1
|
Gigi S, Cohen T, Florio D, Levi A, Stone D, Katoa O, Li J, Liu J, Remennik S, Camargo FVA, Cerullo G, Frenkel AI, Banin U. Photocatalytic Semiconductor-Metal Hybrid Nanoparticles: Single-Atom Catalyst Regime Surpasses Metal Tips. ACS NANO 2025; 19:2507-2517. [PMID: 39760373 PMCID: PMC11760151 DOI: 10.1021/acsnano.4c13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems. The SAC regime was achieved via the deposition of individual atomic cocatalysts on the semiconductor nanocrystals in solution. Utilizing a combination of electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy, we established the presence of single Au atoms on the ZnSe nanorod surface. Upon increased Au concentration, this transitions to metal tip growth. Photocatalytic hydrogen generation measurements reveal a strong dependence on the cocatalyst loading with a sharp response maximum in the SAC regime. Ultrafast dynamics studies show similar electron decay kinetics for the pristine ZnSe nanorods and the ZnSe-Au HNPs in either SAC or tipped systems. This indicates that electron transfer is not the rate-limiting step for the photocatalytic process. Combined with the structural-chemical characterization, we conclude that the enhanced photocatalytic activity is due to the higher reactivity of the single-atom sites. This holistic view establishes the significance of SAC-HNPs, setting the stage for designing efficient and sustainable heavy-metal-free photocatalyst nanoparticles for numerous applications.
Collapse
Affiliation(s)
- Shira Gigi
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tal Cohen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diego Florio
- Dipartimento
di Fisica, Politecnico di Milano, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Adar Levi
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Stone
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ofer Katoa
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Junying Li
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Jing Liu
- Department
of Mathematics and Physics, Manhattan University, Riverdale, New York 10471, United States
| | - Sergei Remennik
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franco V. A. Camargo
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Anatoly I. Frenkel
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Uri Banin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Lu P, Kim GM, Wang N, Panpranot J, Kim WD, Lee DC. Selective photocatalytic C-C coupling of benzyl alcohol into hydrobenzoin using Pt-deposited CdS nanosheets passivated with cysteamine. NANOSCALE 2024; 16:20977-20985. [PMID: 39445567 DOI: 10.1039/d4nr03148b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Achieving high selectivity towards hydrobenzoin (HB) from photocatalytic carbon-carbon (C-C) coupling reaction of benzyl alcohol (BzOH) remains a challenge due to side competing reactions and subsequent conversions of HB into its derivatives. In this study, we have developed a high-performance CdS-based photocatalyst for synthesizing HB with precisely controlled surface properties and structure, achieving high selectivity for HB synthesis. We employed strategies such as cysteamine passivation and Pt deposition to address issues related to photogenerated charge trapping and recombination, thereby enhancing the photocatalytic capability of CdS. With optimized Pt/CdS NSs as the photocatalyst, we investigated the impact of the Pt/CdS heterostructure on intermediate reactions, which in turn altered product selectivity. Specifically, excessive Pt suppresses the electron-induced benzaldehyde-to-intermediate reaction by consuming electrons for the competing hydrogen evolution reaction (HER), leading to high selectivity toward benzaldehyde. In contrast, bare CdS without Pt suffers from insufficient charge supply for BzOH conversion due to the charge recombination issue, which promotes the subsequent conversion of HB to its derivatives. Notably, when Pt is precisely loaded to avoid dominant HER competition, the overall reaction rate increases, maintaining high selectivity towards HB and ensuring faster conversion of BzOH to HB rather than subsequent conversions of HB into its derivatives, thereby maximizing the HB yield. Subsequently, we have developed a photocatalyst that achieves a 93.4% conversion of 0.24 mmol BzOH with 85.3% selectivity toward HB under solar simulator irradiation (AM 1.5G). This work is expected to offer instructive guidance on rationally designing the photocatalyst for efficient C-C coupling reactions.
Collapse
Affiliation(s)
- Pan Lu
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy and Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Gui-Min Kim
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy and Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Nianfang Wang
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy and Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Joongjai Panpranot
- Center of Excellence on Catalysis and Catalytic Reaction, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Whi Dong Kim
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea.
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy and Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
3
|
Baran T, Caringella D, Dibenedetto A, Aresta M. Pitfalls in Photochemical and Photoelectrochemical Reduction of CO 2 to Energy Products. Molecules 2024; 29:4758. [PMID: 39407686 PMCID: PMC11477605 DOI: 10.3390/molecules29194758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The photochemical and photoelectrochemical reduction of CO2 is a promising approach for converting carbon dioxide into valuable chemicals (materials) and fuels. A key issue is ensuring the accuracy of experimental results in CO2 reduction reactions (CO2RRs) because of potential sources of false positives. This paper reports the results of investigations on various factors that may contribute to erroneous attribution of reduced-carbon species, including degradation of carbon species contained in photocatalysts, residual contaminants from synthetic procedures, laboratory glassware, environmental exposure, and the operator. The importance of rigorous experimental protocols, including the use of labeled 13CO2 and blank tests, to identify true CO2 reduction products (CO2RPs) accurately is highlighted. Our experimental data (eventually complemented with or compared to literature data) underline the possible sources of errors and, whenever possible, quantify the false positives with respect to the effective conversion of CO2 in clean conditions. This paper clarifies that the incidence of false positives is higher in the preliminary phase of photo-material development when CO2RPs are in the range of a few 10s of μg gcat-1 h-1, reducing its importance when significant conversions of CO2 are performed reaching 10s of mol gcat-1 h-1. This paper suggests procedures for improving the reliability and reproducibility of CO2RR experiments, thus validating such technologies.
Collapse
Affiliation(s)
- Tomasz Baran
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Domenico Caringella
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| | - Angela Dibenedetto
- Interuniversity Consortium on Chemical Reactivity and Catalysis (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michele Aresta
- Innovative Catalysis for Carbon Recycling-ICR, Via Camillo Rosalba 49, 70124 Bari, Italy; (T.B.); (D.C.)
| |
Collapse
|
4
|
Ghelardini MM, Geisler M, Weigel N, Hankwitz JP, Hauck N, Schubert J, Fery A, Tracy JB, Thiele J. 3D-Printed Hydrogels as Photothermal Actuators. Polymers (Basel) 2024; 16:2032. [PMID: 39065349 PMCID: PMC11281285 DOI: 10.3390/polym16142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Thermoresponsive hydrogels were 3D-printed with embedded gold nanorods (GNRs), which enable shape change through photothermal heating. GNRs were functionalized with bovine serum albumin and mixed with a photosensitizer and poly(N-isopropylacrylamide) (PNIPAAm) macromer, forming an ink for 3D printing by direct ink writing. A macromer-based approach was chosen to provide good microstructural homogeneity and optical transparency of the unloaded hydrogel in its swollen state. The ink was printed into an acetylated gelatin hydrogel support matrix to prevent the spreading of the low-viscosity ink and provide mechanical stability during printing and concurrent photocrosslinking. Acetylated gelatin hydrogel was introduced because it allows for melting and removal of the support structure below the transition temperature of the crosslinked PNIPAAm structure. Convective and photothermal heating were compared, which both triggered the phase transition of PNIPAAm and induced reversible shrinkage of the hydrogel-GNR composite for a range of GNR loadings. During reswelling after photothermal heating, some structures formed an internally buckled state, where minor mechanical agitation recovered the unbuckled structure. The BSA-GNRs did not leach out of the structure during multiple cycles of shrinkage and reswelling. This work demonstrates the promise of 3D-printed, photoresponsive structures as hydrogel actuators.
Collapse
Affiliation(s)
- Melanie M. Ghelardini
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Martin Geisler
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Niclas Weigel
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jameson P. Hankwitz
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Nicolas Hauck
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Jonas Schubert
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Physical Chemistry and Polymer Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joseph B. Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (M.M.G.)
| | - Julian Thiele
- Leibniz Institute of Polymer Research Dresden, Institute of Physical Chemistry and Polymer Physics, 01069 Dresden, Germany; (M.G.)
- Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
5
|
Rikanati L, Shema H, Ben-Tzvi T, Gross E. Nanoimaging of Facet-Dependent Adsorption, Diffusion, and Reactivity of Surface Ligands on Au Nanocrystals. NANO LETTERS 2023; 23:5437-5444. [PMID: 37327381 PMCID: PMC10311598 DOI: 10.1021/acs.nanolett.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Analysis of the influence of dissimilar facets on the adsorption, stability, mobility, and reactivity of surface ligands is essential for designing ligand-coated nanocrystals with optimal functionality. Herein, para-nitrothiophenol and nitronaphthalene were chemisorbed and physisorbed, respectively, on Au nanocrystals, and the influence of different facets within a single Au nanocrystal on ligands properties were identified by IR nanospectroscopy measurements. Preferred adsorption was probed on (001) facets for both ligands, with a lower density on (111) facets. Exposure to reducing conditions led to nitro reduction and diffusion of both ligands toward the top (111) facet. Nitrothiophenol was characterized with a diffusivity higher than that of nitronaphthalene. Moreover, the strong thiol-Au interaction led to the diffusion of Au atoms and the formation of thiol-coated Au nanoparticles on the silicon surface. It is identified that the adsorption and reactivity of surface ligands were mainly influenced by the atomic properties of each facet, while diffusion was controlled by ligand-metal interactions.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Hadar Shema
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Tzipora Ben-Tzvi
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and The Center
for Nanoscience and Nanotechnology, The
Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Kumar K, Wächtler M. Unravelling Dynamics Involving Multiple Charge Carriers in Semiconductor Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091579. [PMID: 37177124 PMCID: PMC10181110 DOI: 10.3390/nano13091579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The use of colloidal nanocrystals as part of artificial photosynthetic systems has recently gained significant attention, owing to their strong light absorption and highly reproducible, tunable electronic and optical properties. The complete photocatalytic conversion of water to its components is yet to be achieved in a practically suitable and commercially viable manner. To complete this challenging task, we are required to fully understand the mechanistic aspects of the underlying light-driven processes involving not just single charge carriers but also multiple charge carriers in detail. This review focuses on recent progress in understanding charge carrier dynamics in semiconductor nanocrystals and the influence of various parameters such as dimension, composition, and cocatalysts. Transient absorption spectroscopic studies involving single and multiple charge carriers, and the challenges associated with the need for accumulation of multiple charge carriers to drive the targeted chemical reactions, are discussed.
Collapse
Affiliation(s)
- Krishan Kumar
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Maria Wächtler
- Chemistry Department and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Schlenkrich J, Lübkemann-Warwas F, Graf RT, Wesemann C, Schoske L, Rosebrock M, Hindricks KDJ, Behrens P, Bahnemann DW, Dorfs D, Bigall NC. Investigation of the Photocatalytic Hydrogen Production of Semiconductor Nanocrystal-Based Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208108. [PMID: 36828791 DOI: 10.1002/smll.202208108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Indexed: 05/25/2023]
Abstract
Destabilization of a ligand-stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self-supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand-stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades. Combining the properties of these nanocrystals with the advantages of nanocrystal-based hydrogels will lead to novel materials with optimized photocatalytic properties. This work demonstrates that CdSe quantum dots, CdS nanorods, and CdSe/CdS dot-in-rod-shaped nanorods as nanocrystal-based hydrogels can exhibit a much higher hydrogen production rate compared to their ligand-stabilized nanocrystal solutions. The gel synthesis through controlled destabilization by ligand oxidation preserves the high surface-to-volume ratio, ensures the accessible surface area even in hole-trapping solutions and facilitates photocatalytic hydrogen production without a co-catalyst. Especially with such self-supporting networks of nanocrystals, the problem of colloidal (in)stability in photocatalysis is circumvented. X-ray photoelectron spectroscopy and photoelectrochemical measurements reveal the advantageous properties of the 3D networks for application in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Jakob Schlenkrich
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
| | - Franziska Lübkemann-Warwas
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
| | - Rebecca T Graf
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
| | - Christoph Wesemann
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
| | - Larissa Schoske
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
| | - Marina Rosebrock
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
| | - Karen D J Hindricks
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Peter Behrens
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Detlef W Bahnemann
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstraße 5, 30167, Hannover, Germany
- Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Ulyanovskaya str. 1, Saint-Petersburg, 198504, Peterhof, Russia
| | - Dirk Dorfs
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
| | - Nadja C Bigall
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
| |
Collapse
|
8
|
Fenoll D, Sodupe M, Solans-Monfort X. Influence of Capping Ligands, Solvent, and Thermal Effects on CdSe Quantum Dot Optical Properties by DFT Calculations. ACS OMEGA 2023; 8:11467-11478. [PMID: 37008094 PMCID: PMC10061629 DOI: 10.1021/acsomega.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Cadmium selenide nanomaterials are very important materials in photonics, catalysis, and biomedical applications due to their optical properties that can be tuned through size, shape, and surface passivation. In this report, static and ab initio molecular dynamics density functional theory (DFT) simulations are used to characterize the effect of ligand adsorption on the electronic properties of the (110) surface of zinc blende and wurtzite CdSe and a (CdSe)33 nanoparticle. Adsorption energies depend on ligand surface coverage and result from a balance between chemical affinity and ligand-surface and ligand-ligand dispersive interactions. In addition, while little structural reorganization occurs upon slab formation, Cd···Cd distances become shorter and the Se-Cd-Se angles become smaller in the bare nanoparticle model. This originates mid-gap states that strongly influence the absorption optical spectra of nonpassivated (CdSe)33. Ligand passivation on both zinc blende and wurtzite surfaces does not induce a surface reorganization, and thus, the band gap remains nonaffected with respect to bare surfaces. In contrast, structural reconstruction is more apparent for the nanoparticle, which significantly increases its highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap upon passivation. Solvent effects decrease the band gap difference between the passivated and nonpassivated nanoparticles, the maximum of the absorption spectra being blue-shifted around 20 nm by the effect of the ligands. Overall, calculations show that flexible surface cadmium sites are responsible for the appearance of mid-gap states that are partially localized on the most reconstructed regions of the nanoparticle that can be controlled through appropriate ligand adsorption.
Collapse
|
9
|
Elimelech O, Oded M, Harries D, Banin U. Spontaneous Patterning of Binary Ligand Mixtures on CdSe Nanocrystals: From Random to Janus Packing. ACS NANO 2023; 17:5852-5860. [PMID: 36893308 PMCID: PMC10061916 DOI: 10.1021/acsnano.2c12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Binary compositions of surface ligands are known to improve the colloidal stability and fluorescence quantum yield of nanocrystals (NCs), due to ligand-ligand interactions and surface organization. Herein, we follow the thermodynamics of a ligand exchange reaction of CdSe NCs with alkylthiol mixtures. The effects of ligand polarity and length difference on ligand packing were investigated using isothermal titration calorimetry (ITC). The thermodynamic signature of the formation of mixed ligand shells was observed. Correlating the experimental results with thermodynamic mixing models has allowed us to calculate the interchain interactions and to infer the final ligand shell configuration. Our findings demonstrate that, in contrast to macroscopic surfaces, the small dimensions of the NCs and the subsequent increased interfacial region between dissimilar ligands allow the formation of a myriad of clustering patterns, controlled by the interligand interactions. This work provides a fundamental understanding of the parameters determining the ligand shell structure and should help guide smart surface design toward NC-based applications.
Collapse
Affiliation(s)
- Orian Elimelech
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daniel Harries
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
11
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
12
|
Ben-Shahar Y, Stone D, Banin U. Rich Landscape of Colloidal Semiconductor-Metal Hybrid Nanostructures: Synthesis, Synergetic Characteristics, and Emerging Applications. Chem Rev 2023; 123:3790-3851. [PMID: 36735598 PMCID: PMC10103135 DOI: 10.1021/acs.chemrev.2c00770] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nanochemistry provides powerful synthetic tools allowing one to combine different materials on a single nanostructure, thus unfolding numerous possibilities to tailor their properties toward diverse functionalities. Herein, we review the progress in the field of semiconductor-metal hybrid nanoparticles (HNPs) focusing on metal-chalcogenides-metal combined systems. The fundamental principles of their synthesis are discussed, leading to a myriad of possible hybrid architectures including Janus zero-dimensional quantum dot-based systems and anisotropic quasi 1D nanorods and quasi-2D platelets. The properties of HNPs are described with particular focus on emergent synergetic characteristics. Of these, the light-induced charge-separation effect across the semiconductor-metal nanojunction is of particular interest as a basis for the utilization of HNPs in photocatalytic applications. The extensive studies on the charge-separation behavior and its dependence on the HNPs structural characteristics, environmental and chemical conditions, and light excitation regime are surveyed. Combining the advanced synthetic control with the charge-separation effect has led to demonstration of various applications of HNPs in different fields. A particular promise lies in their functionality as photocatalysts for a variety of uses, including solar-to-fuel conversion, as a new type of photoinitiator for photopolymerization and 3D printing, and in novel chemical and biomedical uses.
