1
|
Chen T, Ma J, Liang C, Luo Y, Xu X, Hu J, Chen J, Ding W. 3D-Porous Electrocatalyst with Tip-Enhanced Electric Field Effect Enables High-Performance Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418527. [PMID: 39801204 DOI: 10.1002/adma.202418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Indexed: 03/06/2025]
Abstract
Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the H3O+ supply rate during HER, resulting in ∼1.6 times higher H3O+ concentration around the Pt nanocone than that in electrolyte. X-ray computed tomography and molecular dynamic simulation demonstrate the diffusion coefficient of H3O+ in 3D TiAl framework surpasses that in commercial carbon support by more than 16.7 times. Consequently, Pt/TiAl-nanocone exhibits a high mass activity of 17.2 mA cm-2 Pt at an overpotential of 100 mV with an ultrahigh TOF value of 42.9 atom-1 s-1. In a proton exchange membrane water electrolyzer, the Pt/TiAl-nanocone cathode achieves an industrial-scale current density of 1.0 A cm-2 with a cell voltage of 1.88 V at 60 °C and can operate stably for at least 800 h with a sluggish voltage decay rate of 137 µV h-1.
Collapse
Affiliation(s)
- Teng Chen
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jun Ma
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Chenjia Liang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yi Luo
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Xin Xu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Jianqiang Hu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Jie Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
2
|
Liu Y, Zhu Z, Wang P, Deng Z, Niu J, Sawada Y, Saito N. Platinum nanoparticles wrapped in carbon-dot-films as oxygen reduction reaction catalysts prepared by solution plasma sputtering. NANOSCALE ADVANCES 2025; 7:1048-1060. [PMID: 39723234 PMCID: PMC11667578 DOI: 10.1039/d4na00818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Fuel cells have become increasingly important in recent years because of their high energy efficiency and low environmental impact. However, key challenges remain in the widespread adoption of fuel-cell vehicles, including reducing Pt usage in catalysts and improving their durability. In this study, a high-performance Pt@carbon-dot-film core-shell catalyst was successfully synthesized using a nonequilibrium reaction field, i.e., solution plasma (SP) process, by adjusting the electrolyte pH. Four pH solutions (pH = 4.4, 7, 8, and 11) were employed as the discharge liquid environment for the SP process. The catalyst synthesized in the pH = 8 solution exhibited a mass activity of approximately 500 mA mg-1, which was twice as high as that of the commercial Pt/C catalyst (256 mA mg-1) with the same loading amount. The onset and half-wave potentials were 0.99 and 0.89 V, respectively, both of which exceeded those of commercial Pt/C catalysts (0.95 and 0.86 V, respectively). Furthermore, the enhanced catalytic performance corresponded to the Pt/C bonding between Pt and the carbon shell generated during the SP process.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhunda Zhu
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Pengfei Wang
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhuoya Deng
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Jiangqi Niu
- Institute of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Sawada
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Institute of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Institute of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Department of International Collaborative Program in Sustainable Materials and Technology for Industries Between Nagoya University and Chulalongkorn University, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Conjoint Research Laboratory in Nagoya University, Shinshu University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
3
|
Li H, Li H, Du M, Zhou E, Leow WR, Liu M. A perspective on field-effect in energy and environmental catalysis. Chem Sci 2025; 16:1506-1527. [PMID: 39759941 PMCID: PMC11694487 DOI: 10.1039/d4sc07740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO2 reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling. Field-effect catalysis offers multiple advantages, such as enhancing localized reactant concentration, facilitating mass transfer, improving reactant adsorption, modifying electronic excitation and work functions, and enabling efficient charge transfer and separation. This review begins by defining and classifying field effects in catalysis, followed by an in-depth discussion on their roles and potential to guide further exploration of field-effect catalysis. To elucidate the theory-structure-activity relationship, we explore corresponding reaction mechanisms, modification strategies, and catalytic properties, highlighting their relevance to sustainable energy and environmental catalysis applications. Lastly, we offer perspectives on potential challenges that field-effect catalysis may face, aiming to provide a comprehensive understanding and future direction for this emerging area.
Collapse
Affiliation(s)
- HuangJingWei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| | - Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- College of Chemical and Materials Engineering, Xuchang University Xuchang Henan 461000 P. R. China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
4
|
Du Y, Wang R, Huang T, Yang X, Yan S, Zou Z. Thermal Migration to Recover Spent Pt/C Catalyst. CHEMSUSCHEM 2025; 18:e202400956. [PMID: 39103317 DOI: 10.1002/cssc.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Recovery of spent Pt/C catalyst is a sustainable low-cost route to promote large-scale application of hydrogen fuel cells. Here, we report a thermal migration strategy to recover the spent Pt/C. In this route, the ZIF-8 is used to produce nitrogen doped porous carbon (NC) with abundant pyrimidine nitrogen sites as the new support. Subsequently, the spent Pt/C, NC, and NH4Cl etching reagent are mixed and heated at 900 °C to thermally migrate Pt from Pt/C onto NC with the help of NH4Cl etching reagent. The thermal-volatilized Pt tends to be captured by the pyrimidine nitrogen sites of NC support, thus producing the Pt clusters or 4-5 nm Pt particles. The recovered Pt/NC catalyst exhibits the highly stable oxygen reduction activities with a mass activity of 0.6 A mgPt -1 after 30000-cycle accelerated durability test.
Collapse
Affiliation(s)
- Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Ran Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Tao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Xupin Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, Jiangsu, P. R. China
| |
Collapse
|
5
|
Peng W, Chen R, Liu X, Tan H, Yin L, Hou F, Yang D, Liang J. Ultra-Rapid Electrocatalytic H 2O 2 Fabrication over Mono-Species and High-Density Polypyrrolic-N Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403261. [PMID: 39031855 DOI: 10.1002/smll.202403261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production via two-electron oxygen reduction reaction (2e--ORR) features energy-saving and eco-friendly characteristics, making it a promising alternative to the anthraquinone oxidation process. However, the common existence of numerous 2e--ORR-inactive sites/species on electrocatalysts tends to catalyze side reactions, especially under low potentials, which compromises energy efficiency and limits H2O2 yield. Addressing this, a high surface density of mono-species pyrrolic nitrogen configurations is formed over a polypyrrole@carbon nanotube composite. Thermodynamic and kinetic calculation and experimental investigation collaboratively confirm that these densely distributed and highly selective active sites effectively promote high-rate 2e--ORR electrocatalysis and inhibit side reactions over a wide potential range. Consequently, an ultra-high and stable H2O2 yield of up to 67.9/51.2 mol g-1 h-1 has been achieved on this material at a current density of 200/120 mA cm-1, corresponding Faradaic efficiency of 72.8/91.5%. A maximum H2O2 concentration of 13.47 g L-1 can be accumulated at a current density of 80 mA cm-1 with satisfactory stability. The strategy of surface active site densification thus provides a promising and universal avenue toward designing highly active and efficient electrocatalysts for 2e--ORR as well as a series of other similar electrochemical processes.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Rui Chen
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoqing Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haotian Tan
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - De'an Yang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Jia C, Sun Q, Liu R, Mao G, Maschmeyer T, Gooding JJ, Zhang T, Dai L, Zhao C. Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404659. [PMID: 38870958 DOI: 10.1002/adma.202404659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Single-atom electrocatalysts (SACs) are a class of promising materials for driving electrochemical energy conversion reactions due to their intrinsic advantages, including maximum metal utilization, well-defined active structures, and strong interface effects. However, SACs have not reached full commercialization for broad industrial applications. This review summarizes recent research achievements in the design of SACs for crucial electrocatalytic reactions on their active sites, coordination, and substrates, as well as the synthesis methods. The key challenges facing SACs in activity, selectivity, stability, and scalability, are highlighted. Furthermore, it is pointed out the new strategies to address these challenges including increasing intrinsic activity of metal sites, enhancing the utilization of metal sites, improving the stability, optimizing the local environment, developing new fabrication techniques, leveraging insights from theoretical studies, and expanding potential applications. Finally, the views are offered on the future direction of single-atom electrocatalysis toward commercialization.
