1
|
Wang Y, Li M, Zhu H, Min Q, Lou Y, Wu D, Ma J, Yang Z, Zhao M, Pang Y. Fresnel lens three-dimensionally printed on the facet of a single mode fiber for trapping, manipulation, and spectrum. OPTICS LETTERS 2024; 49:3259-3262. [PMID: 38824378 DOI: 10.1364/ol.524889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Fiber optical tweezers (FOTs) provide a functionality for micro-/nanoparticle manipulation with a slim and flexible optical fiber setup. An added in situ spectroscopic functionality can achieve characterization of the trapped particle, potentially useful for endoscopic, in-vivo studies in an inherently heterogeneous environment if the applicator end is all-fiber-built. Here, we demonstrate all-fiber optical tweezers (a-FOTs) for the trapping and in situ spectral measurement of a single, cell-sized microparticle. The key to ensure the simultaneous bifunctionality is a high numerical aperture (NA) Fresnel lens fabricated by two-photon direct laser writing (DLW) corrected by grid-correction methods. We demonstrate trapping and time-resolved, in situ spectroscopy of a single upconversion particle (UCP), a common fluorescent biomarker in biophotonics. The system achieves a 0.5-s time resolution in the in situ spectral measurement of a trapped UCP. The all-fiber designed system preserves the advantages of flexibility and robustness of the fiber, potentially useful for in-vivo biomedical studies such as cell-to-cell interactions, pH and temperature detection, and nucleic acids detection.
Collapse
|
2
|
Chen J, Hu J, Xue C, Zhang Q, Li J, Wang Z, Lv J, Zhang A, Dang H, Lu D, Zou D, Cong L, Li Y, Chen GJ, Shum PP. Combined Mutual Learning Net for Raman Spectral Microbial Strain Identification. Anal Chem 2024; 96:5824-5831. [PMID: 38573047 DOI: 10.1021/acs.analchem.3c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This advancement demonstrates the effectiveness of this method in microbial subspecies identification, offering a promising solution for microbiology diagnosis.
Collapse
Affiliation(s)
- Junfan Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaqi Hu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenlong Xue
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jingyan Li
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyue Wang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinqian Lv
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aoyan Zhang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Dang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Lu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Defeng Zou
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Longqing Cong
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Gina Jinna Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Vasantham S, Kotnala A, Promovych Y, Garstecki P, Derzsi L. Opto-hydrodynamic tweezers. LAB ON A CHIP 2024; 24:517-527. [PMID: 38165913 DOI: 10.1039/d3lc00733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Optical fiber tweezers offer a simple, low-cost and portable solution for non-invasive trapping and manipulation of particles. However, single-fiber tweezers require fiber tip modification (tapering, lensing, etc.) and the dual-fiber approach demands strict alignment and positioning of fibers for robust trapping of particles. In addition, both tweezing techniques offer a limited range of particle manipulation and operate in low flow velocity regimes (a few 100 μm s-1) when integrated with microfluidic devices. In this paper, we report a novel opto-hydrodynamic fiber tweezers (OHT) platform that exploits the balance between the hydrodynamic drag force and optical scattering forces to trap and manipulate single or multiple particles of various shapes, sizes, and material compositions in a microfluidic channel. 3D hydrodynamic flow focusing offers an easy and dynamic alignment of the particle trajectories with the optical axis of the fiber, which enables robust trapping of particles with high efficiency of >70% and throughput of 14 particles per minute (operating flow velocity: 1000 μm s-1) without the need for precision stages or complex fabrication. By regulating the optical power and flow rates, we were able to trap single particles at desired positions in the channel with a precision of ±10 μm as well as manipulate them over a long range upstream or downstream with a maximum distance of 500 μm. Our opto-hydrodynamic tweezers offer an alternative to conventional optical fiber tweezers for several applications in physics, biology, medicine, etc.