Collapse
Affiliation(s)
- Yuval Ben-Shahar
- Department of Physical Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona74100, Israel
| | - David Stone
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
13
|
Rosner T, Pavlopoulos NG, Shoyhet H, Micheel M, Wächtler M, Adir N, Amirav L. The Other Dimension-Tuning Hole Extraction via Nanorod Width. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193343. [PMID: 36234471 PMCID: PMC9565346 DOI: 10.3390/nano12193343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/10/2023]
Abstract
Solar-to-hydrogen generation is a promising approach to generate clean and renewable fuel. Nanohybrid structures such as CdSe@CdS-Pt nanorods were found favorable for this task (attaining 100% photon-to-hydrogen production efficiency); yet the rods cannot support overall water splitting. The key limitation seems to be the rate of hole extraction from the semiconductor, jeopardizing both activity and stability. It is suggested that hole extraction might be improved via tuning the rod's dimensions, specifically the width of the CdS shell around the CdSe seed in which the holes reside. In this contribution, we successfully attain atomic-scale control over the width of CdSe@CdS nanorods, which enables us to verify this hypothesis and explore the intricate influence of shell diameter over hole quenching and photocatalytic activity towards H2 production. A non-monotonic effect of the rod's diameter is revealed, and the underlying mechanism for this observation is discussed, alongside implications towards the future design of nanoscale photocatalysts.
Collapse
Affiliation(s)
- Tal Rosner
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Nicholas G. Pavlopoulos
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Hagit Shoyhet
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Mathias Micheel
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Maria Wächtler
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Correspondence: (M.W.); (N.A.); (L.A.)
| | - Noam Adir
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (M.W.); (N.A.); (L.A.)
| | - Lilac Amirav
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion−Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (M.W.); (N.A.); (L.A.)
| |
Collapse
|
14
|
Wang HY, Xie WH, Wei DD, Hu R, Wang N, Chang K, Lei SL, Wang B, Cao R. A Hybrid Assembly with Nickel Poly-Pyridine Polymer on CdS Quantum Dots for Photo-Reducing CO 2 into Syngas with Controlled H 2 /CO Ratios. CHEMSUSCHEM 2022; 15:e202200200. [PMID: 35261194 DOI: 10.1002/cssc.202200200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
A hybrid photocatalytic assembly with Ni poly-pyridine polymers binding on CdS quantum dots was developed via thiophene immobilization. The fabricated hybrid assembly facilitated efficient charge separation, and each component endowed great synergy. As a result, a high syngas production rate was achieved over 5500 μmol gcat -1 h-1 from photocatalytic CO2 reduction under visible-light irradiation, accompanied by an adjustable H2 /CO ratio ranging from 4 : 1 to 1 : 3. A novel hybrid assembly was described for syngas synthesis with boosted activity and controlled selectivity, which provides a profile to ingeniously understand molecular-level design for photocatalysts.
Collapse
Affiliation(s)
- Hong-Yan Wang
- Key Laboratory for macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Wei-Hua Xie
- Key Laboratory for macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Dong-Dong Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Rong Hu
- Key Laboratory for macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Na Wang
- Key Laboratory for macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Kai Chang
- Key Laboratory for macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Shuang-Lei Lei
- Key Laboratory for macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, Shanxi, P. R. China
| |
Collapse
|
15
|
A novel dinuclear cobalt-bis(thiosemicarbazone) complex as a cocatalyst to enhance visible-light-driven H2 evolution on CdS nanorods and a mechanism discussion. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Elimelech O, Aviv O, Oded M, Peng X, Harries D, Banin U. Entropy of Branching Out: Linear versus Branched Alkylthiols Ligands on CdSe Nanocrystals. ACS NANO 2022; 16:4308-4321. [PMID: 35157440 PMCID: PMC8945696 DOI: 10.1021/acsnano.1c10430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Surface ligands of semiconductor nanocrystals (NCs) play key roles in determining their colloidal stability and physicochemical properties and are thus enablers also for the NCs flexible manipulation toward numerous applications. Attention is usually paid to the ligand binding group, while the impact of the ligand chain backbone structure is less discussed. Using isothermal titration calorimetry (ITC), we studied the effect of structural changes in the ligand chain on the thermodynamics of the exchange reaction for oleate coated CdSe NCs, comparing linear and branched alkylthiols. The investigated alkylthiol ligands differed in their backbone length, branching position, and branching group length. Compared to linear ligands, lower exothermicity and entropy loss were observed for an exchange with branched ligands, due to steric hindrance in ligand packing, thereby justifying their previous classification as "entropic ligands". Mean-field calculations for ligand binding demonstrate the contribution to the overall entropy originating from ligand conformational entropy, which is diminished upon binding mainly by packing of NC-bound ligands. Model calculations and the experimental ITC data both point to an interplay between the branching position and the backbone length in determining the entropic nature of the branched ligand. Our findings suggest that the most entropic ligand should be a short, branched ligand with short branching group located toward the middle of the ligand chain. The insights provided by this work also contribute to a future smarter NC surface design, which is an essential tool for their implementation in diverse applications.
Collapse
Affiliation(s)
- Orian Elimelech
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Aviv
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Xiaogang Peng
- Department
of Chemistry, Zhejiang University, Hangzhou 310027 P. R. China
| | - Daniel Harries
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
17
|
Arun Joshi Reddy K, Amaranatha Reddy D, Hye Hong D, Gopannagari M, Putta Rangappa A, Praveen Kumar D, Kyu Kim T. Impact of the number of surface-attached tungsten diselenide layers on cadmium sulfide nanorods on the charge transfer and photocatalytic hydrogen evolution rate. J Colloid Interface Sci 2022; 608:903-911. [PMID: 34785465 DOI: 10.1016/j.jcis.2021.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
The selection of layered number and time-course destruction of layers may affect the charge transfer between 2D-to-1D heterostructure, making it possible to improve the efficiency of solar-to-hydrogen evolution. Herein, we demonstrate a simple, low-cost systematic protocol of 2D-WSe2 nanolayer numbers ranging from 7 to 60 aiding the ultrasonication time-course. The resultant nanolayers were assembled on the surface of 1D-CdS nanorods, which demonstrated an improved surface shuttling property. Consequently, a drastic improvement in photocatalytic solar-driven hydrogen evolution was observed (103.5 mmol h-1 g-1) with seven-layered WSe2 (few-layered WSe2) attached on CdS nanorods surface. This enhanced photocatalytic performance is attributed to the selection of layers on CdS surface that expose abundant active sites; along with suitable energy levels, this can facilitate increased charge transfer leading to feasible photocatalytic reactions. Significantly, the present study proposes an efficient and sustainable process to produce hydrogen and demonstrates the potential of numbered WSe2 nanosheets as a co-catalyst material.
