1
|
Li Q, Zhou D, Chu M, Liu Z, Yang L, Wu W, Ning D, Li W, Liu X, Li J, Passerini S, Wang J. A comprehensive understanding on the anionic redox chemistry of high-voltage cathode materials for high-energy-density lithium-ion batteries. Chem Soc Rev 2025; 54:3441-3474. [PMID: 40008412 DOI: 10.1039/d4cs00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The electrification of transportation is an important contributor to reducing global carbon dioxide emissions. However, this progress is constrained by anxiety regarding the driving range of vehicles, which is well recognized to originate from the low specific energy of the employed state-of-the-art energy storage devices. Therefore, further promoting the specific energy of lithium-ion batteries (LIBs) is an inevitable need, where the development of cathode materials with high energy densities, i.e. high specific capacity and/or high working voltage, is essential. Accordingly, numerous research efforts are ongoing worldwide, where several materials stand out, including LiCoO2 (LCO), Ni-rich oxides and Li-rich cathodes, mainly because of their potential to deliver high capacities when operating at high voltages. However, the elevated operating voltage turns out to be a double-sided sword for these materials as achieving high specific capacity is always accompanied by the oxygen redox process, which shows unsatisfactory reversibility and has a significant impact on their structure stability and electrochemical performance. Consequently, understanding the failure mechanism of anionic redox chemistry and finding solutions to this issue are crucial for realizing the practical application of these high-voltage materials. Although many studies have been reported on the anionic redox chemistry of different materials, the corresponding reviews have predominantly focused on Li-rich cathode materials. Hence, the reviews on high-voltage LCO and Ni-rich oxides remain incomplete, and a unified understanding of their behavior at high voltages has not been established yet. This lack of comprehensive understanding has hindered the further development and application of high-voltage cathode materials. Thus, this review highlights the similarities and differences in the anionic redox chemistry of LCO, Li-rich and Ni-rich high-voltage cathode materials, emphasizing on a unified mechanistic picture and the related challenges and countermeasures. We aim to provide an outlook for future guidelines in material exploration with anionic redox chemistry, thus unlocking the full potential of high-voltage LIBs for diverse applications.
Collapse
Affiliation(s)
- Qingyuan Li
- Benjamin M. Statler College of Engineering & Mineral Resources, West Virginia University, Morgantown, WV, 26506, USA
| | - Dong Zhou
- School of Advanced Energy, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Mihai Chu
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy.
| | - Zhongqing Liu
- Sodium Innovation Material Technology (SIMT) Co., Ltd., Wuxi, 214142, P. R. China
| | - Liangtao Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wei Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - De Ning
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenyuan Li
- Benjamin M. Statler College of Engineering & Mineral Resources, West Virginia University, Morgantown, WV, 26506, USA
| | - Xingbo Liu
- Benjamin M. Statler College of Engineering & Mineral Resources, West Virginia University, Morgantown, WV, 26506, USA
| | - Jie Li
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy.
| | - Stefano Passerini
- Austrian Institute of Technology (AIT), Center for Transport Technologies, Giefinggasse 2, Wien, 1210, Austria.
- Karlsruhe Institute of Technology (KIT), Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, Ulm, 89081, Germany
| | - Jun Wang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
2
|
Li H, Li J, Zhao C, Zhao F. Research on the Preparation of Supercapacitor Separators with High Wettability and Excellent Temperature Adaptability Through In Situ Deposition of Nano-Barium Sulfate on Regenerated Cellulose. Polymers (Basel) 2025; 17:842. [PMID: 40219234 PMCID: PMC11991602 DOI: 10.3390/polym17070842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
In this paper, environmentally friendly separator materials with high mechanical and electrochemical properties were prepared from regenerated cellulose. This was achieved by studying the drawbacks of existing supercapacitor separators and then preparing protofibrillated fibers and nanofibrillated cellulose. The process involved the in situ deposition of nano-BaSO4 using paper milling and papermaking techniques. The separators were tested for a tensile strength of 47.25 MPa, puncture strength of 156 gf, and tear strength of 8.9 KPa-m2/g; uniform pore size (0.6-2 μm) and abundant porosity (81.3%); good wettability (9.2°) and water absorption; and excellent temperature resistance (no deformation at 180 °C), as well as good temperature adaptability from -40 °C to 100 °C. This simple process, suitable for mass production, enables the development of a new separator material with great application potential.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (H.L.)
| | - Jiehua Li
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (H.L.)
| | - Chuanshan Zhao
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (H.L.)
