1
|
Kondratyeva LG, Matveeva DK, Ezdakova MI, Utkina MV, Ratushnyy AY. The influence of the geroprotective cytokine on the transcriptome of young and senescent mesenchymal stem cells. BMC Res Notes 2025; 18:195. [PMID: 40275319 PMCID: PMC12023522 DOI: 10.1186/s13104-025-07262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVES Increasing longevity and the growing elderly population necessitate a deeper understanding of aging mechanisms to prolong productive life and improve treatments for age-related diseases linked with cellular senescence. Mesenchymal stem cells (MSCs) are crucial for maintaining tissue homeostasis, but their physiological changes during senescence are not well understood. Growth differentiation factor 11 (GDF11) has emerged as a potential rejuvenation factor, enhancing MSC viability, mobility, and angiogenic functions, which improves outcomes in ischemic models and cardiac repair. This study aims to identify transcriptomic changes in young and senescent MSCs influenced by GDF11, highlighting its potential in MSC-based therapies. DATA DESCRIPTION To evaluate transcriptomic changes induced by the potential geroprotective factor GDF11, we performed RNA sequencing on four groups of samples: 'young' MSCs (MmC-/GDF11-) and senescent MSCs (MmC+/GDF11-) without the addition of GDF11, as well as 'young' (MmC-/GDF11+) and senescent MSCs (MmC+/GDF11+) with the addition of GDF11. After 10 days of incubation, indexed cDNA libraries for Illumina sequencing were prepared from the samples, and the resulting cDNA library mix was subjected to NovaSeq 6000 sequencing. This paper describes the collection of 16 RNA sequencing samples comprising 4 sets of MSCs. FASTQ files from Illumina sequencing are available in the NCBI Gene Expression Omnibus.
Collapse
Affiliation(s)
- Liya G Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| | - Diana K Matveeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, Moscow, 123007, Russia
| | - Maria I Ezdakova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, Moscow, 123007, Russia
| | - Marina V Utkina
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, Moscow, 117292, Russia
| | - Andrey Yu Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, Moscow, 123007, Russia.
| |
Collapse
|
2
|
Huo D, Bi XY, Zeng JL, Dai DM, Dong XL. Drugs targeting TGF-β/Notch interaction attenuate hypertrophic scar formation by optic atrophy 1-mediated mitochondrial fusion. Mol Cell Biochem 2024; 479:3049-3061. [PMID: 38158493 DOI: 10.1007/s11010-023-04912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Hypertrophic scar (HS) formation is a cutaneous fibroproliferative disease that occurs after skin injuries and results in severe functional and esthetic disability. To date, few drugs have shown satisfactory outcomes for the treatment of HS formation. Transforming growth factor-beta (TGF-β)/Notch interaction via small mothers against decapentaplegic 3 (Smad3) could facilitate HS formation; therefore, targeting TGF-β/ Notch interaction via Smad3 is a potential therapeutic strategy to attenuate HS formation. In addition, optic atrophy 1 (OPA1)-mediated mitochondrial fusion contributes to fibroblast proliferation, and TGF-β/Smad3 axis and the Notch1 pathway facilitate OPA1-mediated mitochondrial fusion. Thus, the aim of this study was to investigate whether drugs targeting TGF-β/Notch interaction via Smad3 suppressed fibroblast proliferation to attenuate HS formation through OPA1-mediated mitochondrial fusion. We found that the TGF-β pathway, Notch pathway, and TGF-β/Notch interaction via Smad3 were inhibited by pirfenidone, the gamma- secretase inhibitor DAPT, and SIS3 in human keloid fibroblasts (HKF) and an HS rat model, respectively. Protein interaction was detected by co-immunoprecipitation, and mitochondrial morphology was determined by electron microscopy. Our results indicated that pirfenidone, DAPT, and SIS3 suppressed the proliferation of HKFs and attenuated HS formation in the HS rat model by inhibiting TGF-β/Notch interaction via Smad3. Moreover, pirfenidone, DAPT, and SIS3 hindered OPA1-mediated mitochondrial fusion through inhibiting TGF-β/Notch interaction, thereby suppressing the proliferation of HS fibroblasts and HS formation. In summary, these findings investigating the effects of drugs targeting TGF-β/Notch interaction on HS formation might lead to novel drugs for the treatment of HS formation.