Collapse
Affiliation(s)
- K Arun Joshi Reddy
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - D Amaranatha Reddy
- Department of Sciences, Indian Institute of Information Technology Design and Manufacturing, Kurnool, Andhra Pradesh 518007, India.
| | - Da Hye Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - A Putta Rangappa
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - D Praveen Kumar
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
18
|
Levi A, Verbitsky L, Waiskopf N, Banin U. Sulfide Ligands in Hybrid Semiconductor-Metal Nanocrystal Photocatalysts: Improved Hole Extraction and Altered Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:647-653. [PMID: 34958193 DOI: 10.1021/acsami.1c17304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hybrid semiconductor-metal nanocrystals manifest efficient photocatalytic activity related to the metal domain promoting charge carrier separation and providing an active catalytic site. The surface properties of such nanoparticles are also of paramount importance in determining their photocatalytic activity. Addressing the combination of surface effects in catalysis on metals, with the electronic properties of hybrid nanoparticles, we examined the effect of coating CdS-Au hybrid nanoparticles with sulfide, an anion that is expected to bind strongly to both domains, on the photocatalytic functionality. Upon sulfide coating, one-electron processes - namely the oxidative production of hydroxyl radicals and the reductive production of superoxide - were increased, whereas the activity for two-electron reduction processes - H2 and hydrogen peroxide generation - was hampered. These findings indicate a double-edged sword effect for sulfide coating that on one side relieves the hole extraction bottleneck from the semiconductor segment and, on the other hand, poisons the metal domain restricting its reductive capacity for the two-electron processes requiring a chemisorption step on the metal surface. The work further demonstrates the importance of surface properties for the photocatalytic action of such hybrid nanoparticle systems.
Collapse
Affiliation(s)
- Adar Levi
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lior Verbitsky
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nir Waiskopf
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Corredor J, Harankahage D, Gloaguen F, Rivero MJ, Zamkov M, Ortiz I. Influence of QD photosensitizers in the photocatalytic production of hydrogen with biomimetic [FeFe]-hydrogenase. Comparative performance of CdSe and CdTe. CHEMOSPHERE 2021; 278:130485. [PMID: 33839391 DOI: 10.1016/j.chemosphere.2021.130485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic systems comprising a hydrogenase-type catalyst and CdX (X = S, Se, Te) chalcogenide quantum dot (QD) photosensitizers show extraordinary hydrogen production rates under visible light excitation. What remains unknown is the mechanism of energy conversion in these systems. Here, we have explored this question by comparing the performance of two QD sensitizers, CdSe and CdTe, in photocatalytic systems featuring aqueous suspensions of a [Fe2 (μ-1,2-benzenedithiolate) CO6] catalyst and an ascorbic acid sacrificial agent. Overall, the hydrogen production yield for CdSe-sensitized reactions QDs was found to be 13 times greater than that of CdTe counterparts. According to emission quenching experiments, an enhanced performance of CdSe sensitizers reflected a greater rate of electron transfer from the ascorbic acid (kAsc). The observed difference in the QD-ascorbic acid charge transfer rates between the two QD materials was consistent with respective driving forces for these systems.
Collapse
Affiliation(s)
- Juan Corredor
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. de Los Castros S/n, 39005, Santander, Spain
| | - Dulanjan Harankahage
- Department of Physics and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Frederic Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837, 29238, Brest, France
| | - Maria J Rivero
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. de Los Castros S/n, 39005, Santander, Spain
| | - Mikhail Zamkov
- Department of Physics and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. de Los Castros S/n, 39005, Santander, Spain.
| |
Collapse
|
20
|
Camargo FA, Ben-Shahar Y, Nagahara T, Panfil YE, Russo M, Banin U, Cerullo G. Visualizing Ultrafast Electron Transfer Processes in Semiconductor-Metal Hybrid Nanoparticles: Toward Excitonic-Plasmonic Light Harvesting. NANO LETTERS 2021; 21:1461-1468. [PMID: 33481610 PMCID: PMC7883410 DOI: 10.1021/acs.nanolett.0c04614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently, it was demonstrated that charge separation in hybrid metal-semiconductor nanoparticles (HNPs) can be obtained following photoexcitation of either the semiconductor or of the localized surface plasmon resonance (LSPR) of the metal. This suggests the intriguing possibility of photocatalytic systems benefiting from both plasmon and exciton excitation, the main challenge being to outcompete other ultrafast relaxation processes. Here we study CdSe-Au HNPs using ultrafast spectroscopy with high temporal resolution. We describe the complete pathways of electron transfer for both semiconductor and LSPR excitation. In the former, we distinguish hot and band gap electron transfer processes in the first few hundred fs. Excitation of the LSPR reveals an ultrafast (<30 fs) electron transfer to CdSe, followed by back-transfer from the semiconductor to the metal within 210 fs. This study establishes the requirements for utilization of the combined excitonic-plasmonic contribution in HNPs for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Franco
V. A. Camargo
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Yuval Ben-Shahar
- Institute
of Chemistry and Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department
of Physical Chemistry, Israel Institute
for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel
| | - Tetsuhiko Nagahara
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
- Department
of Chemistry and Materials Technology, Kyoto
Institute of Technology, Matsugasaki, Kyoto 6068585, Japan
| | - Yossef E. Panfil
- Institute
of Chemistry and Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mattia Russo
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Uri Banin
- Institute
of Chemistry and Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Giulio Cerullo
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| |
Collapse
|
21
|
Banin U, Waiskopf N, Hammarström L, Boschloo G, Freitag M, Johansson EMJ, Sá J, Tian H, Johnston MB, Herz LM, Milot RL, Kanatzidis MG, Ke W, Spanopoulos I, Kohlstedt KL, Schatz GC, Lewis N, Meyer T, Nozik AJ, Beard MC, Armstrong F, Megarity CF, Schmuttenmaer CA, Batista VS, Brudvig GW. Nanotechnology for catalysis and solar energy conversion. NANOTECHNOLOGY 2021; 32:042003. [PMID: 33155576 DOI: 10.1088/1361-6528/abbce8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.
Collapse
Affiliation(s)
- U Banin
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - N Waiskopf
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - L Hammarström
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - G Boschloo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - M Freitag
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - E M J Johansson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - J Sá
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - H Tian
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - M B Johnston
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - L M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - M G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - W Ke
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - I Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - K L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - G C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America
| | - N Lewis
- Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America
| | - T Meyer
- University of North Carolina at Chapel Hill, Department of Chemistry, United States of America
| | - A J Nozik
- National Renewable Energy Laboratory, United States of America
- University of Colorado, Boulder, CO, Department of Chemistry, 80309, United States of America
| | - M C Beard
- National Renewable Energy Laboratory, United States of America
| | - F Armstrong
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - C F Megarity
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - C A Schmuttenmaer
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| | - V S Batista
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| | - G W Brudvig
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06520-8107, United States of America
| |
Collapse
|
22
|
Waiskopf N, Magdassi S, Banin U. Quantum Photoinitiators: Toward Emerging Photocuring Applications. J Am Chem Soc 2021; 143:577-587. [PMID: 33353293 DOI: 10.1021/jacs.0c10554] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconductor nanocrystals are promising photocatalysts for a wide range of applications, ranging from alternative fuel generation to biomedical and environmental applications. This stems from their diverse properties, including flexible spectral tunability, stability, and photocatalytic efficiencies. Their functionality depends on the complex influence of multiple parameters, including their composition, dimensions, architecture, surface coating, and environmental conditions. A particularly promising direction for rapid adoption of these nanoparticles as photocatalysts is their ability to act as photoinitiators (PIs) for radical polymerization. Previous studies served to demonstrate the proof of concept for the use of quantum confined semiconductor nanocrystals as photoinitiators, coining the term Quantum PIs, and provided insights for their photocatalytic mechanism of action. However, these early reports suffered from low efficiencies while requiring purging with inert gases, use of additives, and irradiation by high light intensities with very long excitation durations, which limited their potential for real-life applications. The progress in nanocrystal syntheses and surface engineering has opened the way to the introduction of the next generation of Quantum PIs. Herein, we introduce the research area of nanocrystal photocatalysts, review their studies as Quantum PIs for radical polymerization, from suspension polymerization to novel printing, as well as in a new family of polymerization techniques, of reversible deactivation radical polymerization, and provide a forward-looking view for the challenges and prospects of this field.