| | - Fenfen Zhao
- Faculty of Arts, Shandong Shenghan Finance and Trade Vocational College, Jinan 250316, China
| |
Collapse
|
3
|
Güler O, Yazıcı MY. Electrolytic Ni-P and Ni-P-Cu Coatings on PCM-Loaded Expanded Graphite for Enhanced Battery Thermal Management with Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:213. [PMID: 39795857 PMCID: PMC11720822 DOI: 10.3390/ma18010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions. The results reveal that Ni-P-Cu-coated phase change material/expanded graphite composites exhibit a superior thermal conductivity of 27.1 W/m·K, significantly outperforming both uncoated and Ni-P-coated counterparts. Mechanical testing showed that the Ni-P-Cu coating provided the highest compressive strength at 39.4 MPa and enhanced tensile strength due to the coating's highly crystalline structure and smaller grain size. Additionally, the phase-change characteristics of the phase change material/expanded graphite composites, with phase transition temperatures between 38 °C and 43 °C, allowed effective heat absorption, stabilizing battery temperatures under 1.25C and 2.5C discharge rates. Voltage decay analysis indicated that Ni-P and Ni-P-Cu coatings reduced polarization effects, extending operational stability. These findings suggest that Ni-P-Cu-coated phase change material/expanded graphite composites are highly effective in thermal management applications, especially in battery systems where efficient heat dissipation and mechanical durability are critical for performance and safety. This study offers a promising approach to improving energy storage systems for applications such as electric vehicles, grid storage, and portable electronics.
Collapse
Affiliation(s)
- Onur Güler
- Department of Metallurgical and Materials Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
| | | |
Collapse
|
4
|
Xie J, Lu Y. Designing Nonflammable Liquid Electrolytes for Safe Li-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312451. [PMID: 38688700 PMCID: PMC11733716 DOI: 10.1002/adma.202312451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Li-ion batteries are essential technologies for electronic products in the daily life. However, serious fire safety concerns that are closely associated with the flammable liquid electrolyte remains a key challenge. Tremendous effort has been devoted to designing nonflammable liquid electrolytes. It is critical to gain comprehensive insights into nonflammability design and inspire more efficient approaches for building safer Li-ion batteries. This review presents current mechanistic understanding of safety issues and discusses state-of-the-art nonflammable liquid electrolytes design for Li-ion batteries based on molecule, solvation, and battery compatibility level. Various safety test methods are discussed for reliable safety risk evaluation. Finally, the challenges and perspectives of the nonflammability design for Li-ion electrolytes are summarized.
Collapse
Affiliation(s)
- Jing Xie
- Electrochemical Energy and Interfaces LaboratoryDepartment of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Yi‐Chun Lu
- Electrochemical Energy and Interfaces LaboratoryDepartment of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
5
|
Hasany M, Kohestanian M, Rezaei B, Keller SS, Mehrali M. Hygroscopic Nature of Lithium Ions: A Simple Key to Super Tough Atmosphere-Stable Hydrogel Electrolytes. ACS NANO 2024; 18:30512-30529. [PMID: 39363426 DOI: 10.1021/acsnano.4c08687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Gel electrolytes have emerged as a versatile solution to address numerous limitations associated with liquid electrolytes in electrical energy storage (EES) devices, in terms of safety, flexibility, and affordability. Aqueous gel electrolytes, in particular, exhibit exceptional features by offering one of the highest ion solvation capacities and ionic conductivities. The two main challenges with hydrogel electrolytes are their easy freezing at subzero temperatures and rapid dehydration under open conditions, leading to the failure of the EES device. In response, we present an uncomplicated and quick-to-make hydrogel electrolyte system offering impressive mechanical properties (205.5 kPa tensile strength, 2880 kJ/m3 toughness, and 3030% strain at the break), along with antifreezing and antiflammability attributes. Notably, the hydrogel electrolyte demonstrates high ionic conductivity and superior performance in supercapacitor cells over a wide range of temperatures (-40 to 80 °C) and under various deformations. The hydrogel electrolyte maintains its capabilities under open conditions over an extended period of time, even at 50 °C, showcased by powering a wristwatch. The atmospheric stability of the hydrogel electrolyte demonstrated in this study introduces promising prospects for the future of EES devices spanning from production to end-user consumption.
Collapse
Affiliation(s)
- Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mohammad Kohestanian
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Huo Z, Duan Z, Feng X, Wang H, Huang H, Fan X, He R, Yu XF, Wang J. Melamine Polymerization Promotes Compact Phosphorus/Carbon Composite for High-Performance and Safe Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402483. [PMID: 38822719 DOI: 10.1002/smll.202402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Phosphorus is regarded as a promising material for high-performance lithium-ion batteries (LIBs) due to its high theoretical capacity, appropriate lithiation potential, and low lithium-ion diffusion barrier. Phosphorus/carbon composites (PC) are engineered to serve as high-capacity high-rate anodes; the interaction between phosphorus and carbon, long-term capacity retention, and safety problems are important issues that must be well addressed simultaneously. Herein, an in situ polymerization approach to fabricate a poly-melamine-hybridized (pMA) phosphorus/carbon composite (pMA-PC) is employed. The pMA hybridization enhances the density and electrical conductivity of the PC, improves the structural integrity, and facilitates stable electron transfer within the pMA-PC composite. Moreover, the pMA-PC composite exhibits efficient adsorption of lithium polysulfides, enabling stable transport of Li+ ions. Therefore, the pMA-PC anode demonstrates a high specific charging capacity of 1,381 mAh g-1 at 10 A g-1, and a great capacity retention of 86.7% at 1 A g-1 over 500 cycles. The synergistic effect of phosphorus and nitrogen further confers excellent flame retardant properties to the pMA-PC anode, including self-extinguishing in 2.5 s, and a much lower combustion temperature than PC. The enhanced capacity and safety performance of pMA-PC show potential in future high-capacity and high-rate LIBs.
