1
|
Tang M, Yang Z, Tang X, Ma H, Xie B, Xu JF, Gao C, Bardelang D, Wang R. Hypoxia-Initiated Supramolecular Free Radicals Induce Intracellular Polymerization for Precision Tumor Therapy. J Am Chem Soc 2025; 147:3488-3499. [PMID: 39805045 PMCID: PMC11783515 DOI: 10.1021/jacs.4c14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells. The system utilizes a 2:1 supramolecular host-guest complex of cucurbit[7]uril (CB[7]) and perylene diimide derivative (PDI), termed PDI+2CB[7], which is selectively reduced by the tumor's hypoxic and reducing environment to generate delocalized free radical anions. CB[7] effectively stabilizes these anions, enabling the PDI+2CB[7] complex to initiate free radical polymerization with 2-hydroxyethyl methacrylate (HEMA) inside the 4T1 cells. The resulting in situ polymerization significantly disrupts tumor metabolism, leading to a strong antitumor response without systemic toxicity. This study demonstrates that stable, endogenous stimulus-induced supramolecular free radicals can trigger intracellular polymerization reactions, achieving a selective and effective antitumor therapy without conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Mian Tang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, and MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Zhiqing Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, and MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xingchen Tang
- Key
Lab of Organic Optoelectronics and Molecular Engineering, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - He Ma
- Key
Lab of Organic Optoelectronics and Molecular Engineering, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Beibei Xie
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, and MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Jiang-Fei Xu
- Key
Lab of Organic Optoelectronics and Molecular Engineering, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng Gao
- School
of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - David Bardelang
- CNRS,
ICR, AMUtech, Aix-Marseille University, Marseille F-13397, France
| | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, and MoE Frontiers Science Center for
Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
2
|
Suchorska-Woźniak P, Teterycz H. ZnO Hexagonal Nano- and Microplates Modified with Nanomaterials as a Gas-Sensitive Material for DMS Detection-Extended Studies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5690. [PMID: 39275601 PMCID: PMC11398269 DOI: 10.3390/s24175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors' previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere.
Collapse
Affiliation(s)
- Patrycja Suchorska-Woźniak
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Helena Teterycz
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
4
|
Park H, Kim D, Ma BS, Shin E, Kim Y, Kim T, Kim FS, Kim I, Kim BJ. High-Performance, Flexible NO 2 Chemiresistors Achieved by Design of Imine-Incorporated n-Type Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200270. [PMID: 35306754 PMCID: PMC9109064 DOI: 10.1002/advs.202200270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Indexed: 05/19/2023]
Abstract
Flexible and mechanically robust gas sensors are the key technologies for wearable and implantable electronics. Herein, the authors demonstrate the high-performance, flexible nitrogen dioxide (NO2 ) chemiresistors using a series of n-type conjugated polymers (CPs: PNDIT2/IM-x) and a polymer dopant (poly(ethyleneimine), PEI). Imine double bonds (C = N) are incorporated into the backbones of the CPs with different imine contents (x) to facilitate strong and selective interactions with NO2 . The PEI provides doping stability, enhanced electrical conductivity, and flexibility. As a result, the NO2 sensors with PNDIT2/IM-0.1 and PEI (1:1 by weight ratio) exhibit outstanding sensing performances, such as excellent sensitivity (ΔR/Rb = 240% @ 1 ppm), ultralow detection limit (0.1 ppm), high selectivity (ΔR/Rb < 8% @ 1 ppm of interfering analytes), and high stability, thereby outperforming other state-of-the-art CP-based chemiresistors. Furthermore, the thin film of PNDIT2/IM-0.1 and PEI blend is stretchable and mechanically robust, providing excellent flexibility to the NO2 sensors. Our study contributes to the rational design of high-performance flexible gas sensors.