Collapse
Affiliation(s)
- Nir Waiskopf
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904, Israel
| | - Shlomo Magdassi
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904, Israel
| | - Uri Banin
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904, Israel
| |
Collapse
|
23
|
Wang H, Evans D, Voelcker NH, Griesser HJ, Meagher L. Modulation of substrate van der Waals forces using varying thicknesses of polymer overlayers. J Colloid Interface Sci 2020; 580:690-699. [PMID: 32712475 DOI: 10.1016/j.jcis.2020.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022]
Abstract
Thin polymeric coatings are commonly used for altering surface properties and modulating the interfacial performance of materials. Possible contributions from the substrate to the interfacial forces and effects are, however, usually ignored and are not well understood, nor is it established how the coating thickness modulates and eventually eliminates contributions from substrates to the van der Waals (vdW) interfacial force. In this study we quantified, by colloid-probe atomic force microscope (AFM) and by theoretical calculations, the interfacial vdW contributions from substrates acting through ethanol plasma polymer (EtOHpp) coatings of a range of thicknesses on Au and Si bulk materials. In approach force curves against EtOHpp-coated Au substrates the magnitude of the vdW force decreased as the EtOHpp coating thickness increased to 18 nm and then plateaued with further increases in coating thickness, providing direct evidence for a contribution to the total interfacial vdW force from the Au substrate acting through thin coatings. The experimental observations accord with theoretical calculations of the thickness dependence of Hamaker coefficients derived from rigorous simulation using the Lifshitz theory. In addition, the measured forces agree well with theoretical predictions including correction for finite roughness. Thus, our experimental and theoretical results establish how the thickness of polymer thin film coatings modulates the total interfacial vdW force and how this can be used to tune the net vdW force so as to either contain a large substrate contribution or arise predominantly from the polymeric overlayer. Our findings enable rational design of coating thickness to tailor interfacial interactions and material performance.
Collapse
Affiliation(s)
- Hongfang Wang
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Drew Evans
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Influence of Surface Ligands on Charge-Carrier Trapping and Relaxation in Water-Soluble CdSe@CdS Nanorods. Catalysts 2020. [DOI: 10.3390/catal10101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, the impact of the type of ligand at the surface of colloidal CdSe@CdS dot-in-rod nanostructures on the basic exciton relaxation and charge localization processes is closely examined. These systems have been introduced into the field of artificial photosynthesis as potent photosensitizers in assemblies for light driven hydrogen generation. Following photoinduced exciton generation, electrons can be transferred to catalytic reaction centers while holes localize into the CdSe seed, which can prevent charge recombination and lead to the formation of long-lived charge separation in assemblies containing catalytic reaction centers. These processes are in competition with trapping processes of charges at surface defect sites. The density and type of surface defects strongly depend on the type of ligand used. Here we report on a systematic steady-state and time-resolved spectroscopic investigation of the impact of the type of anchoring group (phosphine oxide, thiols, dithiols, amines) and the bulkiness of the ligand (alkyl chains vs. poly(ethylene glycol) (PEG)) to unravel trapping pathways and localization efficiencies. We show that the introduction of the widely used thiol ligands leads to an increase of hole traps at the surface compared to trioctylphosphine oxide (TOPO) capped rods, which prevent hole localization in the CdSe core. On the other hand, steric restrictions, e.g., in dithiolates or with bulky side chains (PEG), decrease the surface coverage, and increase the density of electron trap states, impacting the recombination dynamics at the ns timescale. The amines in poly(ethylene imine) (PEI) on the other hand can saturate and remove surface traps to a wide extent. Implications for catalysis are discussed.
Collapse
|
25
|
Elimelech O, Aviv O, Oded M, Banin U. A Tale of Tails: Thermodynamics of CdSe Nanocrystal Surface Ligand Exchange. NANO LETTERS 2020; 20:6396-6403. [PMID: 32787157 DOI: 10.1021/acs.nanolett.0c01913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The surface ligands of semiconductor nanocrystals (NCs) are central for determining their properties and for their flexible implementation in diverse applications. Thus far, the thermodynamic characteristics of ligand exchange reactions were attained by indirect methods. Isothermal titration calorimetry is utilized to directly and independently measure both the equilibrium constant and the reaction enthalpy of a model ligand exchange reaction from oleate-capped CdSe NCs to a series of alkylthiols. Increased reaction exothermicity for longer chains, accompanied by a decrease in reaction entropy with an overall enthalpy-entropy compensation behavior is observed, explained by the length-dependent interchain interactions and the organization of the bound ligands on the NCs' surface. An increase in the spontaneity of the reaction with decreasing NC size is also revealed, due to their enhanced surface reactivity. This work provides a fundamental understanding of the physicochemical properties of the NC surface with implications for NC surface ligand design.
Collapse
Affiliation(s)
- Orian Elimelech
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Aviv
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
26
|
Yang W, Vansuch GE, Liu Y, Jin T, Liu Q, Ge A, Sanchez MLK, K Haja D, Adams MWW, Dyer RB, Lian T. Surface-Ligand "Liquid" to "Crystalline" Phase Transition Modulates the Solar H 2 Production Quantum Efficiency of CdS Nanorod/Mediator/Hydrogenase Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35614-35625. [PMID: 32662974 DOI: 10.1021/acsami.0c07820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports how the length of capping ligands on a nanocrystal surface affects its interfacial electron transfer (ET) with surrounding molecular electron acceptors, and consequently, impact the H2 production of a biotic-abiotic hybrid artificial photosynthetic system. Specifically, we study how the H2 production efficiency of a hybrid system, combining CdS nanorods (NRs), [NiFe] hydrogenase, and redox mediators (propyl-bridged 2,2'-bipyridinium, PDQ2+), depends on the alkyl chain length of mercaptocarboxylate ligands on the NR surface. We observe a minor decrease of the quantum yield for H2 production from 54 ± 6 to 43 ± 2% when varying the number of methylene units in the ligands from 2 to 7. In contrast, an abrupt decrease of the yield was observed from 43 ± 2 to 4 ± 1% when further increasing n from 7 to 11. ET studies reveal that the intrinsic ET rates from the NRs to the electron acceptor PDQ2+ are all within 108-109 s-1 regardless of the length of the capping ligands. However, the number of adsorbed PDQ2+ molecules on NR surfaces decreases dramatically when n ≥ 10, with the saturating number changing from 45 ± 5 to 0.3 ± 0.1 for n = 2 and 11, respectively. These results are not consistent with the commonly perceived exponential dependence of ET rates on the ligand length. Instead, they can be explained by the change of the accessibility of NR surfaces to electron acceptors from a disordered "liquid" phase at n < 7 to a more ordered "crystalline" phases at n > ∼7. These results highlight that the order of capping ligands is an important design parameter for further constructing nanocrystal/molecular assemblies in broad nanocrystal-based applications.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- Department of Chemistry-Ångström Laboratory, Physical Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Gregory E Vansuch
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tao Jin
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Qiliang Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Aimin Ge
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Monica L K Sanchez
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Chen W, Li X, Wang F, Javaid S, Pang Y, Chen J, Yin Z, Wang S, Li Y, Jia G. Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902231. [PMID: 31769587 DOI: 10.1002/smll.201902231] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/06/2019] [Indexed: 06/10/2023]
Abstract
For the first time, colloidal gold (Au)-ZnSe hybrid nanorods (NRs) with controlled size and location of Au domains are synthesized and used for hydrogen production by photocatalytic water splitting. Au tips are found to grow on the apices of ZnSe NRs nonepitaxially to form an interface with no preference of orientation between Au(111) and ZnSe(001). Density functional theory calculations reveal that the Au tips on ZnSe hybrid NRs gain enhanced adsorption of H compared to pristine Au, which favors the hydrogen evolution reaction. Photocatalytic tests reveal that the Au tips on ZnSe NRs effectively enhance the photocatalytic performance in hydrogen generation, in which the single Au-tipped ZnSe hybrid NRs show the highest photocatalytic hydrogen production rate of 437.8 µmol h-1 g-1 in comparison with a rate of 51.5 µmol h-1 g-1 for pristine ZnSe NRs. An apparent quantum efficiency of 1.3% for hydrogen evolution reaction for single Au-tipped ZnSe hybrid NRs is obtained, showing the potential application of this type of cadmium (Cd)-free metal-semiconductor hybrid nanoparticles (NPs) in solar hydrogen production. This work opens an avenue toward Cd-free hybrid NP-based photocatalysis for clean fuel production.
