1
|
Xie L, Gong J, He Z, Zhang W, Wang H, Wu S, Wang X, Sun P, Cai L, Wu Z, Wang H. A Copper-Manganese Based Nanocomposite Induces Cuproptosis and Potentiates Anti-Tumor Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412174. [PMID: 39955646 DOI: 10.1002/smll.202412174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Cancer is one of the most important challenges worldwide with an increasing incidence. However, most of patients with malignant cancer receiving traditional therapies have tumor recurrence and short-term 5-year survival. Herein, a novel Cu2O-MnO@PEG (CMP) nanomaterial is developed to treat tumors. CMP directly mediates cuproptosis in tumor cells. Meanwhile, CMP potentiates anti-tumor immune responses in the tumor microenvironment (TME) to induce tumor regression. CMP improves the tumor antigen processing and presentation of dendritic cells and tumor-associated macrophages, and further promotes CD8+ T cell responses, especially for cytotoxic CD8+ T cells and transitory exhausted CD8+ T cells. Additionally, CMP downregulates the proportion of Treg cells and CTLA-4 expression on Treg cells. Notably, CMP induces systemic immune responses against distant tumors and long-term immune memory. Furthermore, CMP synergized with PD-L1 mAb promotes tumor inhibition and sustains the anti-tumor efficacy post PD-L1 mAb treatment. Collectively, this strategy has the clinically therapeutic potential for tumors by facilitating cuproptosis in tumor cells and anti-tumor immune responses.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jie Gong
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
- School of Clinical Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Hepatobiliary Surgery, Leshan People's Hospital, Leshan, 614000, P. R. China
| | - Zhiqiang He
- Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People's Liberation Army), Chongqing, 400020, P. R. China
| | - Weinan Zhang
- Department of Urinary Nephropathy Center, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, P. R. China
| | - Haoyu Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| | - Shitao Wu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
- Graduate School of Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| | - Pijiang Sun
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| | - Lei Cai
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing, 401147, P. R. China
| |
Collapse
|
2
|
Hosseini SA, Nasab NK, Kargozar S, Wang AZ. Advanced biomaterials and scaffolds for cancer immunotherapy. BIOMATERIALS FOR PRECISION CANCER MEDICINE 2025:377-424. [DOI: 10.1016/b978-0-323-85661-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. MEDICAL REVIEW (2021) 2023; 3:321-342. [PMID: 38235406 PMCID: PMC10790212 DOI: 10.1515/mr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 01/19/2024]
Abstract
Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Shi L, Gu H. Cell membrane-camouflaged liposomes and neopeptide-loaded liposomes with TLR agonist R848 provides a prime and boost strategy for efficient personalized cancer vaccine therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102648. [PMID: 36584738 DOI: 10.1016/j.nano.2022.102648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Recent advances in bioinformatics and nanotechnology offer great opportunities for personalized cancer vaccine development. However, the timely identification of neoantigens and unsatisfactory efficacy of therapeutic cancer vaccines remain two obstacles for clinical transformation. We propose a "prime and boost" strategy to facilitate neoantigen-based immunotherapy. To prime the immune system, we first constructed personalized liposomes with cancer cell membranes and adjuvant R848 to provide immunostimulatory efficacy and time for identifying tumor antigens. Liposomes loaded with personalized neopeptides and adjuvants were used to boost the immune response. In vitro experiments verified potent immune responses, including macrophage polarization, dendritic cell maturation, and T lymphocyte activation. In vivo B16F10 and TC-1 cancer model were used to investigate efficient tumor growth suppression. Liposomal vaccines with neopeptides could stimulate human dendritic cells and T lymphocytes in vitro. These results demonstrate that the "prime and boost" strategy provides simple, quick, and efficient personalized vaccines for cancer therapy.