Collapse
Affiliation(s)
- Shreyas Vasantham
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Abhay Kotnala
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, 77204, USA
| | - Yurii Promovych
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
4
|
Jiang H, Cao Z, Liu Y, Liu R, Zhou Y, Liu J. Bacteria-Based Living Probes: Preparation and the Applications in Bioimaging and Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306480. [PMID: 38032119 PMCID: PMC10811517 DOI: 10.1002/advs.202306480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Bacteria can colonize a variety of in vivo biointerfaces, particularly the skin, nasal, and oral mucosa, the gastrointestinal tract, and the reproductive tract, but also target specific lesion sites, such as tumor and wound. By virtue of their prominent characteristics in motility, editability, and targeting ability, bacteria carrying imageable agents are widely developed as living probes for bioimaging and diagnosis of different diseases. This review first introduces the strategies used for preparing bacteria-based living probes, including biological engineering, chemical modification, intracellular loading, and optical manipulation. It then summarizes the recent progress of these living probes for fluorescence imaging, near-infrared imaging, ultrasonic imaging, photoacoustic imaging, magnetic resonance imaging, and positron emission tomography imaging. The biomedical applications of bacteria-based living probes are also reviewed particularly in the bioimaging and diagnosis of bacterial infections, cancers, and intestine-associated diseases. In addition, the advantages and challenges of bacteria-based living probes are discussed and future perspectives are also proposed. This review provides an updated overview of bacteria-based living probes, highlighting their great potential as a unique yet versatile platform for developing next-generation imageable agents for intelligent bioimaging, diagnosis, and even therapy.
Collapse
Affiliation(s)
- Hejin Jiang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yan Zhou
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
5
|
Singh R, Zhang W, Liu X, Zhang B, Kumar S. Humanoid-shaped WaveFlex biosensor for the detection of food contamination. BIOMEDICAL OPTICS EXPRESS 2023; 14:4660-4676. [PMID: 37791266 PMCID: PMC10545203 DOI: 10.1364/boe.500311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023]
Abstract
High-toxicity secondary metabolites called aflatoxin are naturally produced by the fungus Aspergillus. In a warm, humid climate, Aspergillus growth can be considerably accelerated. The most dangerous chemical among all aflatoxins is aflatoxin B1 (AFB1), which has the potential to cause cancer and several other health risks. As a result, food forensicists now urgently need a method that is more precise, quick, and practical for aflatoxin testing. The current study focuses on the development of a highly sensitive, specific, label-free, and rapid detection method for AFB1 using a novel humanoid-shaped fiber optic WaveFlex biosensor (refers to a plasmon wave-based fiber biosensor). The fiber probe has been functionalized with nanomaterials (gold nanoparticles, graphene oxide and multiwalled carbon nanotubes) and anti-AFB1 antibodies to enhance the sensitivity and specificity of the developed sensor. The findings demonstrate that the developed sensor exhibits a remarkable low detection limit of 34.5 nM and exceptional specificity towards AFB1. Furthermore, the sensor demonstrated exceptional characteristics such as high stability, selectivity, reproducibility, and reusability. These essential factors highlight the significant potential of the proposed WaveFlex biosensor for the accurate detection of AFB1 in diverse agricultural and food samples.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng
University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical
Communication Science and Technology, School of Physics Science and
Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical
Communication Science and Technology, School of Physics Science and
Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical
Communication Science and Technology, School of Physics Science and
Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical
Communication Science and Technology, School of Physics Science and
Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
6
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
7
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
8
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
9
|
Zhao X, Shi Y, Pan T, Lu D, Xiong J, Li B, Xin H. In Situ Single-Cell Surgery and Intracellular Organelle Manipulation Via Thermoplasmonics Combined Optical Trapping. NANO LETTERS 2022; 22:402-410. [PMID: 34968073 DOI: 10.1021/acs.nanolett.1c04075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microsurgery and biopsies on individual cells in a cellular microenvironment are of great importance to better understand the fundamental cellular processes at subcellular and even single-molecular levels. However, it is still a big challenge for in situ surgery without interfering with neighboring living cells. Here, we report a thermoplasmonics combined optical trapping (TOT) technique for in situ single-cell surgery and intracellular organelle manipulation, without interfering with neighboring cells. A selective single-cell perforation was demonstrated via a localized thermoplasmonic effect, which facilitated further targeted gene delivery. Such a perforation was reversible, and the damaged membrane was capable of being repaired. Remarkably, a targeted extraction and precise manipulation of intracellular organelles were realized via the optical trapping. This TOT technique represents a new way for single-cell microsurgery, gene delivery, and intracellular organelle manipulation, and it provides a new insight for a deeper understanding of cellular processes as well as to reveal underlying causes of diseases associated with organelle malfunctions at a subcellular level.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yang Shi
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jianyun Xiong
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
10
|
Lou Y, Ning X, Wu B, Pang Y. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide. FRONTIERS OF OPTOELECTRONICS 2021; 14:399-406. [PMID: 36637761 PMCID: PMC9743861 DOI: 10.1007/s12200-021-1134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.