Collapse
Affiliation(s)
- Da Huo
- Department of Plastic and Aesthetic, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Xin-Yu Bi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jun-Ling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Da-Mao Dai
- Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, People's Republic of China.
| | - Xiang-Lin Dong
- Department of Plastic and Aesthetic, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China.
| |
Collapse
|
3
|
Xu C, Xie Y, Wang B. Genetically modified mesenchymal stromal cells: a cell-based therapy offering more efficient repair after myocardial infarction. Stem Cell Res Ther 2024; 15:323. [PMID: 39334266 PMCID: PMC11438184 DOI: 10.1186/s13287-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Myocardial infarction (MI) is a serious complication of coronary artery disease. This condition is common worldwide and has a profound impact on patients' lives and quality of life. Despite significant advances in the treatment of heart disease in modern medicine, the efficient treatment of MI still faces a number of challenges. Problems such as scar formation and loss of myocardial function after a heart attack still limit patients' recovery. Therefore, the search for a new therapeutic tool that can promote repair and regeneration of myocardial tissue has become crucial. In this context, mesenchymal stromal cells (MSCs) have attracted much attention as a potential therapeutic tool. MSCs are a class of adult stem cells with multidirectional differentiation potential, derived from bone marrow, fat, placenta and other tissues, and possessing properties such as self-renewal and immunomodulation. The application of MSCs may provide a new direction for the treatment of MI. These stem cells have the potential to differentiate into cardiomyocytes and vascular endothelial cells in damaged tissue and to repair and protect myocardial tissue through anti-inflammatory, anti-fibrotic and pro-neovascularization mechanisms. However, the clinical results of MSCs transplantation for the treatment of MI are less satisfactory due to the limitations of the native function of MSCs. Genetic modification has overcome problems such as the low survival rate of transplanted MSCs in vivo and enhanced their functions of promoting neovascularization and differentiation into cardiomyocytes, paving the way for them to become an effective tool for repair therapy after MI. In previous studies, MSCs have shown some therapeutic potential in experimental animals and preliminary clinical trials. This review aims to provide readers with a comprehensive and in-depth understanding to promote the wider application of engineering MSCs in the field of MI therapy, offering new hope for recovery and improved survival of cardiac patients.
Collapse
Affiliation(s)
- Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
4
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Xiang P, Liu Q, Jing W, Wang Y, Yu H. Combined ROS Sensitive PEG-PPS-PEG with Peptide Agonist for Effective Target Therapy in Mouse Model. Int J Nanomedicine 2024; 19:9109-9120. [PMID: 39253061 PMCID: PMC11382658 DOI: 10.2147/ijn.s471036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Background and Purpose Growth hormone-releasing hormone (GHRH) agonist, a 29-amino acid peptide, shows significant potential in treating myocardial infarction (MI) by aiding the repair of injured heart tissue. The challenge lies in the effective on-site delivery of GHRH agonist. This study explores the use of a targetable delivery system employing ROS-responsive PEG-PPS-PEG polymers to encapsulate and deliver GHRH agonist MR409 for enhanced therapeutic efficacy. Methods We synthesized a self-assembling poly (ethylene glycol)-poly (propylene sulfide)-poly (ethylene glycol) polymer (PEG-PPS-PEG) amphiphilic polymer responsive to reactive oxygen species (ROS). The hydrophilic peptide GHRH agonist MR409 was encapsulated within these polymers to form nano PEG-PPS-PEG@MR409 vesicles (NPs). Cardiomyocyte apoptosis was induced under hypoxia and serum-free culture condition for 24 hours, and their production of ROS was detected by fluorescence dye staining. The cellular uptake of PEG-PPS-PEG@MR409 NPs was observed using fluorescence-labeled MR409. Targeting ability and therapeutic efficacy were evaluated using a mouse MI model. Results PEG-PPS-PEG@MR409 NPs were efficiently internalized by cardiomyocytes, reducing ROS levels and apoptosis. These NPs exhibited superior targeting to the infarcted heart compared to naked MR409 peptide. With a reduced injection frequency (once every three days), PEG-PPS-PEG@MR409 NPs significantly promoted cardiac function recovery post-MI, matching the efficacy of daily MR409 injections. Conclusion ROS-responsive PEG-PPS-PEG polymers provide a novel and effective platform for the targeted delivery of GHRH agonist peptides, improving cardiac function and offering a new approach for peptide therapy in MI treatment.