Collapse
Affiliation(s)
- Lu Shi
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- Nano Biomedical Research Center, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
5
|
Ding Y, Wang L, Li H, Miao F, Zhang Z, Hu C, Yu W, Tang Q, Shao G. Application of lipid nanovesicle drug delivery system in cancer immunotherapy. J Nanobiotechnology 2022; 20:214. [PMID: 35524277 PMCID: PMC9073823 DOI: 10.1186/s12951-022-01429-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has gradually emerged as the most promising anticancer therapy. In addition to conventional anti-PD-1/PD-L1 therapy, anti-CTLA-4 therapy, CAR-T therapy, etc., immunotherapy can also be induced by stimulating the maturation of immune cells or inhibiting negative immune cells, regulating the tumor immune microenvironment and cancer vaccines. Lipid nanovesicle drug delivery system includes liposomes, cell membrane vesicles, bacterial outer membrane vesicles, extracellular vesicles and hybrid vesicles. Lipid nanovesicles can be used as functional vesicles for cancer immunotherapy, and can also be used as drug carriers to deliver immunotherapy drugs to the tumor site for cancer immunotherapy. Here, we review recent advances in five kinds of lipid nanovesicles in cancer immunotherapy and assess the clinical application prospects of various lipid nanovesicles, hoping to provide valuable information for clinical translation in the future.
Collapse
Affiliation(s)
- Yinan Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Luhong Wang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Han Li
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Fengqin Miao
- Medical School of Southeast University, Nanjing, 210009, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Weiping Yu
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Guoliang Shao
- Department of Interventional Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
6
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|
7
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
8
|
Abstract
INTRODUCTION Vaccination is so far the most effective way of eradicating infections. Rapidly emerging drug resistance against infectious diseases and chemotherapy-related toxicities in cancer warrant immediate vaccine development to save mankind. Subunit vaccines alone, however, fail to elicit sufficiently strong and long-lasting protective immunity against deadly pathogens. Nanoparticle (NP)-based delivery vehicles like microemulsions, liposomes, virosomes, nanogels, micelles and dendrimers offer promising strategies to overcome limitations of traditional vaccine adjuvants. Nanovaccines can improve targeted delivery, antigen presentation, stimulation of body's innate immunity, strong T cell response combined with safety to combat infectious diseases and cancers. Further, nanovaccines can be highly beneficial to generate effective immutherapeutic formulations against cancer. AREAS COVERED This review summarizes the emerging nanoparticle strategies highlighting their success and challenges in preclinical and clinical trials in infectious diseases and cancer. It provides a concise overview of current nanoparticle-based vaccines, their adjuvant potential and their cellular delivery mechanisms. EXPERT OPINION The nanovaccines (50-250 nm in size) are most efficient in terms of tissue targeting, prolonged circulation and preferential uptake by the professional APCs chiefly due to their small size. More rational designing, improved antigen loading, extensive functionalization and targeted delivery are some of the future goals of ideal nanovaccines.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Ye T, Li F, Ma G, Wei W. Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Adv Drug Deliv Rev 2021; 177:113927. [PMID: 34403752 DOI: 10.1016/j.addr.2021.113927] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
In recent years, personalized cancer vaccines have gained increasing attention as emerging immunotherapies with the capability to overcome interindividual differences and show great benefits for individual patients in the clinic due to the highly tailored vaccine formulations. A large number of materials have been studied as delivery vectors to enhance the therapeutic performance of personalized cancer vaccines, including artificial materials, engineered microorganisms, cells and cell derivatives. These delivery vectors with distinct features are employed to change antigen biodistributions and to facilitate antigen uptake, processing and presentation, improving the strength, velocity, and duration of the immune response when delivered by different strategies. Here, we provide an overview of personalized cancer vaccine delivery vectors, describing their materials, physicochemical properties, delivery strategies and challenges for clinical transformation.
Collapse
|
10
|
Xiao L, Huang Y, Yang Y, Miao Z, Zhu J, Zhong M, Feng C, Tang W, Zhou J, Wang L, Zhao X, Wang Z. Biomimetic cytomembrane nanovaccines prevent breast cancer development in the long term. NANOSCALE 2021; 13:3594-3601. [PMID: 33564813 DOI: 10.1039/d0nr08978h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cytomembrane cancer nanovaccines are considered a promising approach to induce tumor-specific immunity. Most of the currently developed nanovaccines, unfortunately, fail to study the underlying mechanism for cancer prevention and therapy, as well as immune memory establishment, with their long-term anti-tumor immunity remaining unknown. Here, we present a strategy to prepare biomimetic cytomembrane nanovaccines (named CCMP@R837) consisting of antigenic cancer cell membrane (CCM)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with imiquimod (R@837) as an adjuvant to activate the immune system. We found that our CCMP@R837 system enhanced bone-marrow-derived dendritic cell uptake and maturation, as well as increased anti-tumor response against breast cancer 4T1 cells in vitro. Moreover, an immune memory was established after three-time immunization with CCMP@R837 in BALB/c mice. The CCMP@R837-immunized BALB/c mice exhibited suppressed tumor growth and a long survival period (75% of mice lived longer than 50 days after tumor formation). This long-term anti-tumor immunity was achieved by increasing CD8+ T cells and decreasing regulatory T cells in the tumor while increasing effector memory T cells in the spleen. Overall, our platform demonstrates that CCMP@R837 can be a potential candidate for preventive cancer vaccines in the clinic.