Collapse
Affiliation(s)
- Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiongjie Ning
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bei Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
11
|
Lou Y, Wan X, Pang Y. Nano-optical trapping using an all-dielectric optical fiber supporting a TEM-like mode. NANOTECHNOLOGY 2021; 33:045201. [PMID: 34530419 DOI: 10.1088/1361-6528/ac2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Fiber optical tweezers benefit from compact structures and compatibility with fiber optic technology, however, trapping of nano-objects are rarely demonstrated. Here, we predict stable optical trapping of a 30 nm polystyrene particle using an all-dielectric coaxial optical fiber supporting an axisymmetric TEM-like mode. We demonstrate, via comprehensive finite-difference time-domain simulations, that the trapping behavior arises from a significant shift of the fiber-end-fire radiation directivity originated from the nanoparticle-induced symmetry breaking, rather than the gradient force which assumes an invariant optical field. Fabrication of the fiber involved is entirely feasible with existing techniques, such as thermal-drawn and electrospinning, and therefore can be mass-produced.
Collapse
Affiliation(s)
- Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xinchen Wan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
12
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Liu Z, Zhang K, Jin W, Zhang Y, Zhang Y, Zhang J, Yang J, Yuan L. Light-induced micro-vibrator with controllable amplitude and frequency. OPTICS EXPRESS 2021; 29:27228-27236. [PMID: 34615143 DOI: 10.1364/oe.431380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We propose and demonstrate a light-induced micro-vibrator that can perform an adjustable reciprocating vibration based on the Δα-typed photophoretic force. The vibration amplitudes and periods can be precisely controlled and modulated in real-time, and the maximum average restoring speed is as high as 23.26 μm/s. In addition, by using the self-healing properties of the Bessel-like beam, we achieve the simultaneous driving and modulating of three absorbing micro-vibrators. The proposed absorbing micro-vibrator can be used as a novel light-driven micromotor, which is considered to have potential application value in the field of targeted drug delivery, biosensing, and environmental detection.
Collapse
|
14
|
Abdul Hakeem D, Su S, Mo Z, Wen H. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Crit Rev Food Sci Nutr 2021; 62:8866-8907. [PMID: 34159870 DOI: 10.1080/10408398.2021.1937039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foodborne diseases have become a significant threat to public health worldwide. Development of analytical techniques that enable fast and accurate detection of foodborne pathogens is significant for food science and safety research. Assays based on lanthanide (Ln) ion-doped upconversion nanoparticles (UCNPs) show up as a cutting edge platform in biomedical fields because of the superior physicochemical features of UCNPs, including negligible autofluorescence, large signal-to-noise ratio, minimum photodamage to biological samples, high penetration depth, and attractive optical and chemical features. In recent decades, this novel and promising technology has been gradually introduced to food safety research. Herein, we have reviewed the recent progress of Ln3+-doped UCNPs in food safety research with emphasis on the following aspects: 1) the upconversion mechanism and detection principles; 2) the history of UCNPs development in analytical chemistry; 3) the in-depth state-of-the-art synthesis strategies, including synthesis protocols for UCNPs, luminescence, structure, morphology, and surface engineering; 4) applications of UCNPs in foodborne pathogens detection, including mycotoxins, heavy metal ions, pesticide residue, antibiotics, estrogen residue, and pathogenic bacteria; and 5) the challenging and future perspectives of using UCNPs in food safety research. Considering the diversity and complexity of the foodborne harmful substances, developing novel detections and quantification techniques and the rigorous investigations about the effect of the harmful substances on human health should be accelerated.