Collapse
Affiliation(s)
- Pingping Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qi Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wangwei Jing
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People's Republic of China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Hong Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, People's Republic of China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
6
|
Chiariello A, Rossetti L, Valente S, Pasquinelli G, Sollazzo M, Iommarini L, Porcelli AM, Tognocchi M, Conte G, Santoro A, Kwiatkowska KM, Garagnani P, Salvioli S, Conte M. Downregulation of PLIN2 in human dermal fibroblasts impairs mitochondrial function in an age-dependent fashion and induces cell senescence via GDF15. Aging Cell 2024; 23:e14111. [PMID: 38650174 PMCID: PMC11113257 DOI: 10.1111/acel.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD)-coating protein playing important roles in lipid homeostasis and suppression of lipotoxicity in different tissues and cell types. Recently, a role for PLIN2 in supporting mitochondrial function has emerged. PLIN2 dysregulation is involved in many metabolic disorders and age-related diseases. However, the exact consequences of PLIN2 dysregulation are not yet completely understood. In this study, we knocked down (KD) PLIN2 in primary human dermal fibroblasts (hDFs) from young (mean age 29 years) and old (mean age 71 years) healthy donors. We have found that PLIN2 KD caused a decline of mitochondrial function only in hDFs from young donors, while mitochondria of hDFs from old donors (that are already partially impaired) did not significantly worsen upon PLIN2 KD. This mitochondrial impairment is associated with the increased expression of the stress-related mitokine growth differentiation factor 15 (GDF15) and the induction of cell senescence. Interestingly, the simultaneous KD of PLIN2 and GDF15 abrogated the induction of cell senescence, suggesting that the increase in GDF15 is the mediator of this phenomenon. Moreover, GDF15 KD caused a profound alteration of gene expression, as observed by RNA-Seq analysis. After a more stringent analysis, this alteration remained statistically significant only in hDFs from young subjects, further supporting the idea that cells from old and young donors react differently when undergoing manipulation of either PLIN2 or GDF15 genes, with the latter being likely a downstream mediator of the former.
