1
|
Głowacki MJ, Niedziałkowski P, Ryl J, Prześniak-Welenc M, Sawczak M, Prusik K, Ficek M, Janik M, Pyrchla K, Olewniczak M, Bojarski K, Czub J, Bogdanowicz R. Enhancing colloidal stability of nanodiamond via surface modification with dendritic molecules for optical sensing in physiological environments. J Colloid Interface Sci 2024; 675:236-250. [PMID: 38970910 DOI: 10.1016/j.jcis.2024.06.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated. Surfaces of 140-nm-sized nanodiamonds were functionalized with oxygen and carboxyl groups for grafting of hyperbranched dendritic polyglycerol via anionic ring-opening polymerization of glycidol. The modification was verified with Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Dynamic light scattering investigated colloidal stability in pH-diverse (2-12) solutions, concentrated phosphate-buffered saline, and cell culture media. Thermogravimetric analysis of nanodiamonds-protein incubations examined non-specific binding. Fluorescence emission was tested across pH conditions. Molecular dynamics simulations modeled interparticle interactions in ionic solutions. The hyperbranched polyglycerol grafting increased colloidal stability of nanodiamonds across diverse pH, high ionic media like 10 × concentrated phosphate-buffered saline, and physiological media like serum and cell culture medium. The hyperbranched polyglycerol suppressed non-specific protein adsorption while maintaining intensive fluorescence of nanodiamonds regardless of pH. Molecular modelling indicated reduced interparticle interactions in ionic solutions correlating with the improved colloidal stability.
Collapse
Affiliation(s)
- Maciej J Głowacki
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Paweł Niedziałkowski
- University of Gdańsk, Faculty of Chemistry, Department of Analytical Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jacek Ryl
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marta Prześniak-Welenc
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mirosław Sawczak
- Polish Academy of Sciences, The Szewalski Institute of Fluid-Flow Machinery, The Centre for Plasma and Laser Engineering, Fiszera 14, 80-231 Gdańsk, Poland
| | - Klaudia Prusik
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Ficek
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Monika Janik
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
| | - Krzysztof Pyrchla
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Olewniczak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Bojarski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Kromka A, Varga M, Aubrechtová Dragounová K, Babčenko O, Pfeifer R, Flatae AM, Sledz F, Akther F, Agio M, Potocký Š, Stehlík Š. High-Yield Production of SiV-Doped Nanodiamonds for Spectroscopy and Sensing Applications. ACS APPLIED NANO MATERIALS 2024; 7:24766-24777. [PMID: 39539806 PMCID: PMC11555635 DOI: 10.1021/acsanm.4c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Nanodiamonds (NDs) containing optically active centers have gained significant relevance as the material of choice for biological, optoelectronic, and quantum applications. However, current production methods lag behind their real needs. This study introduces two CVD-based approaches for fabricating NDs with optically active silicon-vacancy (SiV) color centers: bottom-up (BU) and top-down (TD) methods. The BU approach generates nanoporous diamond films with a core-shell structure, while the TD method employs molten-salt thermal etching to create uniform porous structures from nanocrystalline diamond films. Comprehensive characterization using advanced techniques revealed distinct morphologies and optical properties for each approach. The BU method yielded higher-quality diamond phases with top-surface incorporation of SiV centers, while the TD method demonstrated efficient nondiamond phase removal. Ultrasonic disintegration of both porous films produced NDs ranging from 40 to 500 nm, with unique morphologies characteristic of each approach. Photoluminescence measurements confirmed SiV centers (738 nm) in all NDs, exhibiting sensitivity to surface terminations, particularly in BU samples. Temperature-resolved spectroscopy shows the potential of the fabricated NDs for nano thermometry over a wide range of temperatures up to 100 °C. The zero-phonon line shows 0.022 ± 0.003 nm/K sensitivity, while the line width exhibits 0.068 ± 0.004 nm/K broadening. The presented BU and TD methods offer significant advantages over existing techniques, including streamlined production processes, high-yield ND synthesis with tailored properties, and the potential for scalable, cost-effective manufacturing.