Collapse
Affiliation(s)
- Wei Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Xiaojie Li
- Department of Chemical Engineering, Curtin University, Bentley, Perth, WA, 6102, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fei Wang
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Shaghraf Javaid
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Yingping Pang
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Jiayi Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shaobin Wang
- Department of Chemical Engineering, Curtin University, Bentley, Perth, WA, 6102, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yunguo Li
- Faculty of Mathematical and Physical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| |
Collapse
|
28
|
Wang HY, Hu R, Lei YJ, Jia ZY, Hu GL, Li CB, Gu Q. Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00308e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The noble metal-free photocatalysts with good water solubility, high efficiency and high selectivity to promote CO2 conversion.
Collapse
Affiliation(s)
- Hong-Yan Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Rong Hu
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - You-Jia Lei
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Zhi-Yu Jia
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Gui-Lin Hu
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Cheng-Bo Li
- College of Chemistry & Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Quan Gu
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| |
Collapse
|
29
|
Xie YS, Zhang N, Tang ZR, Anpo M, Xu YJ. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Hu GL, Hu R, Liu ZH, Wang K, Yan XY, Wang HY. Tri-functional molecular relay to fabricate size-controlled CoOx nanoparticles and WO3 photoanode for an efficient photoelectrochemical water oxidation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00483a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heterojunction and element doping to couple light-harvesting semiconductors with catalytic materials have been widely employed for photoelectrochemical (PEC) water splitting.
Collapse
Affiliation(s)
- Gui-Lin Hu
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Rong Hu
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Zhi-Hong Liu
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Kai Wang
- Scientific Research and Academic Office
- Air Force Logistics College
- Xuzhou
- P. R. China
| | - Xiang-Yang Yan
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Hong-Yan Wang
- Key Laboratory for macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| |
Collapse
|
31
|
Perry D, Waiskopf N, Verbitsky L, Remennik S, Banin U. Shell Stabilization of Photocatalytic ZnSe Nanorods. ChemCatChem 2019. [DOI: 10.1002/cctc.201901190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Danielle Perry
- The Institute of ChemistryThe Hebrew University of Jerusalem Jerusalem 91904 Israel
- The Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Nir Waiskopf
- The Institute of ChemistryThe Hebrew University of Jerusalem Jerusalem 91904 Israel
- The Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Lior Verbitsky
- The Institute of ChemistryThe Hebrew University of Jerusalem Jerusalem 91904 Israel
- The Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Sergei Remennik
- The Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Uri Banin
- The Institute of ChemistryThe Hebrew University of Jerusalem Jerusalem 91904 Israel
- The Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
32
|
|
33
|
Zhang Q, Du C, Zhao Q, Zhou C, Yang S. Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zhukovskyi M, Yashan H, Kuno M. Low-dimensional II–VI semiconductors for photocatalytic hydrogen generation. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03904-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Verbitsky L, Waiskopf N, Magdassi S, Banin U. A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization. NANOSCALE 2019; 11:11209-11216. [PMID: 31157812 DOI: 10.1039/c9nr03086g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiconductor nanocrystals have been shown to have unique advantages over traditional organic photoinitiators for polymerization in solution. However, efficient photoinitiation with such nanoparticles in solvent-free and additive-free formulations so far has not been achieved. Herein, the ability to use semiconductor nanocrystals for efficient bulk polymerization as sole initiators is reported, operating under modern UV-blue-LED light sources found in 3D printers and other photocuring applications. Hybrid semiconductor-metal nanorods exhibit superior photoinitiation capability to their pristine semiconductor counterparts, attributed to the enhanced charge separation and oxygen consumption in such systems. Moreover, photoinitiation by semiconductor nanocrystals overcoated by inorganic ligands is reported, thus increasing the scope of possible applications and shedding light on the photoinitiation mechanism; in light of the results, two possible pathways are discussed - ligand-mediated and cation-coordinated oxidation. A demonstration of the unique attributes of the quantum photoinitiators is reported in their use for high-resolution two-photon printing of optically fluorescing microstructures, demonstrating a multi-functionality capability. The bulk polymerization demonstrated here can be advantageous over solvent based methods as it alleviates the need of post-polymerization drying and reduces waste and exposure to toxic solvents, as well as broadens the possible use of quantum photoinitiators for industrial and research uses.
Collapse
Affiliation(s)
- Lior Verbitsky
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| | - Nir Waiskopf
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
36
|
Weichelt R, Ye J, Banin U, Eychmüller A, Seidel R. DNA-Mediated Self-Assembly and Metallization of Semiconductor Nanorods for the Fabrication of Nanoelectronic Interfaces. Chemistry 2019; 25:9012-9016. [PMID: 31081977 DOI: 10.1002/chem.201902148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 01/08/2023]
Abstract
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here, this approach is extended to semiconductor nanorods that possess interesting electrical properties and could be utilized for the bottom-up fabrication of nanoelectronic building blocks. The assembly scheme is based on an efficient DNA functionalization of the nanorods. A complete coverage of the rod surface with DNA ensures a high colloidal stability while maintaining the rod size and shape. It furthermore supports the assembly of the nanorods at defined docking positions of a DNA origami platform with binding efficiencies of up to 90 % as well as the formation of nanorod dimers with defined relative orientations. By incorporating orthogonal binding sites for gold nanoparticles, defined metal-semiconductor heterostructures can be fabricated. Subsequent application of a seeded growth procedure onto the gold nanoparticles (AuNPs) allows for to establish a direct metal-semiconductor interface as a crucial basis for the integration of semiconductors in self-assembled nanoelectronic devices.
Collapse
Affiliation(s)
- Richard Weichelt
- Physical Chemistry, Center for Advancing Electronics Dresden (cfaed), TU Dresden, 01069, Dresden, Germany
| | - Jingjing Ye
- Peter Debye Institute for Soft Matter Physics, Center for Advancing Electronics Dresden (cfaed), Universität Leipzig, 04103, Leipzig, Germany
| | - Uri Banin
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Alexander Eychmüller
- Physical Chemistry, Center for Advancing Electronics Dresden (cfaed), TU Dresden, 01069, Dresden, Germany
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Center for Advancing Electronics Dresden (cfaed), Universität Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Fu Y, Ding Y, Zheng L, Zhu Y, Han S. Morphology‐ and Size‐Controlled Fabrication of CdS from Flower‐Like to Spherical Structures and their Application for High‐Performance Photoactivity. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yimin Fu
- Department of Materials Science and Engineering University of Shanghai for Science and Technology 200093 Shanghai P.R. China
| | - Yuanpeng Ding
- Department of Materials Science and Engineering University of Shanghai for Science and Technology 200093 Shanghai P.R. China
| | - Lingxia Zheng
- Department of Applied Chemistry Zhejiang University of Technology 310032 Hangzhou P.R. China
| | - YuFang Zhu
- Department of Materials Science and Engineering University of Shanghai for Science and Technology 200093 Shanghai P.R. China
| | - Sancan Han
- Department of Materials Science and Engineering University of Shanghai for Science and Technology 200093 Shanghai P.R. China
| |
Collapse
|
38
|
van Oversteeg CM, Oropeza FE, Hofmann JP, Hensen EJM, de Jongh PE, de Mello Donega C. Water-Dispersible Copper Sulfide Nanocrystals via Ligand Exchange of 1-Dodecanethiol. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:541-552. [PMID: 30686859 PMCID: PMC6345102 DOI: 10.1021/acs.chemmater.8b04614] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/18/2018] [Indexed: 05/16/2023]
Abstract
In colloidal Cu2-x S nanocrystal synthesis, thiols are often used as organic ligands and the sulfur source, as they yield high-quality nanocrystals. However, thiol ligands on Cu2-x S nanocrystals are difficult to exchange, limiting the applications of these nanocrystals in photovoltaics, biomedical sensing, and photocatalysis. Here, we present an effective and facile procedure to exchange native 1-dodecanethiol on Cu2-x S nanocrystals by 3-mercaptopropionate, 11-mercaptoundecanoate, and S2- in formamide under inert atmosphere. The product hydrophilic Cu2-x S nanocrystals have excellent colloidal stability in formamide. Furthermore, the size, shape, and optical properties of the nanocrystals are not significantly affected by the ligand exchange. Water-dispersible Cu2-x S nanocrystals are easily obtained by precipitation of the nanocrystals capped by S2-, 3-mercaptopropionate, or 11-mercaptoundecanoate from formamide, followed by redispersion in water. Interestingly, the ligand exchange rates for Cu2-x S nanocrystals capped with 1-dodecanethiol are observed to depend on the preparation method, being much slower for Cu2-x S nanocrystals prepared through heating-up than through hot-injection synthesis protocols. XPS studies reveal that the differences in the ligand exchange rates are due to the surface chemistry of the Cu2-x S nanocrystals, where the nanocrystals prepared via hot-injection synthesis have a less dense ligand layer due to the presence of trioctylphosphine oxide during synthesis. A model is proposed that explains the observed differences in the ligand exchange rates. The facile ligand exchange procedures reported here enable the use of high-quality colloidal Cu2-x S nanocrystals prepared in the presence of 1-dodecanethiol in various applications.