Collapse
Affiliation(s)
- Antonio Chiariello
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Luca Rossetti
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”University of BolognaBolognaItaly
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Monica Tognocchi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Giuseppe Conte
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Aurelia Santoro
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | | | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Maria Conte
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| |
Collapse
|
7
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
8
|
Shao Y, Liu T, Wen X, Zhang R, Liu X, Xing D. The regulatory effect of growth differentiation factor 11 on different cells. Front Immunol 2023; 14:1323670. [PMID: 38143761 PMCID: PMC10739301 DOI: 10.3389/fimmu.2023.1323670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Zhang K, Zheng Y, Bao G, Ma W, Han B, Shi H, Zhao Z. Flt3 Activation Mitigates Mitochondrial Fragmentation and Heart Dysfunction through Rebalanced L-OPA1 Processing by Hindering the Interaction between Acetylated p53 and PHB2 in Cardiac Remodeling. Antioxidants (Basel) 2023; 12:1657. [PMID: 37759959 PMCID: PMC10525215 DOI: 10.3390/antiox12091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have shown that FMS-like receptor tyrosine kinase 3 (Flt3) has a beneficial effect on cardiac maladaptive remodeling. However, the role and mechanism of Flt3 in mitochondrial dynamic imbalance under cardiac stress remains poorly understood. This study aims to investigate how Flt3 regulates p53-mediated optic atrophy 1 (OPA1) processing and mitochondrial fragmentation to improve cardiac remodeling. Mitochondrial fragmentation in cardiomyocytes was induced by isoprenaline (ISO) and H2O2 challenge, respectively, in vitro. Cardiac remodeling in mice was established by ligating the left anterior descending coronary artery or by chronic ISO challenge, respectively, in vivo. Our results demonstrated that the protein expression of acetylated-p53 (ac-p53) in mitochondria was significantly increased under cell stress conditions, facilitating the dissociation of PHB2-OPA1 complex by binding to prohibitin 2 (PHB2), a molecular chaperone that stabilizes OPA1 in mitochondria. This led to the degradation of the long isoform of OPA1 (L-OPA1) that facilitates mitochondrial fusion and resultant mitochondrial network fragmentation. This effect was abolished by a p53 K371R mutant that failed to bind to PHB2 and impeded the formation of the ac-p53-PHB2 complex. The activation of Flt3 significantly reduced ac-p53 expression in mitochondria via SIRT1, thereby hindering the formation of the ac-p53-PHB2 complex and potentiating the stability of the PHB2-OPA1 complex. This ultimately inhibits L-OPA1 processing and leads to the balancing of mitochondrial dynamics. These findings highlight a novel mechanism by which Flt3 activation mitigates mitochondrial fragmentation and dysfunction through the reduction of L-OPA1 processing by dampening the interaction between ac-p53 and PHB2 in cardiac maladaptive remodeling.
Collapse
Affiliation(s)
- Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yeqing Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Wenzhuo Ma
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Hongwen Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
10
|
Wu Y, Hu Q, Wang X, Cheng H, Yu J, Li Y, Luo J, Zhang Q, Wu J, Zhang G. Pterostilbene attenuates microglial inflammation and brain injury after intracerebral hemorrhage in an OPA1-dependent manner. Front Immunol 2023; 14:1172334. [PMID: 37614235 PMCID: PMC10442819 DOI: 10.3389/fimmu.2023.1172334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Microglial activation and subsequent inflammatory responses are critical processes in aggravating secondary brain injury after intracerebral hemorrhage (ICH). Pterostilbene (3', 5'-dimethoxy-resveratrol) features antioxidant and anti-inflammation properties and has been proven neuroprotective. In this study, we aimed to explore whether Pterostilbene could attenuate neuroinflammation after experimental ICH, as well as underlying molecular mechanisms. Here, a collagenase-induced ICH in mice was followed by intraperitoneal injection of Pterostilbene (10 mg/kg) or vehicle once daily. PTE-treated mice performed significantly better than vehicle-treated controls in the neurological behavior test after ICH. Furthermore, our results showed that Pterostilbene reduced lesion volume and neural apoptosis, and alleviated blood-brain barrier (BBB) damage and brain edema. RNA sequencing and subsequent experiments showed that ICH-induced neuroinflammation and microglial proinflammatory activities were markedly suppressed by Pterostilbene treatment. With regard to the mechanisms, we identified that the anti-inflammatory effects of Pterostilbene relied on remodeling mitochondrial dynamics in microglia. Concretely, Pterostilbene reversed the downregulation of OPA1, promoted mitochondrial fusion, restored normal mitochondrial morphology, and reduced mitochondrial fragmentation and superoxide in microglia after OxyHb treatment. Moreover, conditionally deleting microglial OPA1 in mice largely countered the effects of Pterostilbene on alleviating microglial inflammation, BBB damage, brain edema and neurological impairment following ICH. In summary, we provided the first evidence that Pterostilbene is a promising agent for alleviating neuroinflammation and brain injury after ICH in mice, and uncovered a novel regulatory relationship between Pterostilbene and OPA1-mediated mitochondrial fusion.