Collapse
Affiliation(s)
- Chen Jia
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Qian Sun
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruirui Liu
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
7
|
Küspert S, Campbell IE, Zeng Z, Balaghi SE, Ortlieb N, Thomann R, Knäbbeler-Buß M, Allen CS, Mohney SE, Fischer A. Ultrasmall and Highly Dispersed Pt Entities Deposited on Mesoporous N-doped Carbon Nanospheres by Pulsed CVD for Improved HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311260. [PMID: 38634299 DOI: 10.1002/smll.202311260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Vapor-based deposition techniques are emerging approaches for the design of carbon-supported metal powder electrocatalysts with tailored catalyst entities, sizes, and dispersions. Herein, a pulsed CVD (Pt-pCVD) approach is employed to deposit different Pt entities on mesoporous N-doped carbon (MPNC) nanospheres to design high-performance hydrogen evolution reaction (HER) electrocatalysts. The influence of consecutive precursor pulse number (50-250) and deposition temperature (225-300 °C) are investigated. The Pt-pCVD process results in highly dispersed ultrasmall Pt clusters (≈1 nm in size) and Pt single atoms, while under certain conditions few larger Pt nanoparticles are formed. The best MPNC-Pt-pCVD electrocatalyst prepared in this work (250 pulses, 250 °C) reveals a Pt HER mass activity of 22.2 ± 1.2 A mg-1 Pt at -50 mV versus the reversible hydrogen electrode (RHE), thereby outperforming a commercially available Pt/C electrocatalyst by 40% as a result of the increased Pt utilization. Remarkably, after optimization of the Pt electrode loading, an ultrahigh Pt mass activity of 56 ± 2 A mg-1 Pt at -50 mV versus RHE is found, which is among the highest Pt mass activities of Pt single atom and cluster-based electrocatalysts reported so far.
Collapse
Affiliation(s)
- Sven Küspert
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| | - Ian E Campbell
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Zhiqiang Zeng
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
| | - S Esmael Balaghi
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Niklas Ortlieb
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Markus Knäbbeler-Buß
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Suzanne E Mohney
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstraße 19, 79104, Freiburg, Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry (IAAC), University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Cluster of Excellence livMatS, Cluster of Excellence livMatS, University of Freiburg, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
8
|
Sun B, Lv H, Xu Q, Tong P, Qiao P, Tian H, Xia H. Island-in-Sea Structured Pt 3Fe Nanoparticles-in-Fe Single Atoms Loaded in Carbon Materials as Superior Electrocatalysts toward Alkaline HER and Acidic ORR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400240. [PMID: 38593333 DOI: 10.1002/smll.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Benteng Sun
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hang Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Qi Xu
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Peiran Tong
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
9
|
Zhou Y, Li J, Wu Q, Wang N, Xing L, Wang L, Du L, Ye S. Decoupling the Synergy Between PGM and PGM-Free Moieties toward Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312011. [PMID: 38431933 DOI: 10.1002/smll.202312011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Recently, coupling the conventional low Pt-group-metal (low-PGM, LP) and emerging PGM-free (PF) moiety to form a composite LP/PF catalyst is proposed to be an advanced strategy to improve the intrinsic activity and stability of oxygen reduction reaction (ORR) catalysts. Milestones in terms of ORR mass activity are created by this type of catalyst. However, the specific synergy between LP and PF moieties has not been well elucidated. Herein, two model catalysts are synthesized, i.e., atomically dispersed Co/N/C supporting Pt single atoms (Co/N/C@Pt-SAs) and PtCo nanoparticles (Co/N/C@PtCo-NPs). Interestingly, the Co/N/C@PtCo-NPs catalyst presents higher ORR mass activity prior to Co/N/C@Pt-SAs. This is theoretically due to the dual "built-in electric field" in Co/N/C@PtCo-NPs: one electric field with a direction from Pt to Co in NPs and another from Pt to Co/N/C; that is, Pt gains higher electron density in Co/N/C@PtCo-NPs than that in Co/N/C@Pt-SAs, thus forming an asymmetric electron cloud, and regulating the adsorption and activation of oxygen-containing species. In addition, the existence of Co significantly decreases the average valence state of PtCo NPs, indicating a stronger affinity between PtCo NPs and Co/N/C substrate, to account for the enhanced stability.
Collapse
Affiliation(s)
- Yangdong Zhou
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
| | - Jiayang Li
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
| | - Qiaojing Wu
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
| | - Ning Wang
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
| | - Lixin Xing
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
| | - Siyu Ye
- Huangpu Hydrogen Energy Innovation Centre/School of Chemistry and Chemical Engineering, Guangzhou University, Wai Huan Xi Road 230, Guangzhou, 510006, P. R. China
- SinoHykey Technology Company Ltd., 8 Hongyuan Road, Huangpu District, Guangzhou, 510760, P. R. China
| |
Collapse
|
10
|
Han Y, Ma Z, Wang X, Sun G. Fabrication of N and S co-doped lignin-based porous carbon aerogels loaded with FeCo alloys and their application to oxygen evolution and reduction reactions in Zn-air batteries. Int J Biol Macromol 2024; 273:132961. [PMID: 38848846 DOI: 10.1016/j.ijbiomac.2024.132961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Zn-air batteries are a highly promising clean energy sustainable conversion technology, and the design of dual-function electrocatalysts with excellent activity and stability is crucial for their development. In this work, FeCo alloy loaded biomass-based N and S co-doped carbon aerogels (FeCo@NS-LCA) were fabricated from chitosan and lignosulfonate-metal chelates via liquid nitrogen pre-frozen synergistic high-temperature carbonization with application in electrocatalytic reactions. The abundant oxygen-containing functional groups on lignosulfonates have a chelating effect on metal ions, which can avoid the aggregation of metal nanoparticles during carbonation and catalysis, facilitating the construction of a nanoconfinement catalytic system with biomass carbon as the domain-limiting body and FeCo nanoparticles as the active sites. FeCo@NS-LCA exhibited catalytic activity (E1/2 = 0.87 V, JL = 5.7 mA cm-2) comparable to the commercial Pt/C in the oxygen reduction reaction (ORR), excellent resistance to methanol toxicity and stability. Meanwhile, the overpotential of oxygen evolution reaction (OER) was 324 mV, close to that of commercial RuO2 catalysts (351 mV). This study utilizes the coordination action of lignosulfonate to provide a novel and environmentally friendly method for the preparation of confined nano-catalysts and provides a new perspective for the high-value utilization of biomass resources.
Collapse
Affiliation(s)
- Ying Han
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Ma
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guangwei Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
12
|
Yang B, Xiang Z. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS NANO 2024; 18:11598-11630. [PMID: 38669279 DOI: 10.1021/acsnano.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cells (PEMFCs), which is the place where the reaction occurrence, the multiphase material transfer and the energy conversion, and the development of MEA with high activity and long stability are crucial for the practical application of PEMFCs. Currently, efforts are devoted to developing the regulation of MEA nanostructure engineering, which is believed to have advantages in improving catalyst utilization, maximizing three-phase boundaries, enhancing mass transport, and improving operational stability. This work reviews recent research progress on platinum group metal (PGM) and PGM-free catalysts with multidimensional nanostructures, catalyst layers (CLs), and nano-MEAs for PEMFCs, emphasizing the importance of structure-function relationships, aiming to guide the further development of the performance for PEMFCs. Then the design strategy of the MEA interface is summarized systematically. In addition, the application of in situ and operational characterization techniques to adequately identify current density distributions, hot spots, and water management visualization of MEAs is also discussed. Finally, the limitations of nanostructured MEA research are discussed and future promising research directions are proposed. This paper aims to provide valuable insights into the fundamental science and technical engineering of efficient MEA interfaces for PEMFCs.
