1
|
Wu X, Ye Z. Mechanoimmunology of T-Cell Activation. Scand J Immunol 2025; 101:e70009. [PMID: 39973081 DOI: 10.1111/sji.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
T-cell activation, a pivotal process in the adaptive immune response, is initiated when the T cell receptor (TCR) recognises and binds to antigenic peptide-major histocompatibility complex (pMHC) molecules on the cell membrane. Emerging evidence indicates that mechanical cues regulate T-cell activation by modulating TCR signalling and mechanotransduction pathways, although the precise underlying mechanisms remain elusive. This review highlights recent findings suggesting that the TCR functions as a mechanosensor, capable of sensing and transmitting mechanical forces through conformational changes. Key steps in T-cell mechanotransduction are discussed, including the roles of the cytoskeleton, mechanosensitive channels such as Piezo 1 and microvilli in facilitating activation. Additionally, we analyse the mechanical responses of chimeric antigen receptor T cells. Understanding the mechanobiological mechanisms underlying T-cell activation offers novel insights and potential strategies for advancing immunotherapies and treating immune-related disorders.
Collapse
Affiliation(s)
- Xuelan Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| |
Collapse
|
2
|
Liu Z, Li YR, Yang Y, Zhu Y, Yuan W, Hoffman T, Wu Y, Zhu E, Zarubova J, Shen J, Nan H, Yeh KW, Hasani-Sadrabadi MM, Zhu Y, Fang Y, Ge X, Li Z, Soto J, Hsiai T, Yang L, Li S. Viscoelastic synthetic antigen-presenting cells for augmenting the potency of cancer therapies. Nat Biomed Eng 2024; 8:1615-1633. [PMID: 39455719 DOI: 10.1038/s41551-024-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8+ T cells and to the suppression of the formation of regulatory T cells. Notably, activating and expanding chimaeric antigen receptor (CAR) T cells with SynVACs led to a CAR-transduction efficiency of approximately 90% and to substantial increases in T memory stem cells. The engineered CAR T cells eliminated tumour cells in a mouse model of human lymphoma, suppressed tumour growth in mice with human ovarian cancer xenografts, persisted for longer periods and reduced tumour-recurrence risk. Our findings underscore the crucial roles of viscoelasticity in T-cell engineering and highlight the utility of SynVACs in cancer therapy.
Collapse
Affiliation(s)
- Zeyang Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Youcheng Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haochen Nan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kun-Wei Yeh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yichen Zhu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinyang Ge
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhizhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Jia Z, Zhou X, Liu J, De X, Li Y, Yang Z, Duan H, Wang F, Ge J. Immune enhancement of rhamnolipid/manganese calcium phosphate mineralized nanoparticle: A promising subunit antigen delivery system. Int J Biol Macromol 2024; 282:137239. [PMID: 39491710 DOI: 10.1016/j.ijbiomac.2024.137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The use of biomimetic mineralization strategy is promising to solve the problem of poor stability and immune effect of subunit antigens. However, non-specifically inducing protein mineralization is still a challenge. we hypothesized that rhamnolipids with both protein and metal binding capacity could be used to develop more functional and biocompatible calcium mineralized nanoparticle (RMCP). The results show that rhamnolipids synergistically enhanced the mineralization of protein with manganese ions and improved 21 % the loading antigens of RMCP compared to manganese calcium phosphate nanoparticles. Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS) showed particle size of RMCP is 260 ± 12.1 nm with spherical morphology. In vitro experiments have shown that RMCP effectively activate immune cells through the cGAS-STING and NLRP3 pathways and demonstrated a higher level of cytokines in RAW264.7 Macrophages. In vivo, RMCP triggered an increased IgG titer with 16.5-fold IgG2a/IgG1 ratio compared to the aluminum adjuvant which improved the recovery status after challenge in mice. We used biological surfactants for the first time to enhance the biomimetic mineralization process of subunit antigen, which provides a new approach for constructing calcium-based biocompatible antigen delivery vectors, helping to develop a new generation of stable, efficient, and safe subunit vaccines.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Jingjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China.