Collapse
Affiliation(s)
- Deshmukh Abdul Hakeem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Shaoshan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhurong Mo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:124. [PMID: 34108445 PMCID: PMC8190087 DOI: 10.1038/s41377-021-00561-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and bio-microlenses, are reviewed with applications for bio-detection and imaging. Finally, perspectives on future opportunities and potential improvements of biophotonic probes are also provided.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
16
|
Yao Y, Xie G, Zhang X, Yuan J, Hou Y, Chen H. Fast detection of E. coli with a novel fluorescent biosensor based on a FRET system between UCNPs and GO@Fe 3O 4 in urine specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2209-2214. [PMID: 33908469 DOI: 10.1039/d1ay00320h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biosensors based on nanomaterials are becoming a research hotspot for the rapid detection of pathogenic bacteria. Herein, a "turn-on" fluorescent biosensor based on a FRET system was constructed for the fast detection of a representative pathogenic microorganism, namely, E. coli, which causes most urinary tract infections. This biosensor was constructed by utilizing synthesized UCNPs as fluorescent donors with stable luminescence performance in complex biological samples and GO@Fe3O4 as a receptor with both excellent adsorption ability and fluorescence quenching ability. A specific ssDNA selected as an aptamer which could recognize E. coli was immobilized on the UCNPs to form UCNP-Apt nanoprobes. The nanoprobes were adsorbed on the surface of GO@Fe3O4 through the π-stacking interactions between aptamers and GO. In the presence of E. coli, UCNP-Apt nanoprobes detached from GO@Fe3O4 due to the specific recognition of aptamers and bacteria, resulting in obvious fluorescence recovery, and the concentration of bacteria was positively correlated with the intensity of the fluorescence signal; such a "turn-on" signal output mode ensures excellent precision. In addition, the easy magnetic separation of GO@Fe3O4 simplifies the operation process, helping the sensor detect bacteria in 30 minutes with a linear range from 103 to 107 CFU mL-1 and a limit of detection of 467 CFU mL-1. Moreover, recovery test results also showed that the sensor has clinical application potential for the rapid detection of pathogenic microorganisms in complex biological samples.
Collapse
Affiliation(s)
- Yuan Yao
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Xin Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Jinshan Yuan
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Yulei Hou
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| | - Hui Chen
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| |
Collapse
|
17
|
Casar JR, McLellan CA, Siefe C, Dionne JA. Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS PHOTONICS 2021; 8:3-17. [PMID: 34307765 PMCID: PMC8297747 DOI: 10.1021/acsphotonics.0c00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanthanide nanoparticles (LNPs) are promising sensors of chemical, mechanical, and temperature changes; they combine the narrow-spectral emission and long-lived excited states of individual lanthanide ions with the high spatial resolution and controlled energy transfer of nanocrystalline architectures. Despite considerable progress in optimizing LNP brightness and responsiveness for dynamic sensing, detection of stimuli with a spatial resolution approaching that of individual nanoparticles remains an outstanding challenge. Here, we highlight the existing capabilities and outstanding challenges of LNP sensors, en-route to nanometer-scale, single particle sensor resolution. First, we summarize LNP sensor read-outs, including changes in emission wavelength, lifetime, intensity, and spectral ratiometric values that arise from modified energy transfer networks within nanoparticles. Then, we describe the origins of LNP sensor imprecision, including sensitivity to competing conditions, interparticle heterogeneities, such as the concentration and distribution of dopant ions, and measurement noise. Motivated by these sources of signal variance, we describe synthesis characterization feedback loops to inform and improve sensor precision, and introduce noise-equivalent sensitivity as a figure of merit of LNP sensors. Finally, we project the magnitudes of chemical and pressure stimulus resolution achievable with single LNPs at nanoscale resolution. Our perspective provides a roadmap for translating ensemble LNP sensing capabilities to the single particle level, enabling nanometer-scale sensing in biology, medicine, and sustainability.