Collapse
Affiliation(s)
- Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
13
|
Cheng G, Chen F, Li S, Hu Y, Dai Z, Hu Z, Gan Z, Sun Y, Zheng X. Precise design of dual active-site catalysts for synergistic catalytic therapy of tumors. J Mater Chem B 2024; 12:1512-1522. [PMID: 38251988 DOI: 10.1039/d3tb02145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A proven and promising method to improve the catalytic performance of single-atom catalysts through the interaction between bimetallic atoms to change the active surface sites or adjust the catalytic sites of reactants is reported. In this work, we used an iron-platinum bimetallic reagent as the metal source to precisely synthesise covalent organic framework-derived diatomic catalysts (FePt-DAC/NC). Benefiting from the coordination between the two metal atoms, the presence of Pt single atoms can successfully regulate Fe-N3 activity. FePt-DAC/NC exhibited a stronger ability to catalyze H2O2 to produce toxic hydroxyl radicals than Fe single-atom catalysts (Fe-SA/NC) to achieve chemodynamic therapy of tumors (the catalytic efficiency improved by 186.4%). At the same time, under the irradiation of an 808 nm laser, FePt-DAC/NC exhibited efficient photothermal conversion efficiency to achieve photothermal therapy of tumors. Both in vitro and in vivo results indicate that FePt-DAC/NC can efficiently suppress tumor cell growth by a synergistic therapeutic effect with photothermally augmented nanocatalytic therapy. This novel bimetallic dual active-site monodisperse catalyst provides an important example for the application of single-atom catalysts in the biomedical field, highlighting its promising clinical potential.
Collapse
Affiliation(s)
- Guodong Cheng
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250013, P. R. China
| | - Fuying Chen
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Shulian Li
- Linyi Cancer Hospital, Linyi, 272067, P. R. China
| | - Yu Hu
- Zhucheng City People's Hospital, Zhucheng, 262200, P. R. China
| | - Zhichao Dai
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Zunfu Hu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Zibao Gan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Yunqiang Sun
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250013, P. R. China
| |
Collapse
|
14
|
Cheng Z, Yang Y, Wang P, Wang P, Yang J, Wang D, Chen Q. Optimizing Hydrogen and Hydroxyl Adsorption over Ru/WO 2.9 Metal/Metalloid Heterostructure Electrocatalysts for Highly Efficient and Stable Hydrogen Oxidation Reactions in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2307780. [PMID: 38168535 DOI: 10.1002/smll.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Indexed: 01/05/2024]
Abstract
The development of high-performance, stable and platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline media is crucial for the commercial application of anion exchange membrane fuel cells (AEMFCs). Ruthenium, as an emerging HOR electrocatalyst with a price advantage over platinum, still needs to solve the problems of low intrinsic activity and easy oxidation. Herein, Ru nanoparticles are anchored on the oxygen-vacancy-rich metalloid WO2.9 by interfacial engineering to create abundant and efficient Ru and WO2.9 interfacial active sites for accelerated HOR in alkaline media. Ru/WO2.9 /C displays excellent catalytic activity with mass activity (8.29 A mgNM -1 ) and specific activity (1.32 mA cmNM -2 ), which are 2.5/3.3 and 21.8/8.3 times that of PtRu/C and Pt/C, respectively. Moreover, Ru/WO2.9 /C exhibits excellent CO tolerance and operational stability. Experimental and theoretical studies reveal that the improved charge transfer from Ru to WO2.9 in the metal/metalloid heterostructure significantly tune the electronic structure of Ru sites and optimize the hydrogen binding energy (HBE) of Ru. While, WO2.9 provides abundant hydroxyl adsorption sites. Therefore, the equilibrium adsorption of hydrogen and hydroxyl at the interface of Ru/WO2.9 will be realized, and the oxidation of metal Ru would be avoided, thereby achieving excellent HOR activity and durability.
Collapse
Affiliation(s)
- Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
15
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Chai L, Song J, Kumar A, Miao R, Sun Y, Liu X, Yasin G, Li X, Pan J. Bimetallic-MOF Derived Carbon with Single Pt Anchored C4 Atomic Group Constructing Super Fuel Cell with Ultrahigh Power Density And Self-Change Ability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308989. [PMID: 37966064 DOI: 10.1002/adma.202308989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (PtSA /HPCNR). The PtSA-1.74 /HPCNR-based SFC has a 3.4-time higher transient specific power density and 13.3-time longer discharge time with unique in situ self-charge and energy storage ability than 20% Pt/C-based FCs. X-ray absorption fine structure, aberration-corrected high-angle annular dark-field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single-atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid " ORR+EDLC" parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra-low Pt loading.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinlu Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anuj Kumar
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rui Miao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ghulam Yasin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, 710048, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Chen W, Zhu X, Wei W, Chen H, Dong T, Wang R, Liu M, Ken Ostrikov K, Peng P, Zang SQ. Neighboring Platinum Atomic Sites Activate Platinum-Cobalt Nanoclusters as High-Performance ORR/OER/HER Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304294. [PMID: 37490529 DOI: 10.1002/smll.202304294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The rational design of efficient and multifunctional electrocatalysts for energy conversion devices is one of the major challenges for clean and renewable energy transition. Herein, the local electronic structure of cobalt-platinum nanoclusters is regulated by adjacent platinum atomic site encapsulated in N-doped hollow carbon nanotubes (PtSA -PtCo NCs/N-CNTs) by pyrolysis of melamine-orientation-induced zeolite imidazole metal-organic frameworks (ZIF-67) with thimbleful platinum doping. The introduction of melamine can reactivate adjacent carbon atoms and initiate the oriented growth of nitrogen-doped carbon nanotubes. The systematic analysis suggests the significant role of thimbleful neighboring low-coordinated Pt─N2 in altering the localized electronic structure of PtCo nanoclusters. The optimized PtSA -PtCo NCs/N-CNTs-900 exhibit excellent hydrogen evolution reaction (HER)/oxygen evolution reaction (OER)/oxygen reduction reaction (ORR)/ catalytic performance reaching the current density of 10 mA cm-2 in 1 m KOH under the low 47 (HER) and 252 mV (OER) overpotentials, and a high half-wave potential of 0.86 and 0.89 V (ORR) in 0.1 m KOH and 0.1 m HClO4 , respectively. Remarkably, the PtSA -PtCo NC/N-CNT-900 also presents outstanding catalytic performances toward water splitting and rechargeable Zn-air batteries. The theoretical calculations reveal that optimal regulation of the electronic structure of PtCo nanoclusters by thimbleful neighboring Pt atomic reduces the reaction energy barrier in electrochemical process, facilitating the ORR/OER/HER performance.
Collapse
Affiliation(s)
- Wenxia Chen
- School of Chemistry and Chemical Engineering, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Haoran Chen
- School of Chemistry and Chemical Engineering, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Tianhao Dong
- School of Chemistry and Chemical Engineering, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Meng Liu
- School of Chemistry and Chemical Engineering, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu, Henan, 476000, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
18
|
Jang S, Kang YS, Kim D, Park S, Seol C, Lee S, Kim SM, Yoo SJ. Multiscale Architectured Membranes, Electrodes, and Transport Layers for Next-Generation Polymer Electrolyte Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204902. [PMID: 36222387 DOI: 10.1002/adma.202204902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Over the past few decades, considerable advances have been achieved in polymer electrolyte membrane fuel cells (PEMFCs) based on the development of material technology. Recently, an emerging multiscale architecturing technology covering nanometer, micrometer, and millimeter scales has been regarded as an alternative strategy to overcome the hindrance to achieving high-performance and reliable PEMFCs. This review summarizes the recent progress in the key components of PEMFCs based on a novel architecture strategy. In the first section, diverse architectural methods for patterning the membrane surface with random, single-scale, and multiscale structures as well as their efficacy for improving catalyst utilization, charge transport, and water management are discussed. In the subsequent section, the electrode structures designed with 1D and 3D multiscale structures to enable low Pt usage, improve oxygen transport, and achieve high electrode durability are elucidated. Finally, recent advances in the architectured transport layer for improving mass transportation including pore gradient, perforation, and patterned wettability for gas diffusion layer and 3D structured/engineered flow fields are described.