Collapse
Affiliation(s)
- Alexander Kromka
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
| | - Marián Varga
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
- Institute
of Electrical Engineering, Slovak Academy
of Sciences, Dúbravská
Cesta 9, Bratislava 841
04, Slovakia
| | - Kateřina Aubrechtová Dragounová
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19, Prague 1, Prague 6 162 00, Czech Republic
| | - Oleg Babčenko
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
| | - Rene Pfeifer
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
| | - Assegid M. Flatae
- Laboratory
of Nano-Optics and Cμ, University
of Siegen, Walter-Flex-Str. 3, Siegen 57072, Germany
| | - Florian Sledz
- Laboratory
of Nano-Optics and Cμ, University
of Siegen, Walter-Flex-Str. 3, Siegen 57072, Germany
| | - Farzana Akther
- Laboratory
of Nano-Optics and Cμ, University
of Siegen, Walter-Flex-Str. 3, Siegen 57072, Germany
| | - Mario Agio
- Laboratory
of Nano-Optics and Cμ, University
of Siegen, Walter-Flex-Str. 3, Siegen 57072, Germany
- National
Institute of Optics (INO−CNR), Largo Enrico Fermi 6, Florence 50125, Italy
| | - Štěpán Potocký
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
| | - Štěpán Stehlík
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, Prague 6 162 00, Czech Republic
| |
Collapse
|
3
|
Rikiyama K, Maehara N, Abe H, Nishimura Y, Yukawa H, Kaminaga K, Igarashi R, Osada K. Quantification of Poly(ethylene glycol) Crowding on Nanodiamonds toward Quantum Biosensor for Improved Prevention Effects on Protein Adsorption and Lung Accumulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9471-9480. [PMID: 38649324 DOI: 10.1021/acs.langmuir.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information in vitro and in vivo. However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.
Collapse
Affiliation(s)
- Kazuaki Rikiyama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nanami Maehara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Hiroshi Abe
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yushi Nishimura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inageku, Chiba 263-8522, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Kawassaki R, Romano M, Klimuk Uchiyama M, Cardoso RM, Baptista M, Farsky SHP, Chaim KT, Guimarães RR, Araki K. Novel Gadolinium-Free Ultrasmall Nanostructured Positive Contrast for Magnetic Resonance Angiography and Imaging. NANO LETTERS 2023; 23:5497-5505. [PMID: 37300521 PMCID: PMC10312191 DOI: 10.1021/acs.nanolett.3c00665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nanostructured contrast agents are promising alternatives to Gd3+-based chelates in magnetic resonance (MR) imaging techniques. A novel ultrasmall paramagnetic nanoparticle (UPN) was strategically designed to maximize the number of exposed paramagnetic sites and r1 while minimizing r2, by decorating 3 nm titanium dioxide nanoparticles with suitable amounts of iron oxide. Its relaxometric parameters are comparable to those of gadoteric acid (GA) in agar phantoms, and the r2/r1 ratio of 1.38 at 3 T is close to the ideal unitary value. The strong and prolonged contrast enhancement of UPN before renal excretion was confirmed by T1-weighted MR images of Wistar rats after intravenous bolus injection. Those results associated with good biocompatibility indicate its high potential as an alternative blood-pool contrast agent to the GA gold standard for MR angiography, especially for patients with severe renal impairment.
