorgau B, Felemban M, Georgiou M, Armstrong L, Lako M. Differentiation of Retinal Organoids from Human Pluripotent Stem Cells. ACTA ACUST UNITED AC 2020; 50:e95. [PMID: 31479596 DOI: 10.1002/cpsc.95] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This unit describes a protocol for generating retinal organoids that contain all major retinal cell types and are responsive to light from human pluripotent stem cells (hPSCs). hPSCs are differentiated in 96-well plates to allow large-scale production of organoids that could be used for multiple applications, including study of human retinal development, disease modeling, and compound screening. The differentiation approach is based on the knowledge that insulin-like growth factor 1 signaling together with retinoic acid and triiodothyronine is important for retinal development. After 22 weeks in culture, the organoids form a thick layer of neuroepithelium containing photoreceptors and bipolar, horizontal, amacrine, Müller, and retinal ganglion cells. Differentiation progress can be tracked by morphological observations and protein localization, as detected with immunocytochemistry. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Valeria Chichagova
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcells Biotech Ltd, Biomedicine West Wing, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Birthe Dorgau
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcells Biotech Ltd, Biomedicine West Wing, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Majed Felemban
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcells Biotech Ltd, Biomedicine West Wing, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
50
|
Eintracht J, Toms M, Moosajee M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front Cell Neurosci 2020; 14:265. [PMID: 32973457 PMCID: PMC7468397 DOI: 10.3389/fncel.2020.00265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
Collapse
Affiliation(s)
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|