Collapse
Affiliation(s)
- Zhilin Huo
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Haoyu Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hao Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xin Fan
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Rui He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Xu Z, Wang K, Li H, Wang H, Ge M, Zhang Y, Tang Y, Chen S. Critical Effects of Insoluble Additives in Liquid Electrolytes for Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312124. [PMID: 38751072 DOI: 10.1002/smll.202312124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/01/2024] [Indexed: 10/01/2024]
Abstract
Rechargeable metal batteries have received widespread attention due to their high energy density by using pure metal as the anode. However, there are still many fundamental problems that need to be solved before approaching practical applications. The critical ones are low charge/discharge current due to slow ion transport, short cycle lifetime due to poor anode/cathode stability, and unsatisfied battery safety. To tackle these problems, various strategies have been suggested. Among them, electrolyte additive is one of the most widely used strategies. Most of the additives currently studied are soluble, but their reliability is questionable, and they can easily affect the electrochemical process, causing unwanted battery performance decline. On the contrary, insoluble additives with excellent chemical stability, high mechanical strength, and dimensional tunability have attracted considerable research exploration recently. However, there is no timely review on insoluble additives in metal batteries yet. This review summarizes various functions of insoluble additives: ion transport modulation, metal anode protection, cathode amelioration, as well as battery safety enhancement. Future research directions and challenges for insoluble solid additives are also proposed. It is expected this review will stimulate inspiration and arouse extensive studies on further improvement in the overall performance of metal batteries.
Collapse
Affiliation(s)
- Zhu Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, P. R. China
| | - Kexuan Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, P. R. China
| | - Heng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Huibo Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, P. R. China
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, 999078, P. R. China
| |
Collapse
|
8
|
Shi X, Jia Z, Wang D, Jiang B, Liao Y, Zhang G, Wang Q, He D, Huang Y. Phonon Engineering in Solid Polymer Electrolyte toward High Safety for Solid-State Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405097. [PMID: 38876140 DOI: 10.1002/adma.202405097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Extensively-used rechargeable lithium-ion batteries (LIBs) face challenges in achieving high safety and long cycle life. To address such challenges, ultrathin solid polymer electrolyte (SPE) is fabricated with reduced phonon scattering by depositing the composites of ionic-liquid (1-ethyl-3-methylimidazolium dicyamide, EMIM:DCA), polyurethane (PU) and lithium salt on the polyethylene separator. The robust and flexible separator matrix not only reduces the electrolyte thickness and improves the mobility of Li+, but more importantly provides a relatively regular thermal diffusion channel for SPE and reduces the external phonon scattering. Moreover, the introduction of EMIM:DCA successfully breaks the random intermolecular attraction of the PU polymer chain and significantly decreases phonon scattering to enhance the internal thermal conductivity of the polymer. Thus, the thermal conductivity of the as-obtained SPE increases by approximately six times, and the thermal runaway (TR) of the battery is effectively inhibited. This work demonstrates that optimizing thermal safety of the battery by phonon engineering sheds a new light on the design principle for high-safety Li-ion batteries.
Collapse
Affiliation(s)
- Xuemin Shi
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhuangzhuang Jia
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Donghai Wang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Bowen Jiang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yaqi Liao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Guohua Zhang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Qingsong Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China
| | - Danqi He
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhui Huang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
9
|
Song Z, Li W, Gao Z, Chen Y, Wang D, Chen S. Bio-Inspired Electrodes with Rational Spatiotemporal Management for Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400405. [PMID: 38682479 PMCID: PMC11267303 DOI: 10.1002/advs.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Lithium-ion batteries (LIBs) are currently the predominant energy storage power source. However, the urgent issues of enhancing electrochemical performance, prolonging lifetime, preventing thermal runaway-caused fires, and intelligent application are obstacles to their applications. Herein, bio-inspired electrodes owning spatiotemporal management of self-healing, fast ion transport, fire-extinguishing, thermoresponsive switching, recycling, and flexibility are overviewed comprehensively, showing great promising potentials in practical application due to the significantly enhanced durability and thermal safety of LIBs. Taking advantage of the self-healing core-shell structures, binders, capsules, or liquid metal alloys, these electrodes can maintain the mechanical integrity during the lithiation-delithiation cycling. After the incorporation of fire-extinguishing binders, current collectors, or capsules, flame retardants can be released spatiotemporally during thermal runaway to ensure safety. Thermoresponsive switching electrodes are also constructed though adding thermally responsive components, which can rapidly switch LIB off under abnormal conditions and resume their functions quickly when normal operating conditions return. Finally, the challenges of bio-inspired electrode designs are presented to optimize the spatiotemporal management of LIBs. It is anticipated that the proposed electrodes with spatiotemporal management will not only promote industrial application, but also strengthen the fundamental research of bionics in energy storage.