Collapse
Affiliation(s)
- Rodrigo
Ken Kawassaki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mariana Romano
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayara Klimuk Uchiyama
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Roberta Mansini Cardoso
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Maurício
S. Baptista
- Laboratory
of Interfaces and Photoinduced Processes, Department of Biochemistry,
Institute of Chemistry, University of Sao
Paulo, Sao Paulo 05508-000, Brazil
| | - Sandra H. P. Farsky
- Laboratory
of Inflammation and Immunotoxicology, Department of Clinical and Toxicological
Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Khallil Taverna Chaim
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
- Imaging
Platform (PISA), Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Robson Raphael Guimarães
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Koiti Araki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Mayerhoefer E, Krueger A. Surface Control of Nanodiamond: From Homogeneous Termination to Complex Functional Architectures for Biomedical Applications. Acc Chem Res 2022; 55:3594-3604. [PMID: 36445945 DOI: 10.1021/acs.accounts.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interest in nanodiamond (ND) has been spurred by its unique properties such as high biocompatibility, versatile surface chemistry, and the possibility to apply it as drug delivery agent, cross-linker, or coating and for sensing applications when luminescent lattice defects such as the NV centers are present in the crystal lattice. Currently, nanodiamond has been used for targeted drug delivery, phototherapeutic applications, and sensing and imaging in cellular environments and in vitro. Furthermore, suitably functionalized nanodiamond is a promising material for tissue engineering applications. However, the application of nanodiamond has long been hampered by a number of obstacles and challenges met with commercially available nanodiamonds of different origins. A major issue is related to the strong agglomeration of the individual particles resulting in covalently linked aggregates with larger sizes and a broad size distribution. Furthermore, the surface termination of typical nanodiamond particles tends to be rather inhomogeneous, containing a multitude of different functional groups. The retention of functionality of immobilized moieties for bioapplications is often not known. And finally, the surface of nanodiamond possesses a strong propensity for nonspecific interaction, especially proteins from serum, cell fluids, or the culture media used for the incubation of cells with nanodiamond. The resulting protein corona influences the possibility to access functional moieties on the diamond surface and leads to a reduced reproducibility of observations in physiological environments and a limited attribution of effects to the presence of the functional moieties on the diamond surface. In this Account, we describe our efforts to address these challenges using multiple strategies mainly for the example of detonation nanodiamond (DND). First, a homogeneous size distribution of the nanoparticles and an initial surface termination with a unique type of atoms or groups can be achieved using mechanochemical methods and treatments with different reagents in both solution and gas phases. Reactions in liquid media typically lead to more uniform results as the entire surface of the particles becomes equally accessible. We have then worked on the development of different covalent linker strategies to accommodate the grafting needs of different functional moieties and thus to enable the production of orthogonally functionalized ND particles, which can be modified with multiple moieties in a controlled fashion. The noncovalent immobilization of functional units is equally useful as it permits the conservation of functionality for sensitive proteins, which denature upon covalent immobilization. In summary, our work aims to gain full control over the surface properties of diamond nanoparticles and to develop a toolbox of chemical methods to provide functionalized and tailored nanodiamond for a plethora of biomedical applications. Further research in the field of diamond functionalization will cover also the transfer of already existing methods to other types of diamond surfaces, the production of stoichiometrically functionalized particles, the covalent and dynamic self-assembly of nanodiamond particles, and the continuing development of suitable characterization techniques.
Collapse
Affiliation(s)
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Khare P, Conway JF, S Manickam D. Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells. Eur J Pharm Biopharm 2022; 180:238-250. [DOI: 10.1016/j.ejpb.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
|
7
|
Khan S, Sharifi M, Gleghorn JP, Babadaei MMN, Bloukh SH, Edis Z, Amin M, Bai Q, Ten Hagen TLM, Falahati M, Cho WC. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy. J Control Release 2022; 348:127-147. [PMID: 35660636 DOI: 10.1016/j.jconrel.2022.05.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been used in numerous applications as anticancer, antibacterial and antioxidant agents. Artificial engineering of protein interactions with NPs in biological systems is crucial to develop potential NPs for drug delivery and cancer nanotherapy. The protein corona (PC) on the NP surface, displays an interface between biomacromolecules and NPs, governing their pharmacokinetics and pharmacodynamics. Upon interaction of proteins with the NPs, their surface features are modified and they can easily be removed from the circulation by the mononuclear phagocytic system (MPS). PC properties heavily depend on the biological microenvironment and NP physicochemical parameters. Based on this context, we have surveyed different approaches that have been used for artificial engineering of the PC composition on NP surfaces. We discussed the effects of NP size, shape, surface modifications (PEGylation, self-peptide, other polymers), and protein pre-coating on the PC properties. Additionally, other factors including protein source and structure, intravenous injection and the subsequent shear flow, plasma protein gradients, temperature and local heat transfer, and washing media were considered in the context of their effects on the PC properties and overall target cellular effects. Moreover, the effects of NP-PC complexes on cancer cells based on cellular interactions, organization of intracellular PC (IPC), targeted drug delivery (TDD) and regulation of burst drug release profile of nanoplatforms, enhanced biocompatibility, and clinical applications were discussed followed by challenges and future perspective of the field. In conclusion, this paper can provide useful information to manipulate PC properties on the NP surface, thus trying to provide a literature survey to shorten their shipping from preclinical to clinical trials and to lay the basis for a personalized PC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, USA; Department of Biological Sciences, University of Delaware, Newark, USA