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Li
- Department of Neurosurgery, The General Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, Sichuan, China
| | - Qingjiu Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson's disease via imbalanced OPA1 processing. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131369. [PMID: 37086674 DOI: 10.1016/j.jhazmat.2023.131369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in agriculture worldwide and has been considered a high-risk environmental factor for Parkinson's disease (PD). Chronic PQ exposure selectively induces dopaminergic neuron loss, the hallmark pathologic feature of PD, resulting in Parkinson-like movement disorders. However, the underlying mechanisms remain unclear. Here, we demonstrated that repetitive PQ exposure caused dopaminergic neuron loss, dopamine deficiency and motor deficits dose-dependently in mice. Accordingly, mitochondrial calcium uniporter (MCU) was highly expressed in PQ-exposed mice and neuronal cells. Importantly, MCU knockout (KO) effectively rescued PQ-induced dopaminergic neuron loss and motor deficits in mice. Genetic and pharmacological inhibition of MCU alleviated PQ-induced mitochondrial dysfunction and neuronal death in vitro. Mechanistically, PQ exposure triggered mitochondrial fragmentation via imbalance of the optic atrophy 1 (OPA1) processing manifested by cleavage of L-OPA1 to S-OPA1, which was reversed by inhibition of MCU. Notably, the upregulation of MCU was mediated by miR-129-1-3p posttranscriptionally, and overexpression of miR-129-1-3p could rebalance OPA1 processing and attenuate mitochondrial dysfunction and neuronal death induced by PQ exposure. Consequently, our work uncovers an essential role of MCU and a novel molecular mechanism, miR-MCU-OPA1, in PQ-induced pathogenesis of PD, providing a potential target and strategy for environmental neurotoxins-induced PD treatment.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Cong Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Jie Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yu Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Tian Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yapei Sun
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiqin Xia
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingli Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongseng Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| |
Collapse
|
12
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Fang Y, Zhang Q, Lv C, Guo Y, He Y, Guo P, Wei Z, Xia Y, Dai Y. Mitochondrial fusion induced by transforming growth factor-β1 serves as a switch that governs the metabolic reprogramming during differentiation of regulatory T cells. Redox Biol 2023; 62:102709. [PMID: 37116255 PMCID: PMC10165137 DOI: 10.1016/j.redox.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Although metabolic reprogramming during the differentiation of regulatory T cells (Treg cells) has been extensively studied, the molecular switch to alter energy metabolism remains undefined. The present study explores the critical role of mitochondrial dynamics in the reprogramming and consequent generation of Treg cells. The results showed that during Treg cell differentiation, mitochondrial fusion but not fission led to elevation of oxygen consumption rate values, facilitation of metabolic reprogramming, and increase of number of Treg cells and expression of Foxp3 in vitro and in vivo. Mechanistically, mitochondrial fusion favored fatty acid oxidation but restricted glycolysis in Treg cells through down-regulating the expression of HIF-1α. Transforming growth factor-β1 (TGF-β1) played a crucial role in the induction of mitochondrial fusion, which activated Smad2/3, promoted the expression of PGC-1α and therefore facilitated the expression of mitochondrial fusion proteins. In conclusion, during Treg cell differentiation, TGF-β1 promotes PGC-1α-mediated mitochondrial fusion, which drives metabolic reprogramming from glycolysis to fatty acid oxidation via suppressing HIF-1α expression, and therefore favors the generation of Treg cells. The signals and proteins involved in mitochondrial fusion are potential therapeutic targets for Treg cell-related diseases.