Collapse
Affiliation(s)
- Zelai Song
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Weifeng Li
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Zhenhai Gao
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190China
| | - Deping Wang
- General Research and Development InstituteChina FAW Corporation LimitedChangchun130013China
| | - Siyan Chen
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| |
Collapse
|
10
|
Wang J, Shao D, Fan Z, Xu C, Dou H, Xu M, Ding B, Zhang X. High-Area-Capacity Cathode by Ultralong Carbon Nanotubes for Secondary Binder-Assisted Dry Coating Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26209-26216. [PMID: 38733341 DOI: 10.1021/acsami.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Thick electrodes with high mass loading and increased content of active materials are critical for achieving higher energy density in contemporary lithium-ion batteries (LIBs). Nonetheless, producing thick electrodes through the commonly used slurry coating technology remains a formidable challenge. In this study, we have addressed this challenge by developing a dry electrode technology by using ultralong multiwalled carbon nanotubes (MWCNT) as a conductive additive and secondary binder. The mixing process of electrode compositions and the fibrillation process of the polytetrafluoroethylene (PTFE) binder were optimized. The resulting LiCoO2 (LCO) electrode exhibited a remarkable mass loading of 48 mg cm-2 and an active material content of 95 wt %. Notably, the thick LCO electrode demonstrated a superior mechanical strength and electrochemical performance. After 100 cycles at a current density of 1/3 C, the electrode still exhibited a capacity retention of 91% of its initial capacity. This dry electrode technology provides a practicable and scalable approach to the powder-to-film LIB electrode manufacturing process.
Collapse
Affiliation(s)
- Jia Wang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Di Shao
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zengjie Fan
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chong Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Miao Xu
- Shanghai Institute of Space Power-Sources/State Key Laboratory of Space Power-Sources, Shanghai 200233, China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
11
|
Hong SB, Lee YJ, Lee HJ, Sim HT, Lee H, Lee YM, Kim DW. Exploring the Cathode Active Materials for Sulfide-Based All-Solid-State Lithium Batteries with High Energy Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304747. [PMID: 37847909 DOI: 10.1002/smll.202304747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Indexed: 10/19/2023]
Abstract
All-solid-state lithium batteries (ASSLBs) are considered promising alternatives to current lithium-ion batteries that employ liquid electrolytes due to their high energy density and enhanced safety. Among various types of solid electrolytes, sulfide-based electrolytes are being actively studied, because they exhibit high ionic conductivity and high ductility, which enable good interfacial contacts in solid electrolytes without sintering at high temperatures. To improve the energy density of the sulfide-based ASSLBs, it is essential to increase the loading of active material in the composite cathode. In this study, the Ni-rich LiNix Coy Mn1-x-y O2 (NCM) materials are explored with different Ni content, particle size, and crystalline form to probe suitable cathode active materials for high-performance ASSLBs with high energy density. The results reveal that single-crystalline LiNi0.82 Co0.10 Mn0.08 O2 material with a small particle size exhibits the best cycling performance in the ASSLB assembled with a high mass loaded cathode (active mass loading: 26 mg cm-2 , areal capacity: 5.0 mAh cm-2 ) in terms of discharge capacity, capacity retention, and rate capability.
Collapse
Affiliation(s)
- Seung-Bo Hong
- Department of Chemical Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Young-Jun Lee
- Department of Chemical Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Han-Jo Lee
- Department of Chemical Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Hui-Tae Sim
- Department of Chemical Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Hyobin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 42988, Daegu, South Korea
| | - Yong Min Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 42988, Daegu, South Korea
| | - Dong-Won Kim
- Department of Chemical Engineering, Hanyang University, 04763, Seoul, South Korea
- Department of Battery Engineering, Hanyang University, 04763, Seoul, South Korea
| |
Collapse
|
12
|
Zhang Y, Yang S, Zhu YJ, Li D, Cheng L, Li H, Wang Z. Synergistically regulating the separator pore structure and surface property toward dendrite-free and high-performance aqueous zinc-ion batteries. J Colloid Interface Sci 2023; 656:566-576. [PMID: 38011775 DOI: 10.1016/j.jcis.2023.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
As an emerging electrochemical device, aqueous zinc-ion batteries (ZIBs) present promising potential in safe and large-scale energy storage. However, the large pores of commercial glass fiber (GF) separators result in uneven Zn2+ ion flux, leading to severe dendrite growth issues of Zn metal anodes. Herein, we integrated a multifunctional layer on the GF separator that can synergistically regulate the pore feature and surface property of commercial GF separators. Such modification layer, composed of nanocellulose and SiO2 nanoparticles, exhibited uniform nanoporous structure and abundant negatively charged polar functional groups. These features allow regulating the distribution of Zn2+ ions at the separator-anode interface, facilitating stable and uniform Zn nucleation and growth. Moreover, the electrostatic interaction between the negatively charged functional groups and Zn2+ ions enhanced the Zn2+ ion transport kinetics, preventing the Zn dendrites formation and adverse reactions. Consequently, the modified electrolyte-filled GF separator showed an increased Zn2+ ion transference number of 0.65. The symmetric Zn//Zn batteries utilizing such a separator achieved an impressive cycling life of 500 h at a high current density/capacity of 10 mA cm-2/4 mAh cm-2, nearly nine times longer than the battery using the unmodified GF separator (<55 h). The superior electrochemical performance was verified in both Zn//AC and Zn//LiMn2O4 full battery evaluations. This work presents a novel synergistic modification strategy for developing advanced separators for aqueous ZIBs.