Collapse
Affiliation(s)
- Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Yun Sik Kang
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea
| | - Dohoon Kim
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Subin Park
- Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Changwook Seol
- Department of Mechanical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungchul Lee
- Fuel Cell Core Parts Development Cell, Hyundai Mobis Co. Ltd., Uiwang, 16082, Republic of Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
19
|
Chen Z, Li X, Zhao J, Zhang S, Wang J, Zhang H, Zhang J, Dong Q, Zhang W, Hu W, Han X. Stabilizing Pt Single Atoms through Pt-Se Electron Bridges on Vacancy-enriched Nickel Selenide for Efficient Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202308686. [PMID: 37503553 DOI: 10.1002/anie.202308686] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Rational design of Pt single-atom catalysts provides a promising strategy to significantly improve the electrocatalytic activity for hydrogen evolution reaction. In this work, we presented a novel and efficient strategy for utilizing the low electron-density region of substrate to effectively trap and confine high electron-density metal atoms. The Pt single-atom catalyst supported by nickel selenide with rich vacancies was prepared via a hydrothermal-impregnation stepwise approach. Through experimental testation and DFT theoretical calculation, we confirm that Pt single atoms are well distributed at cationic vacancies of nickel selenide with loading amount of 3.2 wt. %. Moreover, the atomic Pt combined with the high electronegative Se to form Pt-Se bond as a "bridge" between single atoms and substrate for fast electron translation. This novel catalyst shows an extremely low overpotential of 45 mV at 10 mA cm-2 and an excellent stability over 120 h. Furthermore, the nickel selenide supported Pt SACs exhibits long-term stability for practical application, which maintains a high current density of 390 mA cm-2 over 80 h with a retention of 99 %. This work points a promising direction for designing single atoms catalysts with high catalytic activity and stability for advanced green energy conversion technologies.
Collapse
Affiliation(s)
- Zanyu Chen
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaopeng Li
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Jun Zhao
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Shiyu Zhang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiajun Wang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Hong Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Jinfeng Zhang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Qiujiang Dong
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Wanxing Zhang
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
20
|
Qi C, Wang W, Dong Y. Synthesis of Se single atoms on nitrogen-doped carbon as novel electrocatalyst for sensitive nonenzymatic sensing of hydrogen peroxide. Anal Bioanal Chem 2023; 415:5391-5401. [PMID: 37432443 DOI: 10.1007/s00216-023-04814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Single-atom catalysts received increasing attention due to their maximum atom utilization efficiency. However, metal-free single atoms have not been used to construct electrochemical sensing interfaces. In this work, we demonstrated the use of Se single atoms (SA) as electrocatalyst for sensitive electrochemical nonenzymatic detection of H2O2. Se SA was synthesized and anchored on nitrogen-doped carbon (Se SA/NC) via a high-temperature reduction strategy. The structural properties of Se SA/NC were characterized by transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical techniques. The results showed that Se atoms were uniformly distributed on the surface of the NC. The obtained SA catalyst exhibited excellent electrocatalytic activity toward H2O2 reduction, and can be used to detect H2O2 in a wide linear range from 0.04 mM to 11.1 mM with a low detection limit of 0.018 mM and high sensitivity of 403.9 µA mM-1 cm-2. Moreover, the sensor can be used for the quantification of H2O2 concentration in real disinfectant samples. This work is of great significance for expanding the application of nonmetallic single-atom catalysts in the field of electrochemical sensing. Se single atoms (Se SA) as novel electrocatalyst were synthesized and anchored on nitrogen-doped carbon (NC) for sensitive electrochemical nonenzymatic detection of H2O2.
Collapse
Affiliation(s)
- Chengcheng Qi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
- School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
21
|
Guo F, Zhang Z, Chen R, Tan Y, Wu W, Wang Z, Zeng T, Zhu W, Lin C, Cheng N. Dual roles of sub-nanometer NiO in alkaline hydrogen evolution reaction: breaking the Volmer limitation and optimizing d-orbital electronic configuration. MATERIALS HORIZONS 2023; 10:2913-2920. [PMID: 37158051 DOI: 10.1039/d3mh00416c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pt-based nanoclusters toward the hydrogen evolution reaction (HER) remain the most promising electrocatalysts. However, the sluggish alkaline Volmer-step kinetics and the high-cost have hampered progress in developing high-performance HER catalysts. Herein, we propose to construct sub-nanometer NiO to tune the d-orbital electronic structure of nanocluster-level Pt for breaking the Volmer-step limitation and reducing the Pt-loading. Theoretical simulations firstly suggest that electron transfer from NiO to Pt nanoclusters could downshift the Ed-band of Pt and result in the well-optimized adsorption/desorption strength of the hydrogen intermediate (H*), therefore accelerating the hydrogen generation rate. NiO and Pt nanoclusters confined into the inherent pores of N-doped carbon derived from ZIF-8 (Pt/NiO/NPC) were designed to realize the structure of computational prediction and boost the alkaline hydrogen evolution. The optimal 1.5%Pt/NiO/NPC exhibited an excellent HER performance and stability with a low Tafel slope (only 22.5 mv dec-1) and an overpotential of 25.2 mV at 10 mA cm-2. Importantly, the 1.5%Pt/NiO/NPC possesses a mass activity of 17.37 A mg-1 at the overpotential of 20 mV, over 54 times higher than the benchmark 20 wt% Pt/C. Furthermore, DFT calculations illustrate that the Volmer-step could be accelerated owing to the high OH- attraction of NiO nanoclusters, leading to the Pt nanoclusters exhibiting a balance of H* adsorption and desorption (ΔGH* = -0.082 eV). Our findings provide new insights into breaking the water dissociation limit of Pt-based catalysts by coupling with a metal oxide.
Collapse
Affiliation(s)
- Fei Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Zeyi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wangbin Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Caoxin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
22
|
Hu H, Zhao Y, Zhang Y, Xi J, Xiao J, Cao S. Performance Regulation of Single-Atom Catalyst by Modulating the Microenvironment of Metal Sites. Top Curr Chem (Cham) 2023; 381:24. [PMID: 37480375 DOI: 10.1007/s41061-023-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Metal-based catalysts, encompassing both homogeneous and heterogeneous types, play a vital role in the modern chemical industry. Heterogeneous metal-based catalysts usually possess more varied catalytically active centers than homogeneous catalysts, making it challenging to regulate their catalytic performance. In contrast, homogeneous catalysts have defined active-site structures, and their performance can be easily adjusted by modifying the ligand. These characteristics lead to remarkable conceptual and technical differences between homogeneous and heterogeneous catalysts. As a recently emerging class of catalytic material, single-atom catalysts (SACs) have become one of the most active new frontiers in the catalysis field and show great potential to bridge homogeneous and heterogeneous catalytic processes. This review documents a brief introduction to SACs and their role in a range of reactions involving single-atom catalysis. To fully understand process-structure-property relationships of single-atom catalysis in chemical reactions, active sites or coordination structure and performance regulation strategies (e.g., tuning chemical and physical environment of single atoms) of SACs are comprehensively summarized. Furthermore, we discuss the application limitations, development trends and future challenges of single-atom catalysis and present a perspective on further constructing a highly efficient (e.g., activity, selectivity and stability), single-atom catalytic system for a broader scope of reactions.
Collapse
Affiliation(s)
- Hanyu Hu
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Yanyan Zhao
- Rowland Institute at Harvard, Cambridge, MA, 02142, USA
| | - Yue Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China.
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Hu W, Yang H, Wang C. Progress in photocatalytic CO 2 reduction based on single-atom catalysts. RSC Adv 2023; 13:20889-20908. [PMID: 37441031 PMCID: PMC10334474 DOI: 10.1039/d3ra03462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Reduced CO2 emissions, conversion, and reuse are critical steps toward carbon peaking and carbon neutrality. Converting CO2 into high-value carbon-containing compounds or fuels may effectively address the energy shortage and environmental issues, which is consistent with the notion of sustainable development. Photocatalytic CO2 reduction processes have become one of the research focuses, where single-atom catalysts have demonstrated significant benefits owing to their excellent percentage of atom utilization. However, among the crucial challenges confronting contemporary research is the production of efficient, low-cost, and durable photocatalysts. In this paper, we offer a comprehensive overview of the study growth on single-atom catalysts for photocatalytic CO2 reduction reactions, describe several techniques for preparing single-atom catalysts, and discuss the advantages and disadvantages of single-atom catalysts and present the study findings of three single-atom photocatalysts with TiO2, g-C3N4 and MOFs materials as carriers based on the interaction between single atoms and carriers, and finally provide an outlook on the innovation of photocatalytic CO2 reduction reactions.