Collapse
Affiliation(s)
- Christina
H. M. van Oversteeg
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Freddy E. Oropeza
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Jan P. Hofmann
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Petra E. de Jongh
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- (Celso de Mello Donega) E-mail:
| |
Collapse
|
39
|
Ballentine MD, Embry EG, Garcia MA, Hill LJ. Deposition of metal particles onto semiconductor nanorods using an ionic liquid. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:718-724. [PMID: 30931213 PMCID: PMC6423590 DOI: 10.3762/bjnano.10.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 05/10/2023]
Abstract
The current study investigates whether metal deposition onto an existing nanorod can be carried out using an ionic liquid, and the effect this has on catalytic performance. Platinum, gold, and silver nanoparticles were deposited onto CdSe@CdS (core@shell) nanorods from metal salts in an ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) without additional surfactants or reducing agents. Photocatalytic dye degradation experiments showed that catalysts with platinum particles deposited using the ionic liquid out-performed similar materials synthesized using organic solvents and ligands. We concluded that metal particles can be deposited onto well-defined semiconductor nanorods using ionic liquids and metal salts without the need for additional reagents, and the deposited particles did not cause significant aggregation even when these materials were taken into organic media. It is possible that a broad range of metal/semiconductor heterostructured particles can be prepared using the methods reported here.
Collapse
Affiliation(s)
- Michael D Ballentine
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Elizabeth G Embry
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Marco A Garcia
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Lawrence J Hill
- 1906 College Heights Blvd., Western Kentucky University, Bowling Green, KY, 42101, USA
| |
Collapse
|
40
|
Stone D, Ben‐Shahar Y, Waiskopf N, Banin U. The Metal Type Governs Photocatalytic Reactive Oxygen Species Formation by Semiconductor‐Metal Hybrid Nanoparticles. ChemCatChem 2018. [DOI: 10.1002/cctc.201801306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Stone
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yuval Ben‐Shahar
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Nir Waiskopf
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
41
|
Waiskopf N, Ben-Shahar Y, Banin U. Photocatalytic Hybrid Semiconductor-Metal Nanoparticles; from Synergistic Properties to Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706697. [PMID: 29656489 DOI: 10.1002/adma.201706697] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Indexed: 05/07/2023]
Abstract
Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique combined and often synergetic properties stemming from the materials combination. These structures exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. So far, the main impetus of photocatalysis research in HNPs addresses their functionality in solar fuel generation. Recently, it was discovered that HNPs are functional in efficient photocatalytic generation of reactive oxygen species (ROS). This has opened the path for their implementation in diverse biomedical and industrial applications where high spatially temporally resolved ROS formation is essential. Here, the latest studies on the synergistic characteristics of HNPs are summarized, including their optical, electrical, and chemical properties and their photocatalytic function in the field of solar fuel generation is briefly discussed. Recent studies are then focused concerning photocatalytic ROS formation with HNPs under aerobic conditions. The emergent applications of this capacity are then highlighted, including light-induced modulation of enzymatic activity, photodynamic therapy, antifouling, wound healing, and as novel photoinitiators for 3D-printing. The superb photophysical and photocatalytic properties of HNPs offer already clear advantages for their utility in scenarios requiring on-demand light-induced radical formation and the full potential of HNPs in this context is yet to be revealed.
Collapse
Affiliation(s)
- Nir Waiskopf
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yuval Ben-Shahar
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
42
|
Chen D, Zhang H, Li Y, Pang Y, Yin Z, Sun H, Zhang LC, Wang S, Saunders M, Barker E, Jia G. Spontaneous Formation of Noble- and Heavy-Metal-Free Alloyed Semiconductor Quantum Rods for Efficient Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803351. [PMID: 30059172 DOI: 10.1002/adma.201803351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSx Se1-x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSx Se1-x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g-1 h-1 , but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSx Se1-x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.
Collapse
Affiliation(s)
- Dechao Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Huayang Zhang
- Department of Chemical Engineering and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Yunguo Li
- Faculty of Mathematical and Physical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yingping Pang
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Shaobin Wang
- Department of Chemical Engineering and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterization and Analysis (CMCA), The University of Western Australia, Perth, WA, 6009, Australia
| | - Emily Barker
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA, 6845, Australia
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, WA, 6845, Australia
| |
Collapse
|
43
|
Ben-Shahar Y, Philbin JP, Scotognella F, Ganzer L, Cerullo G, Rabani E, Banin U. Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer. NANO LETTERS 2018; 18:5211-5216. [PMID: 29985622 DOI: 10.1021/acs.nanolett.8b02169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique, synergistic electronic and optical properties as a result of combining semiconductor and metal physics via a controlled interface. These structures can exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. The combination of the photocatalytic activity of the metal domain with the ability to generate and accommodate multiple excitons in the semiconducting domain can lead to improved photocatalytic performance because injecting multiple charge carriers into the active catalytic sites can increase the quantum yield. Herein, we show a significant metal domain size dependence of the charge carrier dynamics as well as the photocatalytic hydrogen generation efficiencies under nonlinear excitation conditions. An understanding of this size dependence allows one to control the charge carrier dynamics following the absorption of light. Using a model hybrid semiconductor-metal CdS-Au nanorod system and combining transient absorption and hydrogen evolution kinetics, we reveal faster and more efficient charge separation and transfer under multiexciton excitation conditions for large metal domains compared to small ones. Theoretical modeling uncovers a competition between the kinetics of Auger recombination and charge separation. A crossover in the dominant process from Auger recombination to charge separation as the metal domain size increases allows for effective multiexciton dissociation and harvesting in large metal domain HNPs. This was also found to lead to relative improvement of their photocatalytic activity under nonlinear excitation conditions.
Collapse
Affiliation(s)
- Yuval Ben-Shahar
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - John P Philbin
- Department of Chemistry , University of California and Lawrence Berkeley National Laboratory , Berkeley , California 94720-1460 , United States
| | | | - Lucia Ganzer
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Milan 20133 , Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Milan 20133 , Italy
| | - Eran Rabani
- Department of Chemistry , University of California and Lawrence Berkeley National Laboratory , Berkeley , California 94720-1460 , United States
- The Sackler Institute for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv , Israel 69978
| | - Uri Banin
- The Institute of Chemistry and Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
44
|
Melo MA, Wu Z, Nail BA, De Denko AT, Nogueira AF, Osterloh FE. Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting. NANO LETTERS 2018; 18:805-810. [PMID: 29276832 DOI: 10.1021/acs.nanolett.7b04020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface photovoltage spectroscopy (SPS) is used to measure the photopotential across a Ru-SrTiO3:Rh/BiVO4 particle tandem overall water splitting photocatalyst. The tandem is synthesized from Ru-modified SrTiO3:Rh nanocrystals and BiVO4 microcrystals by electrostatic assembly followed by thermal annealing. It splits water into H2 and O2 with an apparent quantum efficiency of 1.29% at 435 nm and a solar to hydrogen conversion efficiency of 0.028%. According to SPS, a photovoltage develops above 2.20 eV, the effective band gap of the tandem, and reaches its maximal value of -2.45 V at 435 nm (2.44 mW cm-2), which corresponds to 96% of the theoretical limit of the photocatalyst film on the fluorine-doped tin-oxide-coated glass (FTO) substrate. Charge separation is 82% reversible with 18% of charge carriers being trapped in defect states. The unusually strong light intensity dependence of the photovoltage (1.16 V per decade) is attributed to depletion layer changes inside of the BiVO4 microcrystals. These findings promote the understanding of solar energy conversion with inorganic particle photocatalysts.