Collapse
Affiliation(s)
- Yaxin Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Shanchen Yang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Dandan Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Long Cheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Heng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Zhaohui Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
13
|
Shinde SS, Wagh NK, Kim S, Lee J. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304235. [PMID: 37743719 PMCID: PMC10646287 DOI: 10.1002/advs.202304235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Solid-state batteries (SSBs) have received significant attention due to their high energy density, reversible cycle life, and safe operations relative to commercial Li-ion batteries using flammable liquid electrolytes. This review presents the fundamentals, structures, thermodynamics, chemistries, and electrochemical kinetics of desirable solid electrolyte interphase (SEI) required to meet the practical requirements of reversible anodes. Theoretical and experimental insights for metal nucleation, deposition, and stripping for the reversible cycling of metal anodes are provided. Ion transport mechanisms and state-of-the-art solid-state electrolytes (SEs) are discussed for realizing high-performance cells. The interface challenges and strategies are also concerned with the integration of SEs, anodes, and cathodes for large-scale SSBs in terms of physical/chemical contacts, space-charge layer, interdiffusion, lattice-mismatch, dendritic growth, chemical reactivity of SEI, current collectors, and thermal instability. The recent innovations for anode interface chemistries developed by SEs are highlighted with monovalent (lithium (Li+ ), sodium (Na+ ), potassium (K+ )) and multivalent (magnesium (Mg2+ ), zinc (Zn2+ ), aluminum (Al3+ ), calcium (Ca2+ )) cation carriers (i.e., lithium-metal, lithium-sulfur, sodium-metal, potassium-ion, magnesium-ion, zinc-metal, aluminum-ion, and calcium-ion batteries) compared to those of liquid counterparts.
Collapse
Affiliation(s)
- Sambhaji S. Shinde
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Nayantara K. Wagh
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Sung‐Hae Kim
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Jung‐Ho Lee
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| |
Collapse
|
14
|
Xu Z, Li H, Liu Y, Wang K, Wang H, Ge M, Xie J, Li J, Wen Z, Pan H, Qu S, Liu J, Zhang Y, Tang Y, Chen S. Durable modulation of Zn(002) plane deposition via reproducible zincophilic carbon quantum dots towards low N/P ratio zinc-ion batteries. MATERIALS HORIZONS 2023; 10:3680-3693. [PMID: 37365987 DOI: 10.1039/d3mh00261f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage systems due to their intrinsic safety, environmental friendliness, and low cost. However, the uncontrollable Zn dendrite growth during cycling is still a critical challenge for the long-term operation of ZIBs, especially under harsh lean-Zn conditions. Herein, we report nitrogen and sulfur-codoped carbon quantum dots (N,S-CDs) as zincophilic electrolyte additives to regulate the Zn deposition behaviors. The N,S-CDs with abundant electronegative groups can attract Zn2+ ions and co-deposit with Zn2+ ions on the anode surface, inducing a parallel orientation of the (002) crystal plane. The deposition of Zn preferentially along the (002) crystal direction fundamentally avoids the formation of Zn dendrites. Moreover, the co-depositing/stripping feature of N,S-CDs under an electric field force ensures the reproducible and long-lasting modulation of the Zn anode stability. Benefiting from these two unique modulation mechanisms, stable cyclability of the thin Zn anodes (10 and 20 μm) at a high depth of discharge (DOD) of 67% and high Zn||Na2V6O16·3H2O (NVO, 11.52 mg cm-2) full-cell energy density (144.98 W h Kg-1) at a record-low negative/positive (N/P) capacity ratio of 1.05 are achieved using the N,S-CDs as an additive in ZnSO4 electrolyte. Our findings not only offer a feasible solution for developing actual high-energy density ZIBs but also provide in-depth insights into the working mechanism of CDs in regulating Zn deposition behaviors.
Collapse
Affiliation(s)
- Zhu Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Heng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yupeng Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Kexuan Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Huibo Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Junpeng Xie
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Jielei Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Zhaorui Wen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Songnan Qu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, P. R. China.
| |
Collapse
|
15
|
Yang Y, Chen Z, Lv T, Dong K, Liu Y, Qi Y, Cao S, Chen T. Ultrafast self-assembly of supramolecular hydrogels toward novel flame-retardant separator for safe lithium ion battery. J Colloid Interface Sci 2023; 649:591-600. [PMID: 37364459 DOI: 10.1016/j.jcis.2023.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Traditional polyolefin separators for lithium-ion batteries (LIBs) often experience limited thermal stability and intrinsic flammability, resulting in great safety risks during their usage. Therefore, it is highly important to develop novel flame-retardant separators for safe LIBs with high performance. In this work, we report a flame-retardant separator derived from boron nitride (BN) aerogel with a high BET surface area of 1127.3 m2 g-1. The aerogel was pyrolyzed from a melamine-boric acid (MBA) supramolecular hydrogel, which was self-assembled at an ultrafast speed. The in-situ evolution details of the nucleation-growth process of the supramolecules could be observed in real-time using a polarizing microscope under ambient conditions. The BN aerogel was further composited with bacterial cellulose (BC) to form a BN/BC composite aerogel with excellent flame-retardant performance, electrolyte-wetting ability and high mechanical property. By using the BN/BC composite aerogel as the separator, the developed LIBs exhibited high specific discharge capacity of 146.5 mAh g-1 and excellent cyclic performance, maintaining 500 cycles with a capacity degradation of only 0.012% per cycle. The high-performance flame-retardant BN/BC composite aerogel represents a promising candidate for separators not only in LIBs but also in other flexible electronics.