| |
Collapse
|
4
|
Li Y, Li S, Scheerstra JF, Patiño T, van Hest JCM, Abdelmohsen LKEA. Engineering Functional Particles to Modulate T Cell Responses. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:1048-1058. [PMID: 39359649 PMCID: PMC11443481 DOI: 10.1021/accountsmr.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 10/04/2024]
Abstract
T cells play a critical role in adaptive immune responses. They work with other immune cells such as B cells to protect our bodies when the first line of defense, the innate immune system, is overcome by certain infectious diseases or cancers. Studying and regulating the responses of T cells, such as activation, proliferation, and differentiation, helps us understand not only their behavior in vivo but also their translation and application in the field of immunotherapy, such as adoptive T cell therapy and immune checkpoint therapy, the situations in which T cells cannot fight cancer alone and require external engineering regulation to help them. Nano- to micrometer-sized particulate biomaterials have achieved great progress in the assistance of T cell-based immunomodulation. For example, various types of microparticles decorated with T cell recognition and activation signals to mimic native antigen-presenting cells have shown successful ex vivo expansion of primary T cells and have been approved for clinical use in adoptive T cell therapy. Functional particles can also serve as vehicles for transporting cargos including small molecule drugs, cytokines, and antibodies. Especially for cargos with limited bioavailability and high repeat-dose toxicity, systemic administration in their free form is difficult. By using particle-assisted systems, the delivery can be tailored on demand, of which targeting and controlled release are two typical examples, ultimately aiding in the regulation of T cell responses. Furthermore, when T cells become overactive and behave in ways that contradict our expectations, such as attacking our own cells or innocuous foreign molecules, this can lead to a breakdown of immune tolerance. In such cases, particles to help reprogram those overactive T cells or suppress their activity are appreciated in vivo. The urgent need to introduce immune stimulation into the treatment of cancers, infectious diseases, and autoimmune diseases has driven recent advances in the engineering of functional particulate biomaterials that regulate T cell responses. In this Account, we will first cover a brief overview of the process of T cell-based immunomodulation from principle to development. It then outlines critical points in the design of functional particle platforms, including materials, size, morphology, surface engineering, and delivery of cargos, to modulate the features of T cells, and introduces selected work from our and other research groups with a focus on three major therapeutic applications: adoptive T cell therapy, immune checkpoint therapy, and immune tolerance restoration. Current challenges and future opportunities are also discussed.
Collapse
Affiliation(s)
- Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shukun Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tania Patiño
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Dong J, Chai X, Xue Y, Shen S, Chen Z, Wang Z, Yinwang E, Wang S, Chen L, Wu F, Li H, Chen Z, Xu J, Ye Z, Li X, Lu Q. ZIF-8-Encapsulated Pexidartinib Delivery via Targeted Peptide-Modified M1 Macrophages Attenuates MDSC-Mediated Immunosuppression in Osteosarcoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309038. [PMID: 38456768 DOI: 10.1002/smll.202309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Adoptive cellular therapy is a promising strategy for cancer treatment. However, the effectiveness of this therapy is limited by its intricate and immunosuppressive tumor microenvironment. In this study, a targeted therapeutic strategy for macrophage loading of drugs is presented to enhance anti-tumor efficacy of macrophages. K7M2-target peptide (KTP) is used to modify macrophages to enhance their affinity for tumors. Pexidartinib-loaded ZIF-8 nanoparticles (P@ZIF-8) are loaded into macrophages to synergistically alleviate the immunosuppressive tumor microenvironment synergistically. Thus, the M1 macrophages decorated with KTP carried P@ZIF-8 and are named P@ZIF/M1-KTP. The tumor volumes in the P@ZIF/M1-KTP group are significantly smaller than those in the other groups, indicating that P@ZIF/M1-KTP exhibited enhanced anti-tumor efficacy. Mechanistically, an increased ratio of CD4+ T cells and a decreased ratio of MDSCs in the tumor tissues after treatment with P@ZIF/M1-KTP indicated that it can alleviate the immunosuppressive tumor microenvironment. RNA-seq further confirms the enhanced immune cell function. Consequently, P@ZIF/M1-KTP has great potential as a novel adoptive cellular therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Jiabao Dong
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Xupeng Chai
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Yucheng Xue
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Shiyun Shen
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Zhuo Chen
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Zetao Wang
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Eloy Yinwang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Shengdong Wang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Liang Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Fengfeng Wu
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Hengyuan Li
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Zehao Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Jianbin Xu
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Zhaoming Ye
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Xiongfeng Li
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Qian Lu