Collapse
Affiliation(s)
- Long Xiao
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Yu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zhiwei Miao
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Jie Zhu
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Mengdan Zhong
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Chencheng Feng
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Wenkai Tang
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Lihong Wang
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zhirong Wang
- Center Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215600, China.
| |
Collapse
|
11
|
Fontana F, Bartolo R, Santos HA. Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:135-162. [PMID: 33543459 DOI: 10.1007/978-3-030-58174-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the last 20+ years, research into the biomedical application of nanotechnology has helped in reshaping cancer treatment. The clinical use of several passively targeted nanosystems resulted in improved quality of care for patients. However, the therapeutic efficacy of these systems is not superior to the original drugs. Moreover, despite extensive investigations into actively targeted nanocarriers, numerous barriers still remain before their successful clinical translation, including sufficient bloodstream circulation time and efficient tumor targeting. The combination of synthetic nanomaterials with biological elements (e.g., cells, cell membranes, and macromolecules) is presently the cutting-edge research in cancer nanotechnology. The features provided by the biological moieties render the particles with prolonged bloodstream circulation time and homotopic targeting to the tumor site. Moreover, cancer cell membranes serve as sources of neoantigens, useful in the formulation of nanovaccines. In this chapter, we will discuss the advantages of biohybrid nanosystems in cancer chemotherapy, immunotherapy, and combined therapy, as well as highlight their preparation methods and clinical translatability.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Raquél Bartolo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Nasirmoghadas P, Mousakhani A, Behzad F, Beheshtkhoo N, Hassanzadeh A, Nikoo M, Mehrabi M, Kouhbanani MAJ. Nanoparticles in cancer immunotherapies: An innovative strategy. Biotechnol Prog 2020; 37:e3070. [PMID: 32829506 DOI: 10.1002/btpr.3070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022]
Abstract
Cancer has been one of the most significant causes of mortality, worldwide. Cancer immunotherapy has recently emerged as a competent, cancer-fighting clinical strategy. Nevertheless, due to the difficulty of such treatments, costs, and off-target adverse effects, the implementation of cancer immunotherapy described by the antigen-presenting cell (APC) vaccine and chimeric antigen receptor T cell therapy ex vivo in large clinical trials have been limited. Nowadays, the nanoparticles theranostic system as a promising target-based modality provides new opportunities to improve cancer immunotherapy difficulties and reduce their adverse effects. Meanwhile, the appropriate engineering of nanoparticles taking into consideration nanoparticle characteristics, such as, size, shape, and surface features, as well as the use of these physicochemical properties for suitable biological interactions, provides new possibilities for the application of nanoparticles in cancer immunotherapy. In this review article, we focus on the latest state-of-the-art nanoparticle-based antigen/adjuvant delivery vehicle strategies to professional APCs and engineering specific T lymphocyte required for improving the efficiency of tumor-specific immunotherapy.