Collapse
Affiliation(s)
- Yulai Fang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Qin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Changjun Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China.
| |
Collapse
|
14
|
Mabotuwana NS, Rech L, Lim J, Hardy SA, Murtha LA, Rainer PP, Boyle AJ. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep 2022; 18:2606-2628. [PMID: 35896860 PMCID: PMC9622561 DOI: 10.1007/s12015-022-10429-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has gained significant traction in the context of cardiovascular repair, and have been proposed to exert their regenerative effects via the secretion of paracrine factors. In this systematic review, we examined the literature and consolidated available evidence for the "paracrine hypothesis". Two Ovid SP databases were searched using a strategy encompassing paracrine mediated MSC therapy in the context of ischemic heart disease. This yielded 86 articles which met the selection criteria for inclusion in this study. We found that the MSCs utilized in these articles were primarily derived from bone marrow, cardiac tissue, and adipose tissue. We identified 234 individual protective factors across these studies, including VEGF, HGF, and FGF2; which are proposed to exert their effects in a paracrine manner. The data collated in this systematic review identifies secreted paracrine factors that could decrease apoptosis, and increase angiogenesis, cell proliferation, and cell viability. These included studies have also demonstrated that the administration of MSCs and indirectly, their secreted factors can reduce infarct size, and improve left ventricular ejection fraction, contractility, compliance, and vessel density. Furthering our understanding of the way these factors mediate repair could lead to the identification of therapeutic targets for cardiac regeneration.
Collapse
Affiliation(s)
- Nishani S Mabotuwana
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joyce Lim
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Sean A Hardy
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lucy A Murtha
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia
| | - Peter P Rainer
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J Boyle
- College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Lot 1, Kookaburra Circuit, Newcastle, NSW, 2305, Australia.
- Department of Cardiovascular Medicine, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
15
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Bin Wang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| |
Collapse
|
16
|
Chen G, Liang X, Han Q, Mai C, Shi L, Shao Z, Hong Y, Lin F, Li M, Hu B, Li X, Zhang Y. Apelin-13 Pretreatment Promotes the Cardioprotective Effect of Mesenchymal Stem Cells against Myocardial Infarction by Improving Their Survival. Stem Cells Int 2022; 2022:3742678. [PMID: 35355588 PMCID: PMC8960019 DOI: 10.1155/2022/3742678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Although mesenchymal stem cell- (MSC-) based therapy has shown promising results for myocardial infarction (MI), low cell survival heavily limits its beneficial effects. Apelin plays an essential regulatory role in cell proliferation. This study was aimed at determining whether Apelin-13 pretreatment could improve the survival of MSCs in the ischemic heart and enhance their cardioprotective efficacy against MI. MSCs were pretreated with or without Apelin-13 for 24 hours and then exposed to serum deprivation and hypoxia (SD/H) for 48 hours. The mitochondrial morphology of MSCs was assessed by MitoTracker staining. The apoptosis of MSCs was determined by TUNEL staining. The level of mitochondrial reactive oxygen species (ROS) of MSCs was detected by Mito-Sox staining. MSCs and Apelin-13-pretreated MSCs were transplanted into the peri-infarct region in a mouse MI model. Apelin-13 pretreatment protected MSCs against SD/H-induced mitochondrial fragmentation and apoptosis. Apelin-13 pretreatment reduced ROS generation induced by SD/H in MSCs. Furthermore, Apelin-13 pretreatment enhanced the angiogenesis of MSCs under SD/H conditions. Mechanistically, Apelin-13 pretreatment inhibited SD/H-induced MSC apoptosis by downregulating mitochondrial fission via activation of the ERK pathway, and these effects were partially abrogated by ERK inhibitor U0126. Apelin-13 pretreatment promoted the survival of MSCs in the ischemic heart. Moreover, transplantation with Apelin-13-pretreated MSCs improved heart function and increased angiogenesis accompanied by decreased fibrosis compared with MSC transplantation at 28 days following MI. These findings reveal that pretreatment with Apelin-13 improves MSCs survival and enhances their therapeutic efficacy for MI. Our study provides a novel approach to improve MSC-based therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Guona Chen
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoting Liang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linli Shi
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mimi Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuelin Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
17
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
18
|
Zhang C, Lin Y, Zhang K, Meng L, Hu X, Chen J, Zhu W, Yu H. GDF11 enhances therapeutic functions of mesenchymal stem cells for angiogenesis. Stem Cell Res Ther 2021; 12:456. [PMID: 34384486 PMCID: PMC8359078 DOI: 10.1186/s13287-021-02519-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation. METHODS We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo. RESULTS Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSCGDF11). After exposed to hypoxia and serum deprivation for 48 h, MSCGDF11 were significantly better in viability than control MSCs (MSCvector). MSCGDF11 also had higher mobility and better angiogenic paracrine effects. The cytokine antibody array showed more angiogenic cytokines in the conditioned medium of MSCGDF11 than that of MSCvector, such as epidermal growth factor, platelet-derived growth factor-BB, placenta growth factor. When MSCs (1 × 106 cells in 50 μl) were injected into ischemic hindlimb of mice after femoral artery ligation, MSCGDF11 had higher retention rate in the muscle than control MSCs. Injection of MSCGDF11 resulted in better blood reperfusion and limb salvage than that of control MSCs after 14 days. Significantly more CD31+ endothelial cells and α-SMA + smooth muscle cells were detected in the ischemic muscles that received MSCGDF11. The effects of GDF11 were through activating TGF-β receptor and PI3K/Akt signaling pathway. CONCLUSION Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.