Collapse
Affiliation(s)
- Mauricio A Melo
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
- Institute of Chemistry, University of Campinas, UNICAMP , P.O. Box 6154, Campinas, São Paulo 13084-971, Brazil
| | - Zongkai Wu
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Benjamin A Nail
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Alexandra T De Denko
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Ana F Nogueira
- Institute of Chemistry, University of Campinas, UNICAMP , P.O. Box 6154, Campinas, São Paulo 13084-971, Brazil
| | - Frank E Osterloh
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
45
|
Khalavka Y, Harms S, Henkel A, Strozyk M, Ahijado-Guzmán R, Sönnichsen C. Synthesis of Au-CdS@CdSe Hybrid Nanoparticles with a Highly Reactive Gold Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:187-190. [PMID: 29227688 DOI: 10.1021/acs.langmuir.7b02756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a novel route to synthesize semiconductor-gold hybrid nanoparticles directly in water, resulting in much larger gold domains than previous protocols (up to 50 nm) with very reactive surfaces which allow further functionalization. This method advances the possibility of self-assembly into complex structures with catalytic activity toward the reduction of nitro compounds by hydrides. The large size of these gold domains in hybrid particles supports efficient light scattering at the plasmon resonance frequency, making such structures attractive for single-particle studies.
Collapse
Affiliation(s)
- Yuriy Khalavka
- Institute of Physical Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
- Yuriy Fedkovych Chernivtsi National University , Kotsiubynsky St. 2, 58012 Chernivtsi, Ukraine
- Graduate School of Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Sebastian Harms
- Institute of Physical Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Henkel
- Data Center, University of Mainz , Anselm-Franz-von-Bentzel-Weg 12, 55128 Mainz, Germany
| | - Malte Strozyk
- Institute of Physical Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rubén Ahijado-Guzmán
- Institute of Physical Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carsten Sönnichsen
- Institute of Physical Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
46
|
Wang L, Xu N, Pan X, He Y, Wang X, Su W. Cobalt lactate complex as a hole cocatalyst for significantly enhanced photocatalytic H2 production activity over CdS nanorods. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00067k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt lactate complex has been prepared in situ, which works as a molecular cocatalyst accelerating hole transfer for the enhanced photocatalytic H2 evolution activity of CdS.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Nan Xu
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xiaoyang Pan
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Yishan He
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| | - Wenyue Su
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350116
- P. R. China
| |
Collapse
|
47
|
Miethe JF, Lübkemann F, Poppe J, Steinbach F, Dorfs D, Bigall NC. Spectroelectrochemical Investigation of the Charge Carrier Kinetics of Gold-Decorated Cadmium Chalcogenide Nanorods. ChemElectroChem 2017. [DOI: 10.1002/celc.201700798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan F. Miethe
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Franziska Lübkemann
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Jan Poppe
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Frank Steinbach
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Dirk Dorfs
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| | - Nadja C. Bigall
- Institute of Physical Chemistry and Electrochemistry; Leibniz Universität Hannover; Callinstr. 3a D-30167 Hannover Germany
| |
Collapse
|
48
|
Isimjan TT, Maity P, Llorca J, Ahmed T, Parida MR, Mohammed OF, Idriss H. Comprehensive Study of All-Solid-State Z-Scheme Photocatalytic Systems of ZnO/Pt/CdZnS. ACS OMEGA 2017; 2:4828-4837. [PMID: 31457762 PMCID: PMC6641609 DOI: 10.1021/acsomega.7b00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/07/2017] [Indexed: 05/30/2023]
Abstract
We have investigated a Z-scheme based on a ZnO/Pt/CdZnS photocatalyst, active in the presence of a complex medium composed of acetic acid and benzyl alcohol, the effects of which on the catalyst stability and performance are studied. Transmission electron microscopy images showed uniformly dispersed sub-nanometer Pt particles. Inductively coupled plasma and X-ray photoelectron spectroscopy analyses suggested that Pt is sandwiched between ZnO and CdZnS. An apparent quantum yield (AQY) of 34% was obtained over the [ZnO]4/1 wt %Pt/CdZnS system at 360 nm, 2.5-fold higher than that of 1%Pt/CdZnS (14%). Furthermore, an AQY of 16% was observed using [ZnO]4/1 wt %Pt/CdZnS, which was comparable to that of 1 wt %Pt/CdZnS (10%) at 460 nm. On the basis of these results, we proposed a charge transfer mechanism, which was confirmed through femtosecond transient absorption spectroscopy. Finally, we identified the two main factors that affected the stability of the catalyst, which were the sacrificial reagent and the acidic pH.
Collapse
Affiliation(s)
| | - Partha Maity
- KAUST
Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Jordi Llorca
- Institute
of Energy Technologies, Department of Chemical Engineering, and Barcelona
Research Center in Multiscale Science and Engineering, Technical University of Catalonia, EEBE, Barcelona 08930, Spain
| | - Toseef Ahmed
- SABIC
Technology Center, Riyadh 11422, Kingdom of Saudi Arabia
| | - Manas R. Parida
- KAUST
Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Omar F. Mohammed
- KAUST
Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Hicham Idriss
- Fundamental
Catalysis, SABIC-CRD at KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Pawar AA, Halivni S, Waiskopf N, Ben-Shahar Y, Soreni-Harari M, Bergbreiter S, Banin U, Magdassi S. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators. NANO LETTERS 2017; 17:4497-4501. [PMID: 28617606 DOI: 10.1021/acs.nanolett.7b01870] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.
Collapse
Affiliation(s)
- Amol Ashok Pawar
- The Institute of Chemistry, the Hebrew University of Jerusalem , Edmond J. Safra campus, Givat Ram, Jerusalem, 91904, Israel
| | - Shira Halivni
- The Institute of Chemistry, the Hebrew University of Jerusalem , Edmond J. Safra campus, Givat Ram, Jerusalem, 91904, Israel
| | - Nir Waiskopf
- The Institute of Chemistry, the Hebrew University of Jerusalem , Edmond J. Safra campus, Givat Ram, Jerusalem, 91904, Israel
| | - Yuval Ben-Shahar
- The Institute of Chemistry, the Hebrew University of Jerusalem , Edmond J. Safra campus, Givat Ram, Jerusalem, 91904, Israel
| | | | | | - Uri Banin
- The Institute of Chemistry, the Hebrew University of Jerusalem , Edmond J. Safra campus, Givat Ram, Jerusalem, 91904, Israel
| | - Shlomo Magdassi
- The Institute of Chemistry, the Hebrew University of Jerusalem , Edmond J. Safra campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
50
|
Grennell AN, Utterback JK, Pearce OM, Wilker MB, Dukovic G. Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures. NANO LETTERS 2017; 17:3764-3774. [PMID: 28534406 DOI: 10.1021/acs.nanolett.7b01101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Type-II and quasi type-II heterostructure nanocrystals are known to exhibit extended excited-state lifetimes compared to their single material counterparts because of reduced wave function overlap between the electron and hole. However, due to fast and efficient hole trapping and nonuniform morphologies, the photophysics of dot-in-rod heterostructures are more rich and complex than this simple picture. Using transient absorption spectroscopy, we observe that the behavior of electrons in the CdS "rod" or "bulb" regions of nonuniform ZnSe/CdS and CdSe/CdS dot-in-rods is similar regardless of the "dot" material, which supports previous work demonstrating that hole trapping and particle morphology drive electron dynamics. Furthermore, we show that the longest lived state in these dot-in-rods is not generated by the type-II or quasi type-II band alignment between the dot and the rod, but rather by electron-hole dissociation that occurs due to fast hole trapping in the CdS rod and electron localization to the bulb. We propose that specific variations in particle morphology and surface chemistry determine the mechanism and efficiency of charge separation and recombination in these nanostructures, and therefore impact their excited-state dynamics to a greater extent than the heterostructure energy level alignment alone.
Collapse
Affiliation(s)
- Amanda N Grennell
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - James K Utterback
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Orion M Pearce
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Molly B Wilker
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|