Collapse
Affiliation(s)
- Wanyu Hu
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
| | - Haiyue Yang
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education Northeast Forestry University Harbin 150040 China
| | - Chengyu Wang
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education Northeast Forestry University Harbin 150040 China
| |
Collapse
|
24
|
Wang N, Mei R, Lin X, Chen L, Yang T, Liu Q, Chen Z. Cascade Anchoring Strategy for Fabricating High-Loading Pt Single Atoms as Bifunctional Catalysts for Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37300489 DOI: 10.1021/acsami.3c04602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon supports containing single-atomically dispersed metal-Nx (denoted as MSAC-NxCy, x, y: coordination number) have attracted increasing attention due to their superb performance in heterogeneous catalysis. However, large-scale controllable preparation of single-atom catalysts (SACs) with high concentration of supported metal-Nx is still a big challenge because of the metal atom agglomeration during synthesis at high density and temperatures. Herein, we report a stepwise anchoring strategy from a 1,10-o-phenanthroline Pt chelate to an Nx-doped carbon (NxCy) with isolated Pt single-atom catalysts (PtSAC-NxCy) containing Pt loadings up to 5.31 wt % measured via energy-dispersive X-ray spectroscopy (EDS). The results show that 1,10-o-phenanthroline Pt chelate predominantly contributes to the formation of chelate single metal sites that bind tightly to platinum ions to prevent metal atoms from aggregating, resulting in high metal loading. The high-loading PtSAC-NxCy exhibits a low hydrogen evolution (HER) overpotential of 24 mV at 0.010 A cm-2 current density with a relatively small Tafel gradient of 60.25 mV dec-1 and excellent stable performance. In addition, the PtSAC-NxCy catalyst shows excellent oxygen reduction reaction (ORR) catalytic activity with good stability, represented by the fast ORR kinetics under high-potential conditions. Theoretical calculations show that PtSAC-NC3 (x = 1, y = 3) offers a lower H2O activation energy barrier than Pt nanoparticles. The adsorption free energy of a H atom on a Pt single-atom site is lower than that on a Pt cluster, which is easier for H2 desorption. This study provides a potentially powerful cascade anchoring strategy in the design of other stable MSAC-NxCy catalysts with high-density metal-Nx sites for the HER and ORR.
Collapse
Affiliation(s)
- Nan Wang
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Riguo Mei
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xidong Lin
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Liqiong Chen
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Qingxia Liu
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Zhongwei Chen
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Cho J, Lim T, Kim H, Meng L, Kim J, Lee S, Lee JH, Jung GY, Lee KS, Viñes F, Illas F, Exner KS, Joo SH, Choi CH. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat Commun 2023; 14:3233. [PMID: 37270530 PMCID: PMC10239452 DOI: 10.1038/s41467-023-38964-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Platinum single-atom catalysts hold promise as a new frontier in heterogeneous electrocatalysis. However, the exact chemical nature of active Pt sites is highly elusive, arousing many hypotheses to compensate for the significant discrepancies between experiments and theories. Here, we identify the stabilization of low-coordinated PtII species on carbon-based Pt single-atom catalysts, which have rarely been found as reaction intermediates of homogeneous PtII catalysts but have often been proposed as catalytic sites for Pt single-atom catalysts from theory. Advanced online spectroscopic studies reveal multiple identities of PtII moieties on the single-atom catalysts beyond ideally four-coordinated PtII-N4. Notably, decreasing Pt content to 0.15 wt.% enables the differentiation of low-coordinated PtII species from the four-coordinated ones, demonstrating their critical role in the chlorine evolution reaction. This study may afford general guidelines for achieving a high electrocatalytic performance of carbon-based single-atom catalysts based on other d8 metal ions.
Collapse
Affiliation(s)
- Junsic Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taejung Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haesol Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ling Meng
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jinjong Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghoon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jong Hoon Lee
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Gwan Yeong Jung
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kug-Seung Lee
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Francesc Viñes
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Cluster of Excellence RESOLV, 44801 Bochum, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), 47057, Duisburg, Germany.
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
26
|
Zhang R, Li Y, Zhou X, Yu A, Huang Q, Xu T, Zhu L, Peng P, Song S, Echegoyen L, Li FF. Single-atomic platinum on fullerene C 60 surfaces for accelerated alkaline hydrogen evolution. Nat Commun 2023; 14:2460. [PMID: 37117190 PMCID: PMC10147718 DOI: 10.1038/s41467-023-38126-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
The electrocatalytic hydrogen evolution reaction (HER) is one of the most studied and promising processes for hydrogen fuel generation. Single-atom catalysts have been shown to exhibit ultra-high HER catalytic activity, but the harsh preparation conditions and the low single-atom loading hinder their practical applications. Furthermore, promoting hydrogen evolution reaction kinetics, especially in alkaline electrolytes, remains as an important challenge. Herein, Pt/C60 catalysts with high-loading, high-dispersion single-atomic platinum anchored on C60 are achieved through a room-temperature synthetic strategy. Pt/C60-2 exhibits high HER catalytic performance with a low overpotential (η10) of 25 mV at 10 mA cm-2. Density functional theory calculations reveal that the Pt-C60 polymeric structures in Pt/C60-2 favors water adsorption, and the shell-like charge redistribution around the Pt-bonding region induced by the curved surfaces of two adjacent C60 facilitates the desorption of hydrogen, thus favoring fast reaction kinetics for hydrogen evolution.
Collapse
Affiliation(s)
- Ruiling Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yaozhou Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xuan Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Ao Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Qi Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Tingting Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Longtao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Ping Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Fang-Fang Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China.
| |
Collapse
|
27
|
Zhu Y, Liao Y, Zou J, Cheng J, Pan Y, Lin L, Chen X. Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300750. [PMID: 37058076 DOI: 10.1002/smll.202300750] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials with enzyme-mimicking properties, coined as nanozymes, are a promising alternative to natural enzymes owing to their remarkable advantages, such as high stability, easy preparation, and favorable catalytic performance. Recently, with the rapid development of nanotechnology and characterization techniques, single atom nanozymes (SAzymes) with atomically dispersed active sites, well-defined electronic and geometric structures, tunable coordination environment, and maximum metal atom utilization are developed and exploited. With superior catalytic performance and selectivity, SAzymes have made impressive progress in biomedical applications and are expected to bridge the gap between artificial nanozymes and natural enzymes. Herein, the recent advances in SAzyme preparation methods, catalytic mechanisms, and biomedical applications are systematically summarized. Their biomedical applications in cancer therapy, oxidative stress cytoprotection, antibacterial therapy, and biosensing are discussed in depth. Furthermore, to appreciate these advances, the main challenges, and prospects for the future development of SAzymes are also outlined and highlighted in this review.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yaxin Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Junjie Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
28
|
Wan K, Chu T, Li B, Ming P, Zhang C. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203391. [PMID: 36717282 PMCID: PMC10104677 DOI: 10.1002/advs.202203391] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Future renewable energy supply and a cleaner Earth greatly depend on various crucial catalytic reactions for the society. Atomically dispersed metal site electrocatalysts (ADMSEs) have attracted tremendous research interest and are considered as the next-generation promising oxygen reduction reaction (ORR) electrocatalysts due to the maximum atom utilization efficiency, tailorable catalytic sites, and tunable electronic structures. Despite great efforts have been devoted to the development of ADMSEs, the systematic summary for design principles of high-efficiency ADMSEs is not sufficiently highlighted for ORR. In this review, the authors first summarize the fundamental ORR mechanisms for ADMSEs, and further discuss the intrinsic catalytic mechanism from the perspective of theoretical calculation. Then, the advanced characterization techniques to identify the active sites and effective synthesis methods to prepare catalysts for ADMSEs are also showcased. Subsequently, a special emphasis is placed on effective strategies for the rational design of the advanced ADMSEs. Finally, the present challenges to be addressed in practical application and future research directions are also proposed to overcome the relevant obstacles for developing high-efficiency ORR electrocatalysts. This review aims to provide a deeper understanding for catalytic mechanisms and valuable design principles to obtain the advanced ADMSEs for sustainable energy conversion and storage techniques.