Collapse
Affiliation(s)
- Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akbar Mousakhani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Farahnaz Behzad
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Helal Iran Pharmaceutical and Clinical Complex, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ma J, Zhang H, Tang K, Huang B. Tumor-derived microparticles in tumor immunology and immunotherapy. Eur J Immunol 2020; 50:1653-1662. [PMID: 32976623 PMCID: PMC7702100 DOI: 10.1002/eji.202048548] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Microvesicles or microparticles, a type of cytoplasm membrane-derived extracellular vesicles, can be released by cancer cells or normal cell types. Alteration of F-actin cytoskeleton by various signals may lead to the cytoplasm membrane encapsulating cellular contents to form microparticles, which contain various messenger molecules, including enzymes, RNAs and even DNA fragments, and are released to extracellular space. The release of microparticles by tumor cells (T-MPs) is a very common event in tumor microenvironments. As a result, T-MPs not only influence tumor cell biology but also profoundly forge tumor immunology. Moreover, T-MPs can act as a natural vehicle that delivers therapeutic drugs to tumor cells and immune cells, thus, remodeling tumor microenvironments and resetting antitumor immune responses, thus, conferring T-MPs a potential role in tumor immunotherapies and tumor vaccines. In this review, we focus on the double-edged sword role of T-MPs in tumor immunology, specifically in TAMs and DCs, and emphasize the application of drug-packaging T-MPs in cancer patients. We aim to provide a new angle to understand immuno-oncology and new strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China.,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, P. R. China.,Clinical Immunology Center, CAMS, Beijing, P. R. China
| |
Collapse
|
14
|
Cheng R, Fontana F, Xiao J, Liu Z, Figueiredo P, Shahbazi MA, Wang S, Jin J, Torrieri G, Hirvonen JT, Zhang H, Chen T, Cui W, Lu Y, Santos HA. Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44554-44562. [PMID: 32960566 PMCID: PMC7549091 DOI: 10.1021/acsami.0c15057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
Recently, there has been an increasing interest for utilizing the host immune system to fight against cancer. Moreover, cancer vaccines, which can stimulate the host immune system to respond to cancer in the long term, are being investigated as a promising approach to induce tumor-specific immunity. In this work, we prepared an effective cancer vaccine (denoted as "vacosome") by reconstructing the cancer cell membrane, monophosphoryl lipid A as a toll-like receptor 4 agonist, and egg phosphatidylcholine. The vacosome triggered and enhanced bone marrow dendritic cell maturation as well as stimulated the antitumor response against breast cancer 4T1 cells in vitro. Furthermore, an immune memory was established in BALB/c mice after three-time preimmunization with the vacosome. After that, the immunized mice showed inhibited tumor growth and prolonged survival period (longer than 50 days). Overall, our results demonstrate that the vacosome can be a potential candidate for clinical translation as a cancer vaccine.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Junyuan Xiao
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
| | - Zehua Liu
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Patrícia Figueiredo
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Shiqi Wang
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jing Jin
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
| | - Giulia Torrieri
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni T. Hirvonen
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
- Department of Pharmaceutical Sciences Laboratory and
Turku Center for Biotechnology, Åbo
Akademi University, FI-20520 Turku, Finland
| | - Tongtong Chen
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025 Shanghai, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
| | - Yong Lu
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025 Shanghai, PR China
| | - Hélder A. Santos
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Insititute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
15
|
Wang J, Wang S, Ye T, Li F, Gao X, Wang Y, Ye P, Qing S, Wang C, Yue H, Wu J, Wei W, Ma G. Choice of Nanovaccine Delivery Mode Has Profound Impacts on the Intralymph Node Spatiotemporal Distribution and Immunotherapy Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001108. [PMID: 33042743 PMCID: PMC7539204 DOI: 10.1002/advs.202001108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/23/2020] [Indexed: 05/19/2023]
Abstract
Nanovaccines have attracted booming interests in vaccinology studies, but the profound impacts of their delivery mode on immune response remain unrealized. Herein, immunostimulatory CpG-modified tumor-derived nanovesicles (CNVs) are used as a nanovaccine testbed to initially evaluate the impacts of three distinct delivery modes, including mono-pulse CNVs, staggered-pulse CNVs, and gel-confined CNVs. Fundamentally, delivery mode has enormous impacts on the immunomodulatory effects, altering the spatiotemporal distribution of nanovaccine residence and dendritic cell-T cell interaction in lymph nodes, and finally affecting subsequent T cell-mediated immune performance. As a result, the gel-confined delivery mode offers the best therapeutic performance in multiple tumor models. When extending evaluation to examine how the various delivery modes impact the performance of liposome-based nanovaccines, similar trends in intralymph node distribution and antitumor effect are observed. This work provides a strong empirical foundation that nanovaccine researchers should position delivery mode near the top of their considerations for the experimental design, which should speed up nanovaccine development and facilitate efficient selection of appropriate delivery modes in the clinic.