Collapse
Affiliation(s)
- Yunlong Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunlong Qi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
Zhou J, Meng Y, Shen D, Zhou Y, Liu J, Cao Y, Yan C, Qian T. Empowering Quasi-solid Electrolyte with Smart Thermoresistance and Damage Repairability to Realize Safer Lithium Metal Batteries. J Phys Chem Lett 2023; 14:4482-4489. [PMID: 37155225 DOI: 10.1021/acs.jpclett.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Thermal runaway, a complex chemical/electrochemical heat breakout process caused by complex abuse conditions, remains a big issue to significantly hinder further practical application of lithium batteries. Here we design and fabricate a smart thermoregulatory and self-healing gel electrolyte (TRSHGE) by cross-linking phase-transition chains to polymer networks through reversibly dynamic interactions while maintaining the desirable electrochemical performance. Impressively, on the one hand, the phase-transition chains with endothermic effects can efficiently accommodate the heat accumulation, enabling lithium batteries to work safely and normally even up to 80 °C. On the other hand, the dynamic covalent boronic eater bonds and hydrogen bonds endow the TRSHGE damage repairability upon mechanical shock even at the nail penetration test. Such smart electrolyte with thermoresistance and damage repairability indicates significant technological advancement toward the safe commercial application of lithium batteries, even great potential to develop other functional batteries beyond the lithium-based systems discussed herein.
Collapse
Affiliation(s)
- Jinqiu Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuan Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Danni Shen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Yang Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yufeng Cao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215006, China
| |
Collapse
|
17
|
Han C, Cao Y, Zhang S, Bai L, Yang M, Fang S, Gong H, Tang D, Pan F, Jiang Z, Sun J. Separator with Nitrogen-Phosphorus Flame-Retardant for LiNi x Co y Mn 1- x - y O 2 Cathode-Based Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207453. [PMID: 36960488 DOI: 10.1002/smll.202207453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
With the pursuit of high-energy-density for lithium-ion batteries (LIBs), the hidden safety problems of batteries have gradually emerged. LiNix Coy Mn1- x - y O2 (NCM) is considered as an ideal cathode material to meet the urgent needs of high-energy-density batteries. However, the oxygen precipitation reaction of NCM cathode at high temperature brings serious safety concerns. In order to promote high-safety lithium-ion batteries, herein, a new type of flame-retardant separator is prepared using flame-retardant (melamine pyrophosphate, MPP) and thermal stable Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). MPP takes the advantage of nitrogen-phosphorus synergistic effect upon the increased internal temperature of LIBs, including the dilution effect of noncombustible gas and the rapidly suppression of undesirable thermal runaway. The developed flame-retardant separators show negligible shrinkage over 200 °C and it takes only 0.54 s to extinguish the flame in the ignition test, which are much superior to commercial polyolefin separators. Moreover, pouch cells are assembled to demonstrate the application potential of PVDF-HFP/MPP separators and further verify the safety performance. It is anticipated that the separator with nitrogen-phosphorus flame-retardant can be extensively applied to various high-energy-density devices owing to simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Chengyu Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shaojie Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liyang Bai
- Jiewei Power Co. Ltd. , Tianjin, 300112, China
| | - Ming Yang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Siyu Fang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haochen Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Di Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Chang X, Zhao YM, Yuan B, Fan M, Meng Q, Guo YG, Wan LJ. Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Praveen S, Kim T, Jung SP, Lee CW. 3D-Printed Silicone Substrates as Highly Deformable Electrodes for Stretchable Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205817. [PMID: 36408809 DOI: 10.1002/smll.202205817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Stretchable energy storage devices receive a considerable attention at present due to their growing demand for powering wearable electronics. A vital component in stretchable energy storage devices is its electrode which should endure a large and repeated number of mechanical deformations during its prolonged use. It is crucial to develop a technology to fabricate highly deformable electrode in an easy and an economic manner. Here, the fabrication of stretchable electrode substrates using 3D-printing technology is reported. The ink for fabricating it contains a mixture of sacrificial sugar particles and polydimethylsiloxane resin which solidifies upon thermal curing. The printed stretchable substrate attains a porous structure after leaching the sugar particles in water. The resulting printed porous stretchable substrates are then utilized as electrodes for Li-ion batteries (LIBs) after loading them with electrode materials. The batteries with stretchable electrodes exhibit a decent electrochemical performance comparable to that of the conventional electrodes. The stretchable electrodes also exhibit a stable electrochemical performance under various mechanical deformations and even after several hundreds of stretch/release cycles. This work provides a feasible route for constructing LIBs with high stretchability and enhanced electrochemical performance thereby providing a platform for realizing stretchable batteries for next generation wearable electronics.