Collapse
Affiliation(s)
- Chi Zhang
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Yinuo Lin
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Ke Zhang
- grid.13402.340000 0004 1759 700XDepartment of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang Province China
| | - Luyang Meng
- grid.440280.aDepartment of Vascular Surgery, Hangzhou Third People’s Hospital, Hangzhou, 310009 Zhejiang Province China
| | - Xinyang Hu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Jinghai Chen
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Wei Zhu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Hong Yu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| |
Collapse
|
19
|
Chen L, Luo G, Liu Y, Lin H, Zheng C, Xie D, Zhu Y, Chen L, Huang X, Hu D, Xie J, Chen Z, Liao W, Bin J, Wang Q, Liao Y. Growth differentiation factor 11 attenuates cardiac ischemia reperfusion injury via enhancing mitochondrial biogenesis and telomerase activity. Cell Death Dis 2021; 12:665. [PMID: 34215721 PMCID: PMC8253774 DOI: 10.1038/s41419-021-03954-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.
Collapse
MESH Headings
- Aminobenzoates/pharmacology
- Animals
- Apoptosis
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/pathology
- Myocardial Infarction/enzymology
- Myocardial Infarction/genetics
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Naphthalenes/pharmacology
- Organelle Biogenesis
- Rats
- Signal Transduction
- Telomerase/antagonists & inhibitors
- Telomerase/metabolism
- Mice
Collapse
Affiliation(s)
- Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangjin Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yameng Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongxiao Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Zhu HZ, Zhang LY, Zhai ME, Xia L, Cao Y, Xu L, Li KF, Jiang LQ, Shi H, Li X, Zhou YN, Ding W, Wang DX, Gao EH, Liu JC, Yu SQ, Duan WX. GDF11 Alleviates Pathological Myocardial Remodeling in Diabetic Cardiomyopathy Through SIRT1-Dependent Regulation of Oxidative Stress and Apoptosis. Front Cell Dev Biol 2021; 9:686848. [PMID: 34262905 PMCID: PMC8273395 DOI: 10.3389/fcell.2021.686848] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily that alleviates cardiac hypertrophy, myocardial infarction, and vascular injury by regulating oxidative stress, inflammation, and cell survival. However, the roles and underlying mechanisms of GDF11 in diabetic cardiomyopathy (DCM) remain largely unknown. In this study, we sought to determine whether GDF11 could prevent DCM. After establishing a mouse model of diabetes by administering a high-fat diet and streptozotocin, intramyocardial injection of an adeno-associated virus was used to achieve myocardium-specific GDF11 overexpression. GDF11 remarkably improved cardiac dysfunction and interstitial fibrosis by reducing the levels of reactive oxygen species and protecting against cardiomyocyte loss. Mechanistically, decreased sirtuin 1 (SIRT1) expression and activity were observed in diabetic mice, which was significantly increased after GDF11 overexpression. To further explore how SIRT1 mediates the role of GDF11, the selective inhibitor EX527 was used to block SIRT1 signaling pathway, which abolished the protective effects of GDF11 against DCM. In vitro studies confirmed that GDF11 protected against H9c2 cell injury in high glucose and palmitate by attenuating oxidative injury and apoptosis, and these effects were eliminated by SIRT1 depletion. Our results demonstrate for the first time that GDF11 protects against DCM by regulating SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Han-Zhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Li-Yun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Meng-En Zhai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Lu Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Kai-Feng Li
- Basic Medical Teaching Experiment Center, Basic Medical College, The Air Force Medical University, Xi'an, China