Collapse
Affiliation(s)
- Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Yan Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Peng Ye
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Shuang Qing
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Changlong Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences1 North 2nd Street, Zhongguancun, Haidian DistrictBeijing100190P. R. China
- University of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
16
|
Yang F, Shi K, Jia YP, Hao Y, Peng JR, Qian ZY. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:911-927. [PMID: 32123302 PMCID: PMC7468530 DOI: 10.1038/s41401-020-0372-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy, as a powerful strategy for cancer treatment, has achieved tremendous efficacy in clinical trials. Despite these advancements, there is much to do in terms of enhancing therapeutic benefits and decreasing the side effects of cancer immunotherapy. Advanced nanobiomaterials, including liposomes, polymers, and silica, play a vital role in the codelivery of drugs and immunomodulators. These nanobiomaterial-based delivery systems could effectively promote antitumor immune responses and simultaneously reduce toxic adverse effects. Furthermore, nanobiomaterials may also combine with each other or with traditional drugs via different mechanisms, thus giving rise to more accurate and efficient tumor treatment. Here, an overview of the latest advancement in these nanobiomaterials used for cancer immunotherapy is given, describing outstanding systems, including lipid-based nanoparticles, polymer-based scaffolds or micelles, inorganic nanosystems, and others.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yan-Peng Jia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jin-Rong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901255. [PMID: 31206841 PMCID: PMC6918015 DOI: 10.1002/adma.201901255] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/07/2019] [Indexed: 04/14/2023]
Abstract
While traditional approaches for disease management in the era of modern medicine have saved countless lives and enhanced patient well-being, it is clear that there is significant room to improve upon the current status quo. For infectious diseases, the steady rise of antibiotic resistance has resulted in super pathogens that do not respond to most approved drugs. In the field of cancer treatment, the idea of a cure-all silver bullet has long been abandoned. As a result of the challenges facing current treatment and prevention paradigms in the clinic, there is an increasing push for personalized therapeutics, where plans for medical care are established on a patient-by-patient basis. Along these lines, vaccines, both against bacteria and tumors, are a clinical modality that could benefit significantly from personalization. Effective vaccination strategies could help to address many challenging disease conditions, but current vaccines are limited by factors such as a lack of potency and antigenic breadth. Recently, researchers have turned toward the use of biomimetic nanotechnology as a means of addressing these hurdles. Recent progress in the development of biomimetic nanovaccines for antibacterial and anticancer applications is discussed, with an emphasis on their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ashley V Kroll
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
18
|
Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019; 9:7826-7848. [PMID: 31695803 PMCID: PMC6831474 DOI: 10.7150/thno.37216] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great potential for the treatment of cancer. However, their direct administration often results in suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging strategy for improving the delivery of these immunotherapeutic agents. Such approaches can address many of the challenges facing current treatment modalities by endowing additional protection and significantly elevating the bioavailability of the encapsulated payloads. To further improve the delivery efficiency and subsequent immune responses associated with current nanoscale approaches, biomimetic modifications and materials have been employed to create delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Joon Ho Park
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jie Zhang
- Cello Therapeutics, Inc., San Diego, CA 92121, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Fontana F, Fusciello M, Groeneveldt C, Capasso C, Chiaro J, Feola S, Liu Z, Mäkilä EM, Salonen JJ, Hirvonen JT, Cerullo V, Santos HA. Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS NANO 2019; 13:6477-6490. [PMID: 31100004 PMCID: PMC6595659 DOI: 10.1021/acsnano.8b09613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Recent approaches in the treatment of cancer focus on involving the immune system to control the tumor growth. The administration of immunotherapies, like checkpoint inhibitors, has shown impressive results in the long term survival of patients. Cancer vaccines are being investigated as further tools to prime tumor-specific immunity. Biomaterials show potential as adjuvants in the formulation of vaccines, and biomimetic elements derived from the membrane of tumor cells may widen the range of antigens contained in the vaccine. Here, we show how mice presenting an aggressive melanoma tumor model treated twice with the complete nanovaccine formulation showed control on the tumor progression, while in a less aggressive model, the animals showed remission and control on the tumor progression, with a modification in the immunological profile of the tumor microenvironment. We also prove that co-administration of the nanovaccine together with a checkpoint inhibitor increases the efficacy of the treatment (87.5% of the animals responding, with 2 remissions) compared to the checkpoint inhibitor alone in the B16.OVA model. Our platform thereby shows potential applications as a cancer nanovaccine in combination with the standard clinical care treatment for melanoma cancers.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Manlio Fusciello