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mohammadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
8
|
Wu Q, Yin L, Yang Q, Yuan Y, Zhang C, Xu M, Yao J. Real-time tracking of colloidal stability based on collision behaviors probed by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 2022; 629:864-872. [DOI: 10.1016/j.jcis.2022.08.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 10/15/2022]
|
9
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
10
|
Shirley AJ, Schweeberg S, Waag T, Peindl M, Dandekar G, Walles H, Jakob F, Krueger A, Ebert R. The influence of differently functionalized nanodiamonds on proliferation, apoptosis and EMT/MET phenomena in 2D and 3D tumor cell cultures. J Mater Chem B 2021; 9:9395-9405. [PMID: 34734960 DOI: 10.1039/d1tb01739j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanodiamonds (ND) have been suggested to have several potential uses in biomedicine, since they are seemingly biocompatible. However, data about the biological effects of ND in physiological conditions are scarce. In this study, we observed that prostate cancer cells (LNCaP) and breast cancer cells (MDA-MB-231 and MCF-7) cultured with ND show morphological changes and altered gene and protein expression. In 2D we could detect only slight effects of ND on cell growth and apoptosis induction. Therefore, we applied different functionalized ND in a novel 3D cell culture model that reflects better tissue conditions compared to conventional 2D cell cultures. In 3D proliferation was reduced by all nanoparticles and benzoquinone functionalized ND induced cell death. As the used decellularized scaffold maintains the tissue architecture, we could also functionally investigate if nanoparticles induce cell migration into deeper layers and if they display markers of Mesenchymal Epithelial Transition (MET). We detected in more mesenchymal and invasive growing MDA-MB-231 cells less vimentin and increased levels of pan-cytokeratin expression after ND treatment, which indicates a MET induction. Our observations suggest that the presence of ND stimulates MET, with varying degrees of transition. The observation that ND do not support the opposite, EMT, is beneficial, since EMT is known to play a major role in tumor metastasis. However, a special focus should be placed on the characterization of biological effects to be able to guarantee the safety of ND in clinical use.
Collapse
Affiliation(s)
- Anup James Shirley
- Bernhard-Heine-Center for Locomotion Research, Department of Musculoskeletal Tissue Regeneration, Julius-Maximilians-Universität Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany. .,Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sarah Schweeberg
- Institute for Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Thilo Waag
- Institute for Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Matthias Peindl
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Gudrun Dandekar
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany.,Core Facility Tissue Engineering, Otto-v. Guericke University Magdeburg, Pfälzerstraße 2, 39106 Magdeburg, Germany
| | - Franz Jakob
- Bernhard-Heine-Center for Locomotion Research and Department for Functional Materials in Medicine and Dentistry, Brettreichstraße 11, 97074 Würzburg, Germany
| | - Anke Krueger
- Institute for Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Wilhelm Conrad Röntgen Center for Complex Materials (RCCM), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Regina Ebert
- Bernhard-Heine-Center for Locomotion Research, Department of Musculoskeletal Tissue Regeneration, Julius-Maximilians-Universität Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
11
|
Aprà P, Mino L, Battiato A, Olivero P, Sturari S, Valsania MC, Varzi V, Picollo F. Interaction of Nanodiamonds with Water: Impact of Surface Chemistry on Hydrophilicity, Aggregation and Electrical Properties. NANOMATERIALS 2021; 11:nano11102740. [PMID: 34685181 PMCID: PMC8538990 DOI: 10.3390/nano11102740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
In recent decades, nanodiamonds (NDs) have earned increasing interest in a wide variety of research fields, thanks to their excellent mechanical, chemical, and optical properties, together with the possibility of easily tuning their surface chemistry for the desired purpose. According to the application context, it is essential to acquire an extensive understanding of their interaction with water in terms of hydrophilicity, environmental adsorption, stability in solution, and impact on electrical properties. In this paper, we report on a systematic study of the effects of reducing and oxidizing thermal processes on ND surface water adsorption. Both detonation and milled NDs were analyzed by combining different techniques. Temperature-dependent infrared spectroscopy was employed to study ND surface chemistry and water adsorption, while dynamic light scattering allowed the evaluation of their behavior in solution. The influence of water adsorption on their electrical properties was also investigated and correlated with structural and optical information obtained via Raman/photoluminescence spectroscopy. In general, higher oxygen-containing surfaces exhibited higher hydrophilicity, better stability in solution, and higher electrical conduction, although for the latter the surface graphitic contribution was also crucial. Our results provide in-depth information on the hydrophilicity of NDs in relation to their surface chemical and physical properties, by also evaluating the impacts on their aggregation and electrical conductance.