Collapse
Affiliation(s)
- Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering and Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Wu J, Zhu Y, You L, Dong PT, Mei J, Cheng JX. Polymer Electrochromism Driven by Metabolic Activity Facilitates Rapid and Facile Bacterial Detection and Susceptibility Evaluation. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005192. [PMID: 33708032 PMCID: PMC7941207 DOI: 10.1002/adfm.202005192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/19/2023]
Abstract
The electrochromism of a water-soluble naturally oxidized electrochromic polymer, ox-PPE, is harnessed for rapid and facile bacterial detection, discrimination, and susceptibility testing. The ox-PPE solution shows distinct colorimetric and spectroscopic changes within 30 min when mixed with live bacteria. For the underlying mechanism, it is found that ox-PPE responds to the reducing species (e.g. cysteine and glutathione) released by metabolically active bacteria. This reduction reaction is ubiquitous among various bacterial strains, with a noticeable difference that enables discrimination of Gram-negative and Gram-positive bacterial strains. Combining ox-PPE with antibiotics, methicillin-susceptible and -resistant S. aureus can be differentiated within 2.5 h. Proof-of-concept demonstration of ox-PPE for antimicrobial susceptibility testing is carried out by incubating E. coli with various antibiotics. The obtained minimum inhibition concentrations are consistent with the conventional culture-based methods, but with the procedure time significantly shortened to 3 h.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yifan Zhu
- Department of Chemistry, Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Pu-Ting Dong
- Department of Chemistry, Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA; Department of Physics, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
19
|
Ortiz-Rivero E, Labrador-Páez L, Rodríguez-Sevilla P, Haro-González P. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations. Front Chem 2020; 8:593398. [PMID: 33240853 PMCID: PMC7680971 DOI: 10.3389/fchem.2020.593398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022] Open
Abstract
Since Ashkin's pioneering work, optical tweezers have become an essential tool to immobilize and manipulate microscale and nanoscale objects. The use of optical tweezers is key for a variety of applications, including single-molecule spectroscopy, colloidal dynamics, tailored particle assembly, protein isolation, high-resolution surface studies, controlled investigation of biological processes, and surface-enhanced spectroscopy. In recent years, optical trapping of individual sub-100-nm objects has got the attention of the scientific community. In particular, the three-dimensional manipulation of single lanthanide-doped luminescent nanoparticles is of great interest due to the sensitivity of their luminescent properties to environmental conditions. Nevertheless, it is really challenging to trap and manipulate single lanthanide-doped nanoparticles due to the weak optical forces achieved with conventional optical trapping strategies. This limitation is caused, firstly, by the diffraction limit in the focusing of the trapping light and, secondly, by the Brownian motion of the trapped object. In this work, we summarize recent experimental approaches to increase the optical forces in the manipulation of lanthanide-doped nanoparticles, focusing our attention on their surface modification and providing a critical review of the state of the art and future prospects.
Collapse
Affiliation(s)
- Elisa Ortiz-Rivero
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Labrador-Páez
- Department of Applied Physics, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Paloma Rodríguez-Sevilla
- Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Patricia Haro-González
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Xin H, Zhao N, Wang Y, Zhao X, Pan T, Shi Y, Li B. Optically Controlled Living Micromotors for the Manipulation and Disruption of Biological Targets. NANO LETTERS 2020; 20:7177-7185. [PMID: 32935992 DOI: 10.1021/acs.nanolett.0c02501] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bioinspired and biohybrid micromotors represent a revolution in microrobotic research and are playing an increasingly important role in biomedical applications. In particular, biological micromotors that are multifunctional and can perform complex tasks are in great demand. Here, we report living and multifunctional micromotors based on single cells (green microalgae: Chlamydomonas reinhardtii) that are controlled by optical force. The micromotor's locomotion can be carefully controlled in a variety of biological media including cell culture medium, saliva, human serum, plasma, blood, and bone marrow fluid. It exhibits the capabilities to perform multiple tasks, in particular, indirect manipulation of biological targets and disruption of biological aggregates including in vitro blood clots. These micromotors can also act as elements in reconfigurable motor arrays where they efficiently work collaboratively and synchronously. This work provides new possibilities for many in vitro biomedical applications including target manipulation, cargo delivery and release, and biological aggregate removal.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Nan Zhao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yunuo Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoting Zhao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yang Shi