Collapse
Affiliation(s)
- Kechuang Wan
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Tiankuo Chu
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Bing Li
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| | - Cunman Zhang
- Clean Energy Automotive Engineering Center and School of Automotive StudiesTongji University4800 Cao'an RoadShanghai201804China
| |
Collapse
|
29
|
Yao X, Zhu Y, Xia T, Han Z, Du C, Yang L, Tian J, Ma X, Hou J, Cao C. Tuning Carbon Defect in Copper Single-Atom Catalysts for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301075. [PMID: 36978240 DOI: 10.1002/smll.202301075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Defect chemistry in carbon matrix shows great potential for promoting the oxygen reduction reaction (ORR) of metal single-atom catalysts. Herein, a modified pyrolysis strategy is proposed to tune carbon defects in copper single-atom catalysts (Cu-SACs) to fully understand their positive effect on the ORR activity. The optimized Cu-SACs with controllable carbon defect degree and enhanced active specific surface area can exhibit improved ORR activity with a half-wave potential of 0.897 VRHE , ultrahigh limiting current density of 6.5 mA cm-2 , and superior turnover frequency of 2.23 e site-1 s-1 . The assembled Zn-air batteries based on Cu-SACs can also show well-retained reversibility and voltage platform over 1100 h charge/discharge period. Density functional theory calculations reveal that suitable carbon defects can redistribute charge density of Cu-N4 active sites to weaken the O-O bond in adsorbed OOH* intermediate and thus reduce its dissociation energy. This discovery offers a universal strategy for fabricating superior single-atom catalysts with high-efficiency active sites toward energy-directed applications.
Collapse
Affiliation(s)
- Xiuyun Yao
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Youqi Zhu
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tianyu Xia
- Key Laboratory of Material Physics Ministry of Education School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhanli Han
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Changliang Du
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lifen Yang
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiachen Tian
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xilan Ma
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Chuanbao Cao
- Research Center of Materials Science Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
30
|
Duc Le T, Ahemad MJ, Kim DS, Lee BH, Oh GJ, Shin GS, Nagappagari LR, Dao V, Van Tran T, Yu YT. Synergistic effect of Pt-Ni dual single-atoms and alloy nanoparticles as a high-efficiency electrocatalyst to minimize Pt utilization at cathode in polymer electrolyte membrane fuel cells. J Colloid Interface Sci 2023; 634:930-939. [PMID: 36566637 DOI: 10.1016/j.jcis.2022.12.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Pt-Ni (111) alloy nanoparticles (NPs) and atomically dispersed Pt have been shown to be the most effective catalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) as well as less expensive compared to pure Pt NPs. To meet reaction kinetic demands and minimize the Pt utilization at cathode in PEMFCs, we propose a novel electrocatalyst composed of dual single-atoms (Pt, Ni) and Pt-Ni alloy NPs dispersed on the surface of N-doped carbon (NDC); collectively, PtNiSA-NPS-NDC. The optimized PtNiSA-NPS-NDC catalyst displays excellent mass activity and durability compared to commercial Pt/C. Electrocatalytic measurements show that the PtNiSA-NPS-NDC catalyst, with a metal loading of 4.5 wt%, exhibited distinguished ORR performance (E1/2 = 0.912 V) through a 4-electron (4e-) pathway, which is higher than that of commercial 20 wt% Pt/C (E1/2 = 0.857 V). The DFT simulations indicate Pt-Ni alloy NPs and PtNiN2C4 atomic structure are the mobile active sites for ORR catalytic activity in PtNiSA-NPS-NDC. As a cathode catalyst in PEMFC, the Pt utilization efficiency in the PtNiSA-NPS-NDC catalyst is 0.033 gPt kW-1, which is 5.6 times higher than that of commercial Pt/C (0.185gPt kW-1). Therefore, the consumption of precious metals is effectively minimized.
Collapse
Affiliation(s)
- Thanh Duc Le
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Mohammad Jamir Ahemad
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Dong-Seog Kim
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Byeong-Hyeon Lee
- Advanced Analysis & Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Geun-Jae Oh
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Gi-Seung Shin
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Lakshmana Reddy Nagappagari
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Vandung Dao
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tuong Van Tran
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea
| | - Yeon-Tae Yu
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University, Jeonju 54896, Republic of South Korea.
| |
Collapse
|
31
|
Zhang S, Yi X, Hu G, Chen M, Shen H, Li B, Yang L, Dai W, Zou J, Luo S. Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Qu G, Wei K, Pan K, Qin J, Lv J, Li J, Ning P. Emerging materials for electrochemical CO 2 reduction: progress and optimization strategies of carbon-based single-atom catalysts. NANOSCALE 2023; 15:3666-3692. [PMID: 36734996 DOI: 10.1039/d2nr06190b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical CO2 reduction reaction can effectively convert CO2 into promising fuels and chemicals, which is helpful in establishing a low-carbon emission economy. Compared with other types of electrocatalysts, single-atom catalysts (SACs) immobilized on carbon substrates are considered to be promising candidate catalysts. Atomically dispersed SACs exhibit excellent catalytic performance in CO2RR due to their maximum atomic utilization, unique electronic structure, and coordination environment. In this paper, we first briefly introduce the synthetic strategies and characterization techniques of SACs. Then, we focus on the optimization strategies of the atomic structure of carbon-based SACs, including adjusting the coordination atoms and coordination numbers, constructing the axial chemical environment, and regulating the carbon substrate, focusing on exploring the structure-performance relationship of SACs in the CO2RR process. In addition, this paper also briefly introduces the diatomic catalysts (DACs) as an extension of SACs. At the end of the paper, we summarize the article with an exciting outlook discussing the current challenges and prospects for research on the application of SACs in CO2RR.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Kunling Wei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Keheng Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Jin Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Jiaxin Lv
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Junyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan 650500, China.
| |
Collapse
|
33
|
Ou Z, An Z, Ma Z, Li N, Han Y, Yang G, Jiang Q, Chen Q, Chu W, Wang S, Yu T, Yang W. 3D Porous Graphene-like Carbons Encaged Single-Atom-Based Pt for Ultralow Loading and High-Performance Fuel Cells. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zuqiao Ou
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Zhao An
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhong Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
| | - Nan Li
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Yinuo Han
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Ganjun Yang
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Qike Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
| | - Qiang Chen
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Wenling Chu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
| | - Suli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
34
|
Toward an objective performance evaluation of commercial Pt/C electrocatalysts for oxygen reduction: Effect of catalyst loading. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Fu H, Zhang N, Lai F, Zhang L, Chen S, Li H, Jiang K, Zhu T, Xu F, Liu T. Surface-Regulated Platinum–Copper Nanoframes in Electrochemical Reforming of Ethanol for Efficient Hydrogen Production. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Suli Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Hanjun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ting Zhu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Fangping Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Chen Y, Zheng X, Cai J, Zhao G, Zhang B, Luo Z, Wang G, Pan H, Sun W. Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaping Chen
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jinyan Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guoqiang Zhao
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhouxin Luo
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
37
|
Abstract
ConspectusSingle-atom catalysts (SACs), in which surface metal atoms are isolated on the surface of a support, have received a tremendous amount of attention recently because this structure would utilize precious metals fully, without occluding atoms inside nanoparticles, and enable unique surface reactions which typical nanoparticle catalysts cannot induce. Various synthesis methods and characterization techniques have been reported that yield enhanced activity and selectivity. The single-atom structures were realized on various supports such as metal oxide/carbide/nitride, porous materials derived from zeolite or metal-organic frameworks, and carbon-based materials. Additionally, when the metal atoms are isolated on other metal nanoparticles, this material is denoted as a single-atom alloy (SAA). The single-atom structure, however, cannot catalyze the surface reaction that necessitates ensemble sites, where several metal atoms are located nearby. Very recently, ensemble catalysts, in which all of the metal atoms are exposed at the surface with neighboring metal atoms, have been reported, overcoming the limitation of single-atom catalysts. We call all of these materials (SACs, SAAs, and ensemble catalyst) heterogeneous atomic catalysts, indicating that the surface metal atomic structure is intentionally controlled. To use these atomic catalysts for practical applications, high durability should be guaranteed, which has received relatively less attention.In this Account, we discuss recent examples of heterogeneous atomic catalysts with high durability. Structural stability, indicating whether the surface atomic structure is thermodynamically stable, should be carefully considered. Typically, metal atoms are immobilized on a highly defective support, stabilizing both the metal atom and the support. The surface metal atoms might become destabilized upon the adsorption of chemical intermediates. This transient behavior should be carefully monitored; density functional theory (DFT) calculations are particularly useful in estimating this stability. Aside from structural stability, the catalyst performance can be degraded significantly by poisoning with impurities. If the single-atom sites are susceptible to impurities with stronger adsorption, the surface reaction would not occur efficiently, leading to a decrease in activity without structure degradation. A long-term durability test should be performed for target reactions. Heterogeneous atomic catalysts have been used for various electrochemical, photocatalytic, and thermal reactions. Although electricity, light, and heat are just different forms of energy, the specific conditions which the catalyst should satisfy are different. Whereas precious metal atoms are mostly used as surface-active sites, the properties of the support are different depending on the type of reaction. For example, the support should have high conductivity for electrochemical reactions, it should be able to absorb light for photocatalytic reactions, and it should be durable at high temperature in the presence of steam for thermal reactions. Highly durable heterogeneous atomic catalysts are certainly possible with a great potential for practical applications. These new catalysts can accelerate the current paradigm shift toward more sustainable chemical production.