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Christianne Groeneveldt
- Division
of Biotherapeutics, Leiden Academic Center for Drug Research (LACDR), Leiden University, 2300 RA Leiden, Netherlands
| | - Cristian Capasso
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jacopo Chiaro
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sara Feola
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Zehua Liu
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ermei M. Mäkilä
- Laboratory
of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno J. Salonen
- Laboratory
of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jouni T. Hirvonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vincenzo Cerullo
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, FI-00014 Helsinki, Finland
- E-mail:
| | - Hélder A. Santos
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, FI-00014 Helsinki, Finland
- E-mail:
| |
Collapse
|
21
|
Jung H, Jang HE, Kang YY, Song J, Mok H. PLGA Microspheres Coated with Cancer Cell-Derived Vesicles for Improved Internalization into Antigen-Presenting Cells and Immune Stimulation. Bioconjug Chem 2019; 30:1690-1701. [DOI: 10.1021/acs.bioconjchem.9b00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyo-Eun Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Ochyl LJ, Bazzill JD, Park C, Xu Y, Kuai R, Moon JJ. PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials 2018; 182:157-166. [PMID: 30121425 PMCID: PMC6156795 DOI: 10.1016/j.biomaterials.2018.08.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022]
Abstract
Despite the promise and advantages of autologous cancer cell vaccination, it remains challenging to induce potent anti-tumor immune responses with traditional immunization strategies with whole tumor cell lysate. In this study, we sought to develop a simple and effective approach for therapeutic vaccination with autologous whole tumor cell lysate. Endogenous cell membranes harvested from cancer cells were formed into PEGylated nano-vesicles (PEG-NPs). PEG-NPs exhibited good serum stability in vitro and draining efficiency to local lymph nodes upon subcutaneous administration in vivo. Vaccination with PEG-NPs synthesized from murine melanoma cells elicited 3.7-fold greater antigen-specific cytotoxic CD8+ T lymphocyte responses, compared with standard vaccination with freeze-thawed lysate in tumor-bearing mice. Importantly, in combination with anti-programmed death-1 (αPD-1) IgG immunotherapy, PEG-NP vaccination induced 4.2-fold higher frequency of antigen-specific T cell responses (P < 0.0001) and mediated complete tumor regression in 63% of tumor-bearing animals (P < 0.01), compared with FT lysate + αPD-1 treatment that exhibited only 13% response rate. In addition, PEG-NPs + αPD-1 IgG combination immunotherapy protected all survivors against a subsequent tumor cell re-challenge. These results demonstrate a general strategy for eliciting anti-tumor immunity using endogenous cancer cell membranes formulated into stable vaccine nanoparticles.
Collapse
Affiliation(s)
- Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph D Bazzill
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
He H, Guo C, Wang J, Korzun WJ, Wang XY, Ghosh S, Yang H. Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. NANO LETTERS 2018; 18:6164-6174. [PMID: 30207473 PMCID: PMC6292712 DOI: 10.1021/acs.nanolett.8b01892] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell membrane-camouflaged nanoparticles have appeared as a promising platform to develop active tumor targeting nanomedicines. To evade the immune surveillance, we designed a composite cell membrane-camouflaged biomimetic nanoplatform, namely, leutusome, which is made of liposomal nanoparticles incorporating plasma membrane components derived from both leukocytes (murine J774A.1 cells) and tumor cells (head and neck tumor cells HN12). Exogenous phospholipids were used as building blocks to fuse with two cell membranes to form liposomal nanoparticles. Liposomal nanoparticles made of exogenous phospholipids only or in combination with one type of cell membrane were fabricated and compared. The anticancer drug paclitaxel (PTX) was used to make drug-encapsulating liposomal nanoparticles. Leutusome resembling characteristic plasma membrane components of the two cell membranes were examined and confirmed in vitro. A xenograft mouse model of head and neck cancer was used to profile the blood clearance kinetics, biodistribution, and antitumor efficacy of the different liposomal nanoparticles. The results demonstrated that leutusome obtained prolonged blood circulation and was most efficient accumulating at the tumor site (79.1 ± 6.6% ID per gram of tumor). Similarly, leutusome composed of membrane fractions of B16 melanoma cells and leukocytes (J774A.1) showed prominent accumulation within the B16 tumor, suggesting the generalization of the approach. Furthermore, PTX-encapsulating leutusome was found to most potently inhibit tumor growth while not causing systemic adverse effects.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Chunqing Guo