Collapse
Affiliation(s)
- Hyeonjung Park
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Dong‐Ha Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Boo Soo Ma
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Euichul Shin
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Youngkwon Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Taek‐Soo Kim
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Felix Sunjoo Kim
- Department of Chemical Engineering and Materials ScienceChung‐Ang University (CAU)Seoul06974Republic of Korea
| | - Il‐Doo Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
5
|
Kim DH, Chong S, Park C, Ahn J, Jang JS, Kim J, Kim ID. Oxide/ZIF-8 Hybrid Nanofiber Yarns: Heightened Surface Activity for Exceptional Chemiresistive Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105869. [PMID: 34984744 DOI: 10.1002/adma.202105869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Though highly promising as powerful gas sensors, oxide semiconductor chemiresistors have low surface reactivity, which limits their selectivity, sensitivity, and reaction kinetics, particularly at room temperature (RT) operation. It is proposed that a hybrid design involving the nanostructuring of oxides and passivation with selective gas filtration layers can potentially overcome the issues with surface activity. Herein, unique bi-stacked heterogeneous layers are introduced; that is, nanostructured oxides covered by conformal nanoporous gas filters, on ultrahigh-density nanofiber (NF) yarns via sputter deposition with indium tin oxide (ITO) and subsequent self-assembly of zeolitic imidazolate framework (ZIF-8) nanocrystals. The NF yarn composed of ZIF-8-coated ITO films can offer heightened surface activity at RT because of high porosity, large surface area, and effective screening of interfering gases. As a case study, the hybrid sensor demonstrated remarkable sensing performances characterized by high NO selectivity, fast response/recovery kinetics (>60-fold improvement), and large responses (12.8-fold improvement @ 1 ppm) in comparison with pristine yarn@ITO, especially under highly humid conditions. Molecular modeling reveals an increased penetration ratio of NO over O2 to the ITO surface, indicating that NO oxidation is reliably prevented and that the secondary adsorption sites provided by the ZIF-8 facilitate the adsorption/desorption of NO, both to and from ITO.
Collapse
Affiliation(s)
- Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanggyu Chong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Soo Jang
- Center for Electronic Materials, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
|
7
|
Shin H, Jung WG, Kim DH, Jang JS, Kim YH, Koo WT, Bae J, Park C, Cho SH, Kim BJ, Kim ID. Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support via Carbon Nitride/SnO 2 Heterojunction Trapping. ACS NANO 2020; 14:11394-11405. [PMID: 32833436 DOI: 10.1021/acsnano.0c03687] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalysis with single-atom catalysts (SACs) exhibits outstanding reactivity and selectivity. However, fabrication of supports for the single atoms with structural versatility remains a challenge to be overcome, for further steps toward catalytic activity augmentation. Here, we demonstrate an effective synthetic approach for a Pt SAC stabilized on a controllable one-dimensional (1D) metal oxide nano-heterostructure support, by trapping the single atoms at heterojunctions of a carbon nitride/SnO2 heterostructure. With the ultrahigh specific surface area (54.29 m2 g-1) of the nanostructure, we obtained maximized catalytic active sites, as well as further catalytic enhancement achieved with the heterojunction between carbon nitride and SnO2. X-ray absorption fine structure analysis and HAADF-STEM analysis reveal a homogeneous atomic dispersion of Pt species between carbon nitride and SnO2 nanograins. This Pt SAC system with the 1D nano-heterostructure support exhibits high sensitivity and selectivity toward detection of formaldehyde gas among state-of-the-art gas sensors. Further ex situ TEM analysis confirms excellent thermal stability and sinter resistance of the heterojunction-immobilized Pt single atoms.
Collapse
Affiliation(s)
- Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wan-Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yoon Hwa Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Ho Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bong Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Lim YW, Jin J, Bae BS. Optically Transparent Multiscale Composite Films for Flexible and Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907143. [PMID: 32187405 DOI: 10.1002/adma.201907143] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Indexed: 06/10/2023]
Abstract
One of the key breakthroughs enabling flexible electronics with novel form factors is the deployment of flexible polymer films in place of brittle glass, which is one of the major structural materials for conventional electronic devices. Flexible electronics requires polymer films with the core properties of glass (i.e., dimensional stability and transparency) while retaining the pliability of the polymer, which, however, is fundamentally intractable due to the mutually exclusive nature of these characteristics. An overview of a transparent fiber-reinforced polymer, which is suggested as a potentially viable structural material for emerging flexible/wearable electronics, is provided. This includes material concept and fabrication and a brief review of recent research progress on its applications over the past decade.