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
21
|
Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical Forces: From Fundamental to Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001994. [PMID: 32715536 DOI: 10.1002/adma.202001994] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light-matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light-matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
22
|
All-Optical Formation and Manipulation of Microbubbles on a Porous Gold Nanofilm. MICROMACHINES 2020; 11:mi11050489. [PMID: 32397627 PMCID: PMC7281023 DOI: 10.3390/mi11050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Microbubble generation and manipulation in aqueous environments are techniques that have attracted considerable attention for their microfluidic and biological applications. Ultrasonic and hydrodynamic methods are commonly used to form and manipulate microbubbles, but these methods are limited by the relatively low precision of the microbubble sizes and locations. Here, we report an all-optical method for generation and manipulation of microbubbles with ~100 nm precision by using “hot spots” on a porous gold nanofilm under the illumination of near-infrared focused laser beam. The microbubble diameter ranged from 700 nm to 100 μm, with a standard deviation of 100 nm. The microbubbles were patterned into two-dimensional arrays, with an average location deviation of 90 nm. By moving the laser beam, the microbubbles could be manipulated to a desired region. This work provides a controllable way to form and manipulate microbubbles with ~100 nm precision, which is expected to have applications in optofluidic and plasmonic devices.
Collapse
|
23
|
Single-particle spectroscopy for functional nanomaterials. Nature 2020; 579:41-50. [PMID: 32132689 DOI: 10.1038/s41586-020-2048-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022]
Abstract
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.
Collapse
|
24
|
Yin M, Jing C, Li H, Deng Q, Wang S. Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. J Nanobiotechnology 2020; 18:41. [PMID: 32111217 PMCID: PMC7049179 DOI: 10.1186/s12951-020-00596-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The identification of foodborne pathogenic bacteria types plays a crucial role in food safety and public health. In consideration of long culturing times, tedious operations and the desired specific recognition elements in conventional methods, the alternative fluorescent sensor arrays can offer a high-effective approach in bacterial identification by using multiple cross-reactive receptors. Herein, we achieve this goal by constructing an upconversion fluorescent sensor array based on anti-stokes luminogens featuring a series of functional lanthanide-doped upconversion nanoparticles (UCNPs) with phenylboronic acid, phosphate groups, or imidazole ionic liquid. The prevalent spotlight effect of microorganism and the electrostatic interaction between UCNPs and bacteria endow such sensor array an excellent discrimination property. RESULTS Seven common foodborne pathogenic bacteria including two Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) and five Gram-negative bacteria (Escherichia coli, Salmonella, Cronobacter sakazakii, Shigella flexneri and Vibrio parahaemolyticus) are precisely identified with 100% accuracy via linear discriminant analysis (LDA). Furthermore, blends of bacteria have been identified accurately. Bacteria in real samples (tap water, milk and beef) have been effectively discriminated with 92.1% accuracy. CONCLUSIONS Current fluorescence sensor array is a powerful tool for high-throughput bacteria identification, which overcomes the time-consuming bacteria culture and heavy dependence of specific recognition elements. The high efficiency of whole bacterial cell detection and the discrimination capability of life and death bacteria can brighten the application of fluorescence sensor array.
Collapse
Affiliation(s)
- Mingyuan Yin
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chuang Jing
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haijie Li
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biotechnology, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
25
|
Zhao X, Zhao N, Shi Y, Xin H, Li B. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. MICROMACHINES 2020; 11:E114. [PMID: 31973061 PMCID: PMC7074902 DOI: 10.3390/mi11020114] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Optical trapping is widely used in different areas, ranging from biomedical applications, to physics and material sciences. In recent years, optical fiber tweezers have attracted significant attention in the field of optical trapping due to their flexible manipulation, compact structure, and easy fabrication. As a versatile tool for optical trapping and manipulation, optical fiber tweezers can be used to trap, manipulate, arrange, and assemble tiny objects. Here, we review the optical fiber tweezers-based trapping and manipulation, including dual fiber tweezers for trapping and manipulation, single fiber tweezers for trapping and single cell analysis, optical fiber tweezers for cell assembly, structured optical fiber for enhanced trapping and manipulation, subwavelength optical fiber wire for evanescent fields-based trapping and delivery, and photothermal trapping, assembly, and manipulation.