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William J. Korzun
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
24
|
Kim J, Han C, Jo W, Kang S, Cho S, Jeong D, Gho YS, Park J. Cell-Engineered Nanovesicle as a Surrogate Inducer of Contact-Dependent Stimuli. Adv Healthc Mater 2017. [PMID: 28643483 DOI: 10.1002/adhm.201700381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heterotypic interactions between cells are crucial in various biological phenomena. Particularly, stimuli that regulate embryonic stem cell (ESC) fate are often provided from neighboring cells. However, except for feeder cultures, no practical methods are identified that can provide ESCs with contact-dependent cell stimuli. To induce contact-dependent cell stimuli in the absence of living cells, a novel method that utilizes cell-engineered nanovesicles (CNVs) that are made by extruding living cells through microporous membranes is described. Protein compositions of CNVs are similar to their originating cells, as well as freely diffusible and precisely scalable. Treatment of CNVs produced from three different stromal cells successfully induces the same effect as feeder cultures. The results suggest that the effects of CNVs are mainly mediated by membrane-associated components. The use of CNVs might constitute a novel and efficient tool for ESC research.
Collapse
Affiliation(s)
- Junho Kim
- School of Interdisciplinary Bioscience and Bioengineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| | - Chugmin Han
- Department of Mechanical Engineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| | - Wonju Jo
- Department of Mechanical Engineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| | - Sehong Kang
- Department of Mechanical Engineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| | - Siwoo Cho
- Department of Mechanical Engineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| | - Dayeong Jeong
- School of Interdisciplinary Bioscience and Bioengineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences; POSTECH; 77 Cheongam-Ro Nam-gu, BIOTECH CENTER Pohang Gyeong-buk 37673 Republic of Korea
| | - Jaesung Park
- School of Interdisciplinary Bioscience and Bioengineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
- Department of Mechanical Engineering; POSTECH; 77 Cheongam-Ro Nam-gu, Engineering Building 5 Pohang Gyeong-buk 37673 Republic of Korea
| |
Collapse
|
25
|
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. NATURE REVIEWS. MATERIALS 2017; 2:17024. [PMID: 29075517 PMCID: PMC5654564 DOI: 10.1038/natrevmats.2017.24] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Advances in nanoparticle synthesis and engineering have produced nanoscale agents affording both therapeutic and diagnostic functions that are often referred to by the portmanteau 'nanotheranostics'. The field is associated with many applications in the clinic, especially in cancer management. These include patient stratification, drug-release monitoring, imaging-guided focal therapy and post-treatment response monitoring. Recent advances in nanotheranostics have expanded this notion and enabled the characterization of individual tumours, the prediction of nanoparticle-tumour interactions, and the creation of tailor-designed nanomedicines for individualized treatment. Some of these applications require breaking the dogma that a nanotheranostic must combine both therapeutic and diagnostic agents within a single, physical entity; instead, it can be a general approach in which diagnosis and therapy are interwoven to solve clinical issues and improve treatment outcomes. In this Review, we describe the evolution and state of the art of cancer nanotheranostics, with an emphasis on clinical impact and translation.
Collapse
Affiliation(s)
- Hongmin Chen
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Bio-imaging Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017; 256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense.
Collapse
Affiliation(s)
| | | | - Yuling Bao
- Tongji School of Pharmacy, PR China; Department of Pharmacy, Tongji Hospital, PR China
| | - Zhiping Zhang
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
27
|
Zhu G, Zhang F, Ni Q, Niu G, Chen X. Efficient Nanovaccine Delivery in Cancer Immunotherapy. ACS NANO 2017; 11:2387-2392. [PMID: 28277646 DOI: 10.1021/acsnano.7b00978] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vaccines hold tremendous potential for cancer immunotherapy by treating the immune system. Subunit vaccines, including molecular adjuvants and cancer-associated antigens or cancer-specific neoantigens, can elicit potent antitumor immunity. However, subunit vaccines have shown limited clinical benefit in cancer patients, which is in part attributed to inefficient vaccine delivery. In this Perspective, we discuss vaccine delivery by synthetic nanoparticles or naturally derived nanoparticles for cancer immunotherapy. Nanovaccines can efficiently codeliver adjuvants and multiepitope antigens into lymphoid organs and into antigen-presenting cells, and the intracellular release of vaccine and cross-presentation of antigens can be fine-tuned via nanovaccine engineering. Aside from peptide antigens, antigen-encoding mRNA for cancer immunotherapy delivered by nanovaccine will also be discussed.