| | - Li-Qing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Heng Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Xiang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Ye-Nong Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Wei Ding
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Dong-Xu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Er-He Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Jin-Cheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Shi-Qiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Wei-Xun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
21
|
Preconditioned and Genetically Modified Stem Cells for Myocardial Infarction Treatment. Int J Mol Sci 2020; 21:ijms21197301. [PMID: 33023264 PMCID: PMC7582407 DOI: 10.3390/ijms21197301] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease and myocardial infarction remain leading causes of mortality worldwide. Existing myocardial infarction treatments are incapable of fully repairing and regenerating the infarcted myocardium. Stem cell transplantation therapy has demonstrated promising results in improving heart function following myocardial infarction. However, poor cell survival and low engraftment at the harsh and hostile environment at the site of infarction limit the regeneration potential of stem cells. Preconditioning with various physical and chemical factors, as well as genetic modification and cellular reprogramming, are strategies that could potentially optimize stem cell transplantation therapy for clinical application. In this review, we discuss the most up-to-date findings related to utilizing preconditioned stem cells for myocardial infarction treatment, focusing mainly on preconditioning with hypoxia, growth factors, drugs, and biological agents. Furthermore, genetic manipulations on stem cells, such as the overexpression of specific proteins, regulation of microRNAs, and cellular reprogramming to improve their efficiency in myocardial infarction treatment, are discussed as well.
Collapse
|
22
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020. [PMCID: PMC7519771 DOI: 10.1002/sctm.20-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Zhao Y, Zhu J, Zhang N, Liu Q, Wang Y, Hu X, Chen J, Zhu W, Yu H. GDF11 enhances therapeutic efficacy of mesenchymal stem cells for myocardial infarction via YME1L-mediated OPA1 processing. Stem Cells Transl Med 2020; 9:1257-1271. [PMID: 32515551 PMCID: PMC7519765 DOI: 10.1002/sctm.20-0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) has been shown to promote stem cell activity, but little is known about the effect of GDF11 on viability and therapeutic efficacy of cardiac mesenchymal stem cells (MSCs) for cardiac injury. To understand the roles of GDF11 in MSCs, mouse heart‐derived MSCs were transduced with lentiviral vector carrying genes for both GDF11 and green fluorescent protein (GFP) (MSCsLV‐GDF11) or cultured with recombinant GDF11 (MSCsrGDF11). Either MSCsrGDF11 or MSCs LV‐GDF11 displayed less cell apoptosis and better paracrine function, as well as preserved mitochondrial morphology and function under hypoxic condition as compared with control MSCs. GDF11 enhanced phosphorylation of Smad2/3, which upregulated expression of YME1L, a mitochondria protease that balances OPA1 processing. Inhibitors of TGF‐β receptor (SB431542) or Smad2/3 (SIS3) attenuated the effects of GDF11 on cell viability, mitochondrial function, and expression of YME1L. Transplantation of MSCsGDF11 into infarct heart resulted in improved cell survival and retention, leading to more angiogenesis, smaller scar size, and better cardiac function in comparison with control MSCs. GDF11 enhanced viability and therapeutic efficiency of MSCs by promoting mitochondrial fusion through TGF‐β receptor/Smad2/3/YME1L‐OPA1 signaling pathway. This novel role of GDF11 may be used for a new approach of stem cell therapy for myocardial infarction.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ning Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|