Collapse
Affiliation(s)
| | | | | | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China; (X.Z.); (N.Z.); (Y.S.); (B.L.)
| | | |
Collapse
|
26
|
Yin M, Wu C, Li H, Jia Z, Deng Q, Wang S, Zhang Y. Simultaneous Sensing of Seven Pathogenic Bacteria by Guanidine-Functionalized Upconversion Fluorescent Nanoparticles. ACS OMEGA 2019; 4:8953-8959. [PMID: 31459983 PMCID: PMC6648614 DOI: 10.1021/acsomega.9b00775] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 05/27/2023]
Abstract
The method capable of simultaneously detecting multiple target bacterial pathogens is necessary and of great interest. In this research, we demonstrated our initial effort to simultaneously detect seven common foodborne bacteria by developing a straightforward upconversion fluorescence sensing approach. The fluorescent nanosensor was constructed from a designed guanidine-functionalized upconversion fluorescent nanoparticles (UCNPs@GDN), tannic acid, and hydrogen peroxide (HP) and could quantify pathogenic bacteria in a nonspecific manner because the luminescence of the upconversion fluorescent nanoparticle was effectively strengthened in the presence of bacteria. When the developed nanosensor was applied to quantify multiple bacteria including Escherichia coli, Salmonella, Cronobacter sakazakii, Shigella flexneri, Vibrio parahaemolyticus, Staphylococcus aureus, and Listeria monocytogenes, a linear range of 103 to 108 cfu mL-1 and a detection limit of 1.30 × 102 cfu mL-1 have been obtained for the seven model mixture bacteria. In addition, the similar linear range and detection limit were also obtained for the detection of single bacteria. The present approach also exhibited acceptable recovery values ranging from 70.0 to 118.2% for bacteria in real samples (water, milk, and beef). All these results suggested that the guanidine-functionalized upconversion fluorescent nanosensor could be considered as a promising candidate for the rapid detection and surveillance of microbial pollutants in food and water.
Collapse
Affiliation(s)
- Mingyuan Yin
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, P. R. China
| | - Chen Wu
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, P. R. China
| | - Haijie Li
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, P. R. China
| | - Zhixin Jia
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, P. R. China
| | - Qiliang Deng
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, P. R. China
| | - Shuo Wang
- Key
Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin
Key Laboratory of Food Nutrition and Safety, College of Chemical Engineering
and Materials Science, Tianjin University
of Science and Technology, Tianjin 300457, P. R. China
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Yukui Zhang
- Key
Laboratory of Separation Science for Analytical Chemistry, Dalian
Institute of Chemical Physics, Chinese Academic
of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
27
|
Abstract
Recent advances in opto-thermophoretic tweezers open new avenues for low-power trapping and manipulation of nanoparticles with potential applications in colloidal assembly, nanomanufacturing, life sciences, and nanomedicine. However, to fully exploit the opto-thermophoretic tweezers for widespread applications, the enhancement of their versatility in nanoparticle manipulations is pivotal. For this purpose, we translate our newly developed opto-thermophoretic tweezers onto an optical fiber platform known as opto-thermophoretic fiber tweezers (OTFT). We have demonstrated the applications of OTFT as a nanoparticle concentrator, as a nanopipette for single particle delivery, and as a nanoprobe. The simple setup and functional versatility of OTFT would encourage its use in various fields such as additive manufacturing, single nanoparticle-cell interactions, and biosensing.