Collapse
Affiliation(s)
- Young-Woo Lim
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungho Jin
- School of Materials Science and Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea
| | - Byeong-Soo Bae
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Jang JS, Lee J, Koo WT, Kim DH, Cho HJ, Shin H, Kim ID. Pore-Size-Tuned Graphene Oxide Membrane as a Selective Molecular Sieving Layer: Toward Ultraselective Chemiresistors. Anal Chem 2019; 92:957-965. [DOI: 10.1021/acs.analchem.9b03869] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Guan G, Han M. Functionalized Hybridization of 2D Nanomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901837. [PMID: 31832321 PMCID: PMC6891915 DOI: 10.1002/advs.201901837] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/14/2019] [Indexed: 05/06/2023]
Abstract
The discovery of graphene and subsequent verification of its unique properties have aroused great research interest to exploit diversified graphene-analogous 2D nanomaterials with fascinating physicochemical properties. Through either physical or chemical doping, linkage, adsorption, and hybridization with other functional species into or onto them, more novel/improved properties are readily created to extend/expand their functionalities and further achieve great performance. Here, various functionalized hybridizations by using different types of 2D nanomaterials are overviewed systematically with emphasis on their interaction formats (e.g., in-plane or inter plane), synergistic properties, and enhanced applications. As the most intensely investigated 2D materials in the post-graphene era, transition metal dichalcogenide nanosheets are comprehensively investigated through their element doping, physical/chemical functionalization, and nanohybridization. Meanwhile, representative hybrids with more types of nanosheets are also presented to understand their unique surface structures and address the special requirements for better applications. More excitingly, the van der Waals heterostructures of diverse 2D materials are specifically summarized to add more functionality or flexibility into 2D material systems. Finally, the current research status and faced challenges are discussed properly and several perspectives are elaborately given to accelerate the rational fabrication of varied and talented 2D hybrids.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular PlusTianjin UniversityTianjin300072P. R. China
| | - Ming‐Yong Han
- Institute of Materials Research and EngineeringA*STAR2 Fusionopolis WaySingapore138634Singapore
| |
Collapse
|
11
|
Trinh TND, La HC, Lee NY. Fully Integrated and Foldable Microdevice Encapsulated with Agarose for Long-Term Storage Potential for Point-of-Care Testing of Multiplex Foodborne Pathogens. ACS Sens 2019; 4:2754-2762. [PMID: 31502446 DOI: 10.1021/acssensors.9b01299] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we fabricated a fully integrated and foldable microdevice encapsulated with 2-hydroxyethyl agarose for long-term storage of reagents for the integration of isothermal amplification and subsequent colorimetric detection for the monitoring of multiplex foodborne pathogens. The microdevice comprises a reaction zone and a detection zone. Both zones were made of a thin polycarbonate film and sealed by an adhesive film to make the microdevice foldable. The 2-hydroxyethyl agarose with loop-mediated isothermal amplification (LAMP) reagents and silver nitrate were deposited in the reaction and detection chambers, respectively, for long-term maintenance of reagent activity. A thin graphene-based heater associated with a handheld battery was employed to supply a constant temperature for on-chip amplification for 30 min. To simplify the sample manipulation process, a folding motion was adopted to allow the loading of LAMP amplicons from the reaction to the detection chambers and a colorimetric strategy was used for simple visual read-out of the results on-site. Using the agarose, the reagents were successfully stored and the reagent activity was maintained for at least 45 days. Prior to performing multiplex detections, the spiked juice was thermally lysed and purified with polydopamine-coated paper. The amplifications of Salmonella spp. and Escherichia coli O157:H7 (E. coli O157:H7) were successfully demonstrated based on the stable isothermal condition attained by the heater. The microdevice can detect the low concentration of E. coli O157:H7 at 2.5 × 102 copies per mL. The introduced microdevice acts as a simple and user-friendly platform for the identification of foodborne pathogens, paving the way for the construction of a truly portable, read-out microdevice for use as a public healthcare monitoring device.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Hoang Chau La
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|