Collapse
Affiliation(s)
- Sangyong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Robert Haaring
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jungseob So
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yunji Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
38
|
Abstract
Transition metal (TM) single atomic catalysts (MSAC-N-C) derived from doped zeolite imidazolate frameworks (ZIF-8) are considered attractive oxygen reduction reaction (ORR) catalysts for fuel cells and metal-air batteries due to their advantages of high specific surface area, more active catalytic sites, adjustable pore size, and coordination topology features. This review provides an updated overview of the latest advances of MSAC-N-C catalysts derived from ZIF-8 precursors in ORR electrocatalysis. Particularly, some key challenges, including coordination environments regulation of catalysis center in MSAC-N-C, the active sites loading optimization and synergistic effects between TM nanoclusters/nanoparticles and the single atoms on MSAC-N-C catalysis activity, as well as their adaptability in various devices, are summarized for improving future development and application of MSAC-N-C catalysts. In addition, this review puts forward future research directions, making it play a better role in ORR catalysis for fuel cells and metal air batteries.
Collapse
|
39
|
Zhao W, Luo C, Lin Y, Wang GB, Chen HM, Kuang P, Yu J. Pt–Ru Dimer Electrocatalyst with Electron Redistribution for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenkai Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guan-Bo Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
40
|
Wang Z, Wu F. Emerging Single-Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Adv Healthc Mater 2022; 11:e2101682. [PMID: 34729955 DOI: 10.1002/adhm.202101682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Indexed: 12/29/2022]
Abstract
Single-atom catalysts (SACs) are a type of atomically dispersed nanozymes with the highest atom utilization, which employ low-coordinated single atoms as the catalytically active sites. SACs not only inherit the merits of traditional nanozymes, but also hold high catalytic activity and superb catalytic selectivity, which ensure their tremendous application potential in environmental remediation, energy storage and conversion, chemical industry, nanomedicine, etc. Nevertheless, undesired aggregation effect of single atoms during preactivation and reaction processes is significantly enhanced owing to the high surface free energy of single atoms. In this case, appropriate substrates are requisite to prevent the aggregation event through the powerful interactions between the single atoms and the substrates, thereby stabilizing the high catalytic activity of the catalysts. In this review, the synthetic methods and characterization approaches of SACs are first described. Then the application cases of SACs in nanomedicine are summarized. Finally, the current challenges and future opportunities of the SACs in nanomedicine are outlined. It is hoped that this review may have implications for furthering the development of new SACs with improved biophysicochemical properties and broadened biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing 210096 P. R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University) Ministry of Education 22 Shuangyong Road Nanning 530022 P. R. China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor 22 Shuangyong Road Nanning 530022 P. R. China
| |
Collapse
|
41
|
Shahmohammadi M, Mukherjee R, Sukotjo C, Diwekar UM, Takoudis CG. Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:831. [PMID: 35269316 PMCID: PMC8912810 DOI: 10.3390/nano12050831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Atomic layer deposition (ALD) is a vapor-phase deposition technique that has attracted increasing attention from both experimentalists and theoreticians in the last few decades. ALD is well-known to produce conformal, uniform, and pinhole-free thin films across the surface of substrates. Due to these advantages, ALD has found many engineering and biomedical applications. However, drawbacks of ALD should be considered. For example, the reaction mechanisms cannot be thoroughly understood through experiments. Moreover, ALD conditions such as materials, pulse and purge durations, and temperature should be optimized for every experiment. It is practically impossible to perform many experiments to find materials and deposition conditions that achieve a thin film with desired applications. Additionally, only existing materials can be tested experimentally, which are often expensive and hazardous, and their use should be minimized. To overcome ALD limitations, theoretical methods are beneficial and essential complements to experimental data. Recently, theoretical approaches have been reported to model, predict, and optimize different ALD aspects, such as materials, mechanisms, and deposition characteristics. Those methods can be validated using a different theoretical approach or a few knowledge-based experiments. This review focuses on recent computational advances in thermal ALD and discusses how theoretical methods can make experiments more efficient.
Collapse
Affiliation(s)
- Mina Shahmohammadi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Rajib Mukherjee
- Vishwamitra Research Institute, Crystal Lake, IL 60012, USA;
- Department of Chemical Engineering, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Urmila M. Diwekar
- Vishwamitra Research Institute, Crystal Lake, IL 60012, USA;
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Christos G. Takoudis
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
42
|
Chen J, Qian G, Chu B, Jiang Z, Tan K, Luo L, Li B, Yin S. Tuning d-Band Center of Pt by PtCo-PtSn Heterostructure for Enhanced Oxygen Reduction Reaction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106773. [PMID: 35064640 DOI: 10.1002/smll.202106773] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The development of efficient and stable Pt-based catalysts is significant but challenging for fuel cells. Herein, Sn and Co elements are introduced into Pt to form PtCo-PtSn/C heterostructure for enhancing the oxygen reduction reaction (ORR). Electrochemical results indicate that it has remarkable ORR intrinsic activity with a high mass activity (1,158 mA mg-1 Pt) at 0.9 V in HClO4 solution, which is 2.18-, 6.81-, and 9.98-fold higher than that of PtCo/C, PtSn/C, and Pt/C. More importantly, the catalytic activity attenuation for PtCo-PtSn/C is only 27.4% after 30 000 potential cycles, showing high stability. Furthermore, theoretical calculations reveal that the enhancement is attributed to charge transfer and the unique structure of PtCo-PtSn/C heterostructure, which regulate the d-band center of Pt and prevent non-noble metals from further dissolution. This work thus opens a way to design and prepare highly efficient Pt-based alloy catalysts for proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Jinli Chen
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Guangfu Qian
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Bingxian Chu
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Zexing Jiang
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Kexin Tan
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Bin Li
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| | - Shibin Yin
- College of Chemistry and Chemical Engineering, School of Physical Science and Technology, State Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
43
|
Cao S, Zhou Y, Wang R, Jiao W. Enhanced Photocatalytic Activity by Pt Confined within N-Doped Carbon on TiO2 Inner Surface. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Songtao Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| | - Yu Zhou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| | - Ruixin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| | - Weizhou Jiao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, P.R. China
| |
Collapse
|
44
|
Zhao J, Fu C, Ye K, Liang Z, Jiang F, Shen S, Zhao X, Ma L, Shadike Z, Wang X, Zhang J, Jiang K. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat Commun 2022; 13:685. [PMID: 35115516 PMCID: PMC8813992 DOI: 10.1038/s41467-022-28346-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Electrochemical oxygen reduction could proceed via either 4e--pathway toward maximum chemical-to-electric energy conversion or 2e--pathway toward onsite H2O2 production. Bulk Pt catalysts are known as the best monometallic materials catalyzing O2-to-H2O conversion, however, controversies on the reduction product selectivity are noted for atomic dispersed Pt catalysts. Here, we prepare a series of carbon supported Pt single atom catalyst with varied neighboring dopants and Pt site densities to investigate the local coordination environment effect on branching oxygen reduction pathway. Manipulation of 2e- or 4e- reduction pathways is demonstrated through modification of the Pt coordination environment from Pt-C to Pt-N-C and Pt-S-C, giving rise to a controlled H2O2 selectivity from 23.3% to 81.4% and a turnover frequency ratio of H2O2/H2O from 0.30 to 2.67 at 0.4 V versus reversible hydrogen electrode. Energetic analysis suggests both 2e- and 4e- pathways share a common intermediate of *OOH, Pt-C motif favors its dissociative reduction while Pt-S and Pt-N motifs prefer its direct protonation into H2O2. By taking the Pt-N-C catalyst as a stereotype, we further demonstrate that the maximum H2O2 selectivity can be manipulated from 70 to 20% with increasing Pt site density, providing hints for regulating the stepwise oxygen reduction in different application scenarios.