Collapse
Affiliation(s)
- Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
28
|
Fontana F, Shahbazi MA, Liu D, Zhang H, Mäkilä E, Salonen J, Hirvonen JT, Santos HA. Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603239. [PMID: 28009461 DOI: 10.1002/adma.201603239] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/28/2016] [Indexed: 05/17/2023]
Abstract
Immunoadjuvant porous silicon (PSi)-based nanovaccines are prepared by nanoprecipitation in a glass capillary microfluidics device. Vesicles, derived from cancer cell membranes encapsulating thermally oxidized PSi nanoparticles or PSi-polymer nanosystems binding a model antigen, are biocompatible over a wide range of concentrations, and show immunostimulant properties in human cells, promoting the expression of co-stimulatory signals and the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku, FI-20014, Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
29
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|
30
|
Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MGM, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF. Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. NANOSCALE 2016; 8:19592-19604. [PMID: 27748778 DOI: 10.1039/c6nr05583d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release. In the present study, it is demonstrated that these nanogels, with the bound OVA, were efficiently internalized by DCs and were capable of maturating them. On the other hand, when the antigen was just physically entrapped in the nanogels, OVA was prematurely released before the particles were taken up by cells. When combined with an adjuvant (polyinosinic-polycytidylic acid, poly(I:C)), nanogels with conjugated OVA induced a strong protective and curative effect against melanoma in vivo. In a prophylactic vaccination setting, 90% of the mice vaccinated with nanogels with conjugated OVA + poly(I:C) did not develop a tumor. Moreover, in a therapeutic model, 40% of the mice showed clearance of established tumors and survived for the duration of the experiment (80 days) while the remaining mice showed substantial delay in tumor progression. In conclusion, our results demonstrate that conjugation of antigens to nanogels via reducible covalent bonds for intracellular delivery is a promising strategy to induce effective antigen-specific immune responses against cancer.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Meriem Bourajjaj
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Yinan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Ebel H Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Jian Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| |
Collapse
|
31
|
Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0288-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27470448 DOI: 10.1002/wnan.1421] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
The application of nanotechnology to the treatment of cancer or other diseases has been boosted during the last decades due to the possibility to precise deliver drugs where needed, enabling a decrease in the drug's side effects. Nanocarriers are particularly valuable for potentiating the simultaneous co-delivery of multiple drugs in the same particle for the treatment of heavily burdening diseases like cancer. Immunotherapy represents a new concept in the treatment of cancer and has shown outstanding results in patients treated with check-point inhibitors. Thereby, researchers are applying nanotechnology to cancer immunotherapy toward the development of nanocarriers for delivery of cancer vaccines and chemo-immunotherapies. Cancer nanovaccines can be envisioned as nanocarriers co-delivering antigens and adjuvants, molecules often presenting different physicochemical properties, in cancer therapy. A wide range of nanocarriers (e.g., polymeric, lipid-based and inorganic) allow the co-formulation of these molecules, or the delivery of chemo- and immune-therapeutics in the same system. Finally, there is a trend toward the use of biologically inspired and derived nanocarriers. In this review, we present the recent developments in the field of immunotherapy, describing the different systems proposed by categories: polymeric nanoparticles, lipid-based nanosystems, metallic and inorganic nanosystems and, finally, biologically inspired and derived nanovaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1421. doi: 10.1002/wnan.1421 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Li P, Shi G, Zhang X, Song H, Zhang C, Wang W, Li C, Song B, Wang C, Kong D. Guanidinylated cationic nanoparticles as robust protein antigen delivery systems and adjuvants for promoting antigen-specific immune responses in vivo. J Mater Chem B 2016; 4:5608-5620. [DOI: 10.1039/c6tb01556e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Guanidinylated nanoparticles could act as effective immune adjuvants to elicit both potent antigen-specific cellular and humoral immune responses.
Collapse
|