Collapse
Affiliation(s)
- Pietro Aprà
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Lorenzo Mino
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Correspondence:
| | - Alfio Battiato
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Paolo Olivero
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Sofia Sturari
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
| | - Maria Carmen Valsania
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
| | - Veronica Varzi
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| | - Federico Picollo
- Physics Department, University of Torino, Via Pietro Giuria 1, 10125 Torino, Italy; (P.A.); (P.O.); (S.S.); (V.V.); (F.P.)
- “Nanostructured Interfaces and Surfaces” (NIS) Inter-Departmental Centre, University of Torino, Via Quarello 15/a, 10135 Torino, Italy;
- National Institute of Nuclear Physics, Section of Torino, Via Pietro Giuria 1, 10125 Torino, Italy;
| |
Collapse
|
12
|
Zhou Z, McDougald D, Meshaw R, Balyasnikova I, Zalutsky MR, Vaidyanathan G. Labeling single domain antibody fragments with 18F using a novel residualizing prosthetic agent - N-succinimidyl 3-(1-(2-(2-(2-(2-[ 18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate. Nucl Med Biol 2021; 100-101:24-35. [PMID: 34146837 PMCID: PMC8448961 DOI: 10.1016/j.nucmedbio.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Labeling single domain antibody fragments (sdAbs) with 18F is an attractive strategy for immunoPET. Earlier, we developed a residualizing label, N-succinimidyl 3-((4-(4-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]RL-I), synthesized via a click reaction for labeling sdAbs with 18F, that has attractive features but suffered from modest radiochemical yields and suboptimal hydrophobicity. Herein, we have evaluated the potential utility of an analogous agent, N-succinimidyl 3-(1-(2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate ([18F]SFETGMB; [18F]RL-III) designed to address these limitations. METHODS [18F]RL-III was synthesized by the click reaction between 3-((2,3-bis(tert-butoxycarbonyl)guanidino)methyl)-5-ethynylbenzoate and 1-azido-2-(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethane and subsequent deprotection. The anti-HER2 sdAbs 5F7 and 2Rs15d were labeled by conjugation with [18F]RL-III and compared in a paired-label fashion to the sdAbs labeled using N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) or N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB). The 18F-labeled sdAbs were evaluated in vitro using HER2-expressing breast and ovarian carcinoma cells (BT474/BT474M1 and SKOV-3) and in vivo in athymic mice bearing subcutaneous SKOV-3 or BT474 xenografts. PET imaging of athymic mice bearing either subcutaneous BT474 or intracranial BT474M1Br-Fluc xenografts after administration of [18F]RL-III-5F7 also was performed. RESULTS Radiochemical yields for the synthesis of Boc2-[18F]RL-III (21.5 ± 3.4%) were significantly higher than reported for Boc2-[18F]RL-I. The overall radiochemical yields for the synthesis of [18F]RL-III-2Rs15d and [18F]RL-III-5F7 from aqueous [18F]fluoride were 1.7 ± 0.7% and 3.8 ± 2.3%, respectively. Both sdAbs, labeled using [18F]RL-III, retained affinity and immunoreactivity to HER2. Uptake and internalization of [18F]RL-III-5F7 in HER2-expressing cells was higher than that seen for [18F]RL-III-2Rs15d. Although different xenograft models were used, [18F]RL-III-2Rs15d showed relatively high uptake in a number of normal tissues, while uptake of [18F]RL-III-5F7 was mainly in tumor and kidneys with minimal background activity. Concordant with the necropsy experiments, microPET imaging with [18F]RL-III-5F7 in the BT474 subcutaneous model demonstrated clear delineation of the tumor (12.2 ± 5.1% ID/g) with minimal background activity except in kidneys. A tumor uptake (max) of 0.98%ID/g and a tumor-to-normal brain ratio of 9.8:1 were observed for [18F]RL-III-5F7 in the intracranial model. CONCLUSIONS Although higher radiochemical yields than that reported for [18F]RL-I were obtained, considerable improvements are needed for this method to be of practical utility. Despite clear tumor delineation with [18F]RL-III-5F7 as early as 1 h, high activity levels in the kidneys remain a concern.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Irina Balyasnikova
- The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
13
|
Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal - endosomal escape in fluorescent nanodiamonds in different cells. NANOSCALE 2021; 13:13294-13300. [PMID: 34477735 DOI: 10.1039/d1nr02503a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Successful delivery of fluorescent nanodiamonds (FNDs) into the cytoplasm is essential to many biological applications. Other applications require FNDs to stay within the endosomes. The diversity of cellular uptake of FNDs and following endosomal escape are less explored. In this article, we quantify particle uptake at a single cell level. We report that FNDs enter into the cells gradually. The number of internalized FNDs per cell differs significantly for the cell lines we investigated at the same incubation time. In HeLa cells we do not see any significant endosomal escape. We also found a wide distribution of FND endosomal escape efficiency within the same cell type. However, compared with HeLa cells, FNDs in HUVECs can easily escape from the endosomes and less than 25% FNDs remained in the vesicles after 4 h incubation time. We believe this work can bring more attention to the diversity of the cells and provide potential guidelines for future studies.
Collapse
Affiliation(s)
- Yue Zhang
- University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Merz V, Merz J, Kirchner M, Lenhart J, Marder TB, Krueger A. Pyrene-Based "Turn-Off" Probe with Broad Detection Range for Cu 2+ , Pb 2+ and Hg 2+ Ions. Chemistry 2021; 27:8118-8126. [PMID: 33819362 PMCID: PMC8251986 DOI: 10.1002/chem.202100594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu2+ , Pb2+ and Hg2+ in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na+ , K+ , Ca2+ and Mg2+ . The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.
Collapse
Affiliation(s)
- Viktor Merz
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Julia Merz
- Institute for Inorganic ChemistryJulius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| | - Maximilian Kirchner
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Julian Lenhart
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| | - Anke Krueger
- Institute for Organic ChemistryJulius-Maximilians University WürzburgAm Hubland97074WürzburgGermany
- Wilhelm Conrad Röntgen Center for Complex Materials Research (RCCM)Julius-Maximilians University Würzburg, WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
15
|
Perona Martínez F, Nusantara AC, Chipaux M, Padamati SK, Schirhagl R. Nanodiamond Relaxometry-Based Detection of Free-Radical Species When Produced in Chemical Reactions in Biologically Relevant Conditions. ACS Sens 2020; 5:3862-3869. [PMID: 33269596 PMCID: PMC8651177 DOI: 10.1021/acssensors.0c01037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Diamond
magnetometry is a quantum sensing method involving detection
of magnetic resonances with nanoscale resolution. For instance, T1
relaxation measurements, inspired by equivalent concepts in magnetic
resonance imaging (MRI), provide a signal that is equivalent to T1
in conventional MRI but in a nanoscale environment. We use nanodiamonds
(between 40 and 120 nm) containing ensembles of specific defects called
nitrogen vacancy (NV) centers. To perform a T1 relaxation measurement,
we pump the NV center in the ground state (using a laser at 532 nm)
and observe how long the NV center can remain in this state. Here,
we use this method to provide real-time measurements of free radicals
when they are generated in a chemical reaction. Specifically, we focus
on the photolysis of H2O2 as well as the so-called
Haber–Weiss reaction. Both of these processes are important
reactions in biological environments. Unlike other fluorescent probes,
diamonds are able to determine spin noise from different species in
real time. We also investigate different diamond probes and their
ability to sense gadolinium spin labels. Although this study was performed
in a clean environment, we take into account the effects of salts
and proteins that are present in a biological environment. We conduct
our experiments with nanodiamonds, which are compatible with intracellular
measurements. We perform measurements between 0 and 108 nM, and we are able to reach detection limits down to the nanomolar
range and typically find T1 times of a few 100 μs. This is an
important step toward label-free nano-MRI signal quantification in
biological environments.