Collapse
Affiliation(s)
- Sekar Praveen
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| | - Taehyung Kim
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| | - Soon Phil Jung
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| | - Chang Woo Lee
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
- Center for the SMART Energy Platform, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
20
|
Lin W, Wang F, Wang H, Li H, Fan Y, Chan D, Chen S, Tang Y, Zhang Y. Thermal-Stable Separators: Design Principles and Strategies Towards Safe Lithium-Ion Battery Operations. CHEMSUSCHEM 2022; 15:e202201464. [PMID: 36254787 DOI: 10.1002/cssc.202201464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Lithium-ion batteries (LIBs) are momentous energy storage devices, which have been rapidly developed due to their high energy density, long lifetime, and low self-discharge rate. However, the frequent occurrence of fire accidents in laptops, electric vehicles, and mobile phones caused by thermal runaway of the inside batteries constantly reminds us of the urgency in pursuing high-safety LIBs with high performance. To this end, this Review surveyed the state-of-the-art developments of high-temperature-resistant separators for highly safe LIBs with excellent electrochemical performance. Firstly, the basic properties of separators (e. g., thickness, porosity, pore size, wettability, mechanical strength, and thermal stability) in constructing commercialized LIBs were introduced. Secondly, the working mechanisms of advanced separators with different melting points acting in the thermal runaway stage were discussed in terms of improving battery safety. Thirdly, rational design strategies for constructing high-temperature-resistant separators for LIBs with high safety were summarized and discussed, including graft modification, blend modification, and multilayer composite modification strategies. Finally, the current obstacles and future research directions in the field of high-temperature-resistant separators were highlighted. These design ideas are expected to be applied to other types of high-temperature-resistant energy storage systems working under extreme conditions.
Collapse
Affiliation(s)
- Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Feng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Heng Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - You Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
21
|
Chen S, Wang H, Zhu M, You F, Lin W, Chan D, Lin W, Li P, Tang Y, Zhang Y. Revitalizing zinc-ion batteries with advanced zinc anode design. NANOSCALE HORIZONS 2022; 8:29-54. [PMID: 36268641 DOI: 10.1039/d2nh00354f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) have attracted significant attention in large-scale energy storage systems due to their unique merits, such as intrinsic safety, low cost, and relatively high theoretical energy density. However, the dilemma of the uncontrollable Zn dendrites, severe hydrogen evolution reaction (HER), and side reactions that occur on the Zn anodes have hindered their commercialization. Herein, a state-of-the-art review of the rational design of highly reversible Zn anodes for high-performance AZIBs is provided. Firstly, the fundamental understanding of Zn deposition, with regard to the nucleation, electro-crystallization, and growth of the Zn nucleus is systematically clarified. Subsequently, a comprehensive survey of the critical factors influencing Zn plating together with the current main challenges is presented. Accordingly, the rational strategies emphasizing structural design, interface engineering, and electrolyte optimization have been summarized and analyzed in detail. Finally, future perspectives on the remaining challenges are recommended, and this review is expected to shed light on the future development of stable Zn anodes toward high-performance AZIBs.
Collapse
Affiliation(s)
- Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, P. R. China
| | - Mengyu Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Fan You
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wang Lin
- Army Logistics Academy, Chongqing 401311, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Peng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
22
|
Ultrathin Two-Dimensional Fe-Co Bimetallic Oxide Nanosheets for Separator Modification of Lithium-Sulfur Batteries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227762. [PMID: 36431863 PMCID: PMC9693558 DOI: 10.3390/molecules27227762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
The shuttle effect is understood to be the most significant issue that needs to be solved to improve the performance of lithium-sulfur batteries. In this study, ultrathin two-dimensional Fe-Co bimetallic oxide nanosheets were prepared using graphene as a template, which could rapidly catalyze the conversion of polysulfides and inhibit the shuttle effect. Additionally, such ultrathin nanostructures based on graphene provided sufficient active sites and fast diffusion pathways for lithium ions. Taking into account the aforementioned benefits, the ultrathin two-dimensional Fe-Co bimetallic oxide nanosheets modified separator assembled lithium-sulfur batteries delivered an incredible capacity of 1044.2 mAh g-1 at 1 C and retained an excellent reversible capacity of 859.4 mAh g-1 after 100 cycles. Even under high loading, it still achieved high area capacity and good cycle stability (92.6% capacity retention).