Collapse
Affiliation(s)
- Abhay Kotnala
- Department of Mechanical Engineering, Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
28
|
Singh R, Dumlupinar G, Andersson-Engels S, Melgar S. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int J Nanomedicine 2019; 14:1027-1038. [PMID: 30799920 PMCID: PMC6369841 DOI: 10.2147/ijn.s188887] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is the abnormal growth of cells in colon or rectum. Recent findings have acknowledged the role of bacterial infection and chronic inflammation in colorectal cancer initiation and progression. In order to detect and treat precancerous lesions, new tools are required, which may help to prevent or identify colorectal cancer at an early stage. To date, several different screening tests are available, including endoscopy, stool-based blood tests, and radiology-based tests. However, these analyses either lack sensitivity or are of an invasive nature. The use of fluorescently labeled probes can increase the detection sensitivity. However, autofluorescence, photobleaching, and photodamage are commonly encountered problems with fluorescence imaging. Upconverting nanoparticles (UCNPs) are recently developed lanthanide-doped nanocrystals that can be used as light-triggered luminescent probes and in drug delivery systems. In this review, we comprehensively summarize the recent developments and address future prospects of UCNP-based applications for diagnostics and therapeutic approaches associated with intestinal infection and colorectal cancer.
Collapse
Affiliation(s)
- Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, Ireland,
- School of Medicine, University College Cork, Cork, Ireland
| | - Gokhan Dumlupinar
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland,
| |
Collapse
|
29
|
Zhou J, Leaño JL, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JCG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/16/2018] [Indexed: 05/22/2023]
Abstract
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.
Collapse
Affiliation(s)
- Jiajia Zhou
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Julius L Leaño
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and NTU, Taipei, 106, Taiwan
- Philippine Textile Research Institute, Department of Science and Technology, Taguig City, 1631, Philippines
| | - Zhenyu Liu
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| | - Dayong Jin
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jean-Claude G Bünzli
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
| |
Collapse
|
30
|
Pan H, Zhang W, Lei H. Sizing and identification of nanoparticles by a tapered fiber. RSC Adv 2018; 8:32916-32921. [PMID: 35547688 PMCID: PMC9086333 DOI: 10.1039/c8ra06454g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 11/21/2022] Open
Abstract
There is a strong desire for sizing and identification of nanoparticles in fields of advanced nanotechnology and environmental protection. Although existing approaches can size the nanoparticles, or identify nanoparticles with different refractive indexes, a fast and simple method that combines the two functions still remains challenges. Here, we propose a versatile optical method to size and identify nanoparticles using an optical tapered fiber. By detecting reflection signals in real time, 400-600 nm SiO2 nanoparticles can be sized and 500 nm SiO2, PMMA, PS nanoparticles can be identified. This method requires only an optical tapered fiber, avoiding the use of elaborate nanostructures and making the device highly autonomous, flexible and compact. The demonstrated method provides a potentially powerful tool for biosensing, such as identification of nano-contaminant particles and biological pathogens.
Collapse
Affiliation(s)
- Huiling Pan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| | - Weina Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| | - Hongxiang Lei
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
31
|
Li Y, Liu X, Yang X, Lei H, Zhang Y, Li B. Enhancing Upconversion Fluorescence with a Natural Bio-microlens. ACS NANO 2017; 11:10672-10680. [PMID: 28873297 DOI: 10.1021/acsnano.7b04420] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Upconversion fluorescence has triggered extensive efforts in the past decade because of its superior physicochemical features and great potential in biomedical and biophotonic studies. However, practical applications of upconversion fluorescence are often hindered by its relatively low luminescence efficiency (<1%). Here, we employ a living yeast or human cell as a natural bio-microlens to enhance the upconversion fluorescence. The natural bio-microlens, which was stably trapped on a fiber probe, could concentrate the excitation light into a subwavelength region so that the upconversion fluorescence of core-shell NaYF4:Yb3+/Tm3+ nanoparticles was enhanced by 2 orders of magnitude. As a benefit of the fluorescence enhancement, single-cell imaging and real-time detection of the labeled pathogenic bacteria, such as Escherichia coli and Staphylococcus aureus, were successfully achieved in the dark fields. This biocompatible, sensitive, and miniature approach could provide a promising powerful tool for biological imaging, biophotonic sensing, and single-cell analysis.
Collapse
Affiliation(s)
- Yuchao Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University , Guangzhou 511443, China
| | - Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University , Guangzhou 511443, China
| | - Xianguang Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University , Guangzhou 511443, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, Sun Yat-Sen University , Guangzhou 510275, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University , Guangzhou 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University , Guangzhou 511443, China
| |
Collapse
|