Collapse
Affiliation(s)
- Felipe Perona Martínez
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Anggrek Citra Nusantara
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Mayeul Chipaux
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandeep Kumar Padamati
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
16
|
Gu M, Toh TB, Hooi L, Lim JJ, Zhang X, Chow EKH. Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45427-45441. [PMID: 31718136 DOI: 10.1021/acsami.9b16323] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high mortality but limited therapeutic options. Epigenetic regulations including DNA methylation and histone modification control gene expressions and play a crucial role during tumorigenesis. G9a, also known as EHMT2 (euchromatic histone-lysine N-methyltransferase 2), is a histone methyltransferase predominantly responsible for dimethylation of histone H3 lysine 9 (H3K9). G9a has been shown to play a key role in promoting tumor progression. Recent studies have identified that G9a is a critical mediator of HCC pathogenesis. UNC0646 is a G9a inhibitor that has shown potent in vitro efficacy. However, due to its water insolubility, the in vivo efficacy of UNC0646 is not satisfactory. In this study, nanodiamonds (NDs) were utilized as a drug delivery platform to improve in vivo delivery of this small-molecule inhibitor. Our results showed that ND-UNC0646 complexes could be rapidly synthesized by physical adsorption, meanwhile possessing favorable drug delivery properties and was able to improve the dispersibility of UNC0646 in water, therefore making it amenable for intravenous administration. The release profile of UNC0646 from ND-UNC0646 was demonstrated to be pH-responsive. Moreover, ND-UNC0646 maintained the biological functionality of UNC0646, with higher efficacy in reducing H3K9 methylation as well as enhanced invasion suppressive effects. Most importantly, increased in vivo efficacy was demonstrated using an orthotopic HCC mouse model, which paves the way of translating this small-molecule inhibitor toward HCC treatment. Our work demonstrates the potential of NDs in the clinical application for HCC treatment.
Collapse
Affiliation(s)
- Mengjie Gu
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , 117600 , Singapore
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health , National University of Singapore , 117456 , Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
| | - Xiyun Zhang
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
- Department of Medicine, Yong Loo Lin School of Medicine , National University of Singapore , 119228 , Singapore
| | - Edward Kai-Hua Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine , National University of Singapore , 117600 , Singapore
- Cancer Science Institute of Singapore , National University of Singapore , 117599 , Singapore
- The N.1 Institute for Health , National University of Singapore , 117456 , Singapore
| |
Collapse
|
17
|
Yang N, Zhang H. Nanocarbon Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905367. [PMID: 31773902 DOI: 10.1002/smll.201905367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Sigaeva A, Morita A, Hemelaar SR, Schirhagl R. Nanodiamond uptake in colon cancer cells: the influence of direction and trypsin-EDTA treatment. NANOSCALE 2019; 11:17357-17367. [PMID: 31517372 DOI: 10.1039/c9nr04228h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are routinely used in cell biology. They deliver drugs or function as labels or sensors. For many of these applications it is essential that the nanoparticles enter the cells. While some cell types readily ingest all kinds of particles, others just don't. We report that uptake can be enhanced for some cells if the particles are administered from the basolateral side of the cells (in this case from below). Compared to apical uptake (from above), we report an 8-fold increase in the number of fluorescent nanodiamonds internalized by the colon cancer cell line HT29. Up to 96% of the cells treated by a modified protocol contain at least one nanodiamond, whereas in the control group we could observe nanodiamonds in less than half of the cells. We were also able to show that simple treatment of cell clusters with trypsin-EDTA leads to the same enhancement of the nanodiamond uptake as seeding the cells on top of the nanoparticles. Although our study is focused on nanodiamonds in HT29 cells, we believe that this method could also be applicable for other nanoparticles and cells with a specific directionality.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - Aryan Morita
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands. and Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah, Mada, Jl Denta 1, 55281 Yogyakarta, Indonesia
| | - Simon R Hemelaar
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| | - R Schirhagl
- University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Gronigen, The Netherlands.
| |
Collapse
|