Collapse
Affiliation(s)
- Jiajun Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke Ye
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangling Jiang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoran Zhao
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, MA, NY11973, USA
| | - Zulipiya Shadike
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kun Jiang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
45
|
Zhao SN, Li JK, Wang R, Cai J, Zang SQ. Electronically and Geometrically Modified Single-Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107291. [PMID: 34796559 DOI: 10.1002/adma.202107291] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Indexed: 05/25/2023]
Abstract
Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe-N-C materials. In this work, the electronic and geometric structures of the isolated Fe-N-C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC-supported Fe single-atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe-N-C sites. Meanwhile, strong interaction between isolated Fe-N-C sites and adjacent Fe NPs can change the geometric structure of isolated Fe-N-C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe-N-C sites by the co-existence of Fe NPs narrows the energy barriers of the rate-limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure-activity relationship, but also sheds light on designing efficient Fe-N-C catalysts.
Collapse
Affiliation(s)
- Shu-Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Kang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinmeng Cai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
46
|
Shangguan Y, Zheng R, Ge Q, Feng X, Wang R, Zhou Y, Luo S, Duan L, Lin J, Chen H. Interfacial engineering of CuFeS 2 quantum dots via platinum decoration with enhanced Cr(VI) reduction dynamics under UV-Vis-NIR radiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126701. [PMID: 34339984 DOI: 10.1016/j.jhazmat.2021.126701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Configuring reactive and stable catalytic interfaces is crucial to design efficient photocatalysts for Cr(VI) reduction. Herein, via the platinum decoration approach based on interfacial engineering, we developed an effective catalytic interface within novel semiconducting chalcopyrite quantum dots (Pt/CuFeS2 QDs). Benefiting from the catalytic merits of the Pt modulated interfacial structure and electronic structure, Pt/CuFeS2 QDs show a broader light absorption capability extending to near-infrared radiation (NIR) range with superior carriers separation performance and faster charge transfer efficiency, which delivers a three-folder faster photocatalytic Cr(VI) reduction efficiency comparing to the original CuFeS2 QDs. Density functional theory (DFT) calculations unravel that Pt atoms prefer to be anchored with the surface S atoms to form a stable interfacial structure with faster electron transfer and Cr(VI) reduction dynamics. This work demonstrates that platinum decoration based on interfacial engineering is an effective strategy to simultaneously modulate the band structure and accelerate the interfacial reaction dynamics for semiconductor photocatalysts, which paves the way for designing highly efficient photocatalysts for light-driven environmental and energy engineering applications.
Collapse
Affiliation(s)
- Yangzi Shangguan
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Renji Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiuyue Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuezhen Feng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanhao Zhou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia Lin
- Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
47
|
|
48
|
Research Progress and Application of Single-Atom Catalysts: A Review. Molecules 2021; 26:molecules26216501. [PMID: 34770910 PMCID: PMC8587903 DOI: 10.3390/molecules26216501] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022] Open
Abstract
Due to excellent performance properties such as strong activity and high selectivity, single-atom catalysts have been widely used in various catalytic reactions. Exploring the application of single-atom catalysts and elucidating their reaction mechanism has become a hot area of research. This article first introduces the structure and characteristics of single-atom catalysts, and then reviews recent preparation methods, characterization techniques, and applications of single-atom catalysts, including their application potential in electrochemistry and photocatalytic reactions. Finally, application prospects and future development directions of single-atom catalysts are outlined.
Collapse
|
49
|
Zhu W, Meng Y, Yang C, Zhao J, Wang H, Hu W, Lv G, Wang Y, Deng T, Hou X. Effect of Coordination Environment Surrounding a Single Pt Site on the Liquid-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48582-48594. [PMID: 34612043 DOI: 10.1021/acsami.1c12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the frontier in heterogeneous catalyst, a monomer and positively charged active sites in the single-atom catalyst (SAC), anchored by high electronegative N, O, S, P, etc., atoms, may not be active for the multispecies (O2, substrates, intermediates, solvent etc.) involved liquid-phase aerobic oxidation. Here, with catalytic, aerobic oxidation of 5-hydroxymethylfurfural as an example, Pt SAC (Pt1-N4) was synthesized and tested first. With commercial Pt/C (Pt loading of 5 wt %) as a benchmark, 2,5-furandicarboxylic acid (FDCA) yield of 97.6% was obtained. Pt SAC (0.56 wt %) gave a much lower FDCA yield (28.8%). By changing the coordination atoms from highly electronegative N to low electronegative Co atoms, the prepared Pt single-atom alloy (SAA, Pt1-Co3) catalyst with ultralow Pt loading (0.06 wt %) gave a much high FDCA yield (99.6%). Density functional theory (DFT) calculations indicated that positively charged Pt sites (+0.712e) in Pt1-N4 almost lost the capability for oxygen adsorption and activation, as well as the adsorption for the key intermediate. In Pt1-Co3 SAA, the central negatively charged Pt atom (-0.446e) facilitated the adsorption of the key intermediate; meanwhile, the nearby Co atoms around the Pt atom constituted the O2-preferred adsorption/activation sites. This work shows the difference between the SAC with NPs and the SAA during liquid-phase oxidation of HMF and gives a useful guide in the future single-atom catalyst design in other related reactions.
Collapse
Affiliation(s)
- Wanzhen Zhu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yu Meng
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Chaoxin Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Hongliang Wang
- College of Biomass Sciences and Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangqiang Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingxiong Wang
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Tiansheng Deng
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xianglin Hou
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
50
|
Liu X, Liu P, Wang F, Lv X, Yang T, Tian W, Wang C, Tan S, Ji J. Plasma-Induced Defect Engineering and Cation Refilling of NiMoO 4 Parallel Arrays for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41545-41554. [PMID: 34432425 DOI: 10.1021/acsami.1c09084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing highly active water splitting electrocatalysts with ordered micro/nanostructures and uniformly distributed active sites can meet the increasing requirement for sustainable energy storage/utilization technologies. However, the stability of complicated structures and active sites during a long-term process is also a challenge. Herein, we fabricate a novel approach to create sufficient atomic defects via N2 plasma treatment onto parallel aligned NiMoO4 nanosheets, followed by refilling of these defects via heterocation dopants and stabilizing them by annealing. The parallel aligned nanosheet arrays with an open structure and quasi-two-dimensional long-range diffusion channels can accelerate the mass transfer at the electrolyte/gas interface, while the incorporation of Fe/Pt atoms into defect sites can modulate the local electronic environment and facilitate the adsorption/reaction kinetics. The optimized Pt-NP-NMC/CC-5 and Fe-NP-NMC/CC-10 electrodes exhibit low overpotentials of 71 and 241 mV at 10 mA cm-2 for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively, and the assembled device reveals a low voltage of 1.55 V for overall water splitting. This plasma-induced high-efficiency defect engineering and coupled active site stabilization strategy can be extended to large-scale fabrication of high-end electrocatalysts.
Collapse
Affiliation(s)
- Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Feifei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingbin Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tao Yang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|