Collapse
|
23
|
Li L, Fang B, Ren D, Fu L, Zhou Y, Yang C, Zhang F, Feng X, Wang L, He X, Qi P, Liu Y, Jia C, Zhao S, Xu F, Wei X, Wu H. Thermal-Switchable, Trifunctional Ceramic-Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems. ACS NANO 2022; 16:10729-10741. [PMID: 35709373 DOI: 10.1021/acsnano.2c02557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermal runaway (TR) failures of large-format lithium-ion battery systems related to fires and explosions have become a growing concern. Here, we design a smart ceramic-hydrogel nanocomposite that provides integrated thermal management, cooling, and fire insulation functionalities and enables full-lifecycle security. The glass-ceramic nanobelt sponges exhibit high mechanical flexibility with 80% reversible compressibility and high fatigue resistance, which can firmly couple with the polymer-nanoparticle hydrogels and form thermal-switchable nanocomposites. In the operating mode, the high enthalpy of the nanocomposites enables efficient thermal management, thereby preventing local temperature spikes and overheating under extremely fast charging conditions. In the case of mechanical or thermal abuse, the stored water can be immediately released, leaving behind a highly flexible ceramic matrix with low thermal conductivity (42 mW m-1 K-1 at 200 °C) and high-temperature resistance (up to 1300 °C), thus effectively cooling the TR battery and alleviating the devastating TR propagation. The versatility, self-adaptivity, environmental friendliness, and manufacturing scalability make this material highly attractive for practical safety assurance applications.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ben Fang
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Dongsheng Ren
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Le Fu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Yiqian Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fangshu Zhang
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Xuning Feng
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Peipei Qi
- Research Center of Do-fluoride New Energy Technology Co., Ltd., Jiaozuo 454003, China
| | - Ying Liu
- School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chao Jia
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, 8600, Switzerland
| | - Fei Xu
- Research Center of Do-fluoride New Energy Technology Co., Ltd., Jiaozuo 454003, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wang H, Ning D, Wang L, Li H, Li Q, Ge M, Zou J, Chen S, Shao H, Lai Y, Zhang Y, Xing G, Pang WK, Tang Y. In Operando Neutron Scattering Multiple-Scale Studies of Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107491. [PMID: 35195340 DOI: 10.1002/smll.202107491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Real-time observation of the electrochemical mechanistic behavior at various scales offers new insightful information to improve the performance of lithium-ion batteries (LIBs). As complementary to the X-ray-based techniques and electron microscopy-based methodologies, neutron scattering provides additional and unique advantages in materials research, owing to the different interactions with atomic nuclei. The non-Z-dependent elemental contrast, in addition to the high penetration ability and weak interaction with matters, makes neutron scattering an advanced probing tool for the in operando mechanistic studies of LIBs. The neutron-based techniques, such as neutron powder diffraction, small-angle neutron scattering, neutron reflectometry, and neutron imaging, have their distinct functionalities and characteristics regimes. These result in their scopes of application distributed in different battery components and covering the full spectrum of all aspects of LIBs. The review surveys the state-of-the-art developments of real-time investigation of the dynamic evolutions of electrochemically active compounds at various scales using neutron techniques. The atomic-scale, the mesoscopic-scale, and at the macroscopic-scale within LIBs during electrochemical functioning provide insightful information to battery researchers. The authors envision that this review will popularize the applications of neutron-based techniques in LIB studies and furnish important inspirations to battery researchers for the rational design of the new generation of LIBs.
Collapse
Affiliation(s)
- Huibo Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - De Ning
- Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Litong Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Heng Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Qingyuan Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Mingzheng Ge
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Junyan Zou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Wei Kong Pang
- Institute for Superconducting and Electronic Materials (ISEM), Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Fujian Science and Technology Innovation Laboratory for Chemical Engineering of China, Quanzhou, 362801, P. R. China
| |
Collapse
|
25
|
Gao Z, Rao S, Zhang T, Gao F, Xiao Y, Shali L, Wang X, Zheng Y, Chen Y, Zong Y, Li W, Chen Y. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103796. [PMID: 34923778 PMCID: PMC8844567 DOI: 10.1002/advs.202103796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/22/2021] [Indexed: 05/05/2023]
Abstract
Vigorous development of electric vehicles is one way to achieve global carbon reduction goals. However, fires caused by thermal runaway of the power battery has seriously hindered large-scale development. Adding thermal runaway retardants (TRRs) to electrolytes is an effective way to improve battery safety, but it often reduces electrochemical performance. Therefore, it is difficult to apply in practice. TRR encapsulation is inspired by the core-shell structures such as cells, seeds, eggs, and fruits in nature. In these natural products, the shell isolates the core from the outside, and has to break as needed to expose the core, such as in seed germination, chicken hatching, etc. Similarly, TRR encapsulation avoids direct contact between the TRR and the electrolyte, so it does not affect the electrochemical performance of the battery during normal operation. When lithium-ion battery (LIB) thermal runaway occurs, the capsules release TRRs to slow down and even prevent further thermal runaway. This review aims to summarize the fundamentals of bioinspired TRR capsules and highlight recent key progress in LIBs with TRR capsules to improve LIB safety. It is anticipated that this review will inspire further improvement in battery safety, especially for emerging LIBs with high-electrochemical performance.
Collapse
Affiliation(s)
- Zhenhai Gao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Shun Rao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Tianyao Zhang
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Fei Gao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yang Xiao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Longfei Shali
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Xiaoxu Wang
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yadan Zheng
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yiyuan Chen
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yuan Zong
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Weifeng Li
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|