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
6
|
Huang Y, Zhang Q, Lam CYK, Li C, Yang C, Zhong Z, Zhang R, Yan J, Chen J, Yin B, Wong SHD, Yang M. An Aggregation-Induced Emission-Based Dual Emitting Nanoprobe for Detecting Intracellular pH and Unravelling Metabolic Variations in Differentiating Lymphocytes. ACS NANO 2024; 18:15935-15949. [PMID: 38833531 DOI: 10.1021/acsnano.4c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Monitoring T lymphocyte differentiation is essential for understanding T cell fate regulation and advancing adoptive T cell immunotherapy. However, current biomarker analysis methods necessitate cell lysis, leading to source depletion. Intracellular pH (pHi) can be affected by the presence of lactic acid (LA), a metabolic mediator of T cell activity such as glycolysis during T cell activation; therefore, it is a potentially a good biomarker of T cell state. In this work, a dual emitting enhancement-based nanoprobe, namely, AIEgen@F127-AptCD8, was developed to accurately detect the pHi of T cells to "read" the T cell differentiation process. The nanocore of this probe comprises a pair of AIE dyes, TPE-AMC (pH-sensitive moiety) and TPE-TCF, that form a donor-acceptor pair for sensitive detection of pHi by dual emitting enhancement analysis. The nanoprobe exhibits a distinctly sensitive narrow range of pHi values (from 6.0 to 7.4) that can precisely distinguish the differentiated lymphocytes from naïve ones based on their distinct pHi profiles. Activated CD8+ T cells demonstrate lower pHi (6.49 ± 0.09) than the naïve cells (7.26 ± 0.11); Jurkat cells exhibit lower pHi (6.43 ± 0.06) compared to that of nonactivated ones (7.29 ± 0.09) on 7 days post-activation. The glycolytic product profiles in T cells strongly correlate with their pHi profiles, ascertaining the reliability of probing pHi for predicting T cell states. The specificity and dynamic detection capabilities of this nanoprobe make it a promising tool for indirectly and noninvasively monitoring T cell activation and differentiation states.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chen Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhiming Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
7
|
Wang Y, Liu C, Ren Y, Song J, Fan K, Gao L, Ji X, Chen X, Zhao H. Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives. Int J Nanomedicine 2024; 19:5793-5812. [PMID: 38882535 PMCID: PMC11180442 DOI: 10.2147/ijn.s456632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
This review article discusses the potential of nanomaterials in targeted therapy and immunomodulation for stroke-induced immunosuppression. Although nanomaterials have been extensively studied in various biomedical applications, their specific use in studying and addressing immunosuppression after stroke remains limited. Stroke-induced neuroinflammation is characterized by T-cell-mediated immunodepression, which leads to increased morbidity and mortality. Key observations related to immunodepression after stroke, including lymphopenia, T-cell dysfunction, regulatory T-cell imbalance, and cytokine dysregulation, are discussed. Nanomaterials, such as liposomes, micelles, polymeric nanoparticles, and dendrimers, offer advantages in the precise delivery of drugs to T cells, enabling enhanced targeting and controlled release of immunomodulatory agents. These nanomaterials have the potential to modulate T-cell function, promote neuroregeneration, and restore immune responses, providing new avenues for stroke treatment. However, challenges related to biocompatibility, stability, scalability, and clinical translation need to be addressed. Future research efforts should focus on comprehensive studies to validate the efficacy and safety of nanomaterial-based interventions targeting T cells in stroke-induced immunosuppression. Collaborative interdisciplinary approaches are necessary to advance the field and translate these innovative strategies into clinical practice, ultimately improving stroke outcomes and patient care.
Collapse
Grants
- This work was supported by the National Natural Science Foundation of China (Grant number 82001248), National University of Singapore (NUHSRO/2020/133/Startup/08, NUHSRO/2023/008/NUSMed/TCE/LOA, NUHSRO/2021/034/TRP/09/Nanomedicine, NUHSRO/2021/044/Kickstart/09/LOA, 23-0173-A0001), National Medical Research Council (MOH-001388-00, CG21APR1005, OFIRG23jul-0047), Singapore Ministry of Education (MOE-000387-00), and National Research Foundation (NRF-000352-00)
Collapse
Affiliation(s)
- Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Yanhong Ren
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Hou F, Guo Z, Ho MT, Hui Y, Zhao CX. Particle-Based Artificial Antigen-Presenting Cell Systems for T Cell Activation in Adoptive T Cell Therapy. ACS NANO 2024; 18:8571-8599. [PMID: 38483840 DOI: 10.1021/acsnano.3c10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.
Collapse
Affiliation(s)
- Fei Hou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zichao Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Minh Trang Ho
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yue Hui
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Zhang J, Cheng D, Zhang H, Liu Z, Gao M, Wei L, Yan F, Li C, Wang L, Dong G, Wang C, Zhao M, Zhu Y, Xiong H. Interleukin 28A aggravates Con A-induced acute liver injury by promoting the recruitment of M1 macrophages. FASEB J 2024; 38:e23443. [PMID: 38265281 DOI: 10.1096/fj.202301454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1β, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Li Wei
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
10
|
Li R, Zhu Z, Zhang B, Jiang T, Zhu C, Mei P, Jin Y, Wang R, Li Y, Guo W, Liu C, Xia L, Fang B. Manganese Enhances the Osteogenic Effect of Silicon-Hydroxyapatite Nanowires by Targeting T Lymphocyte Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305890. [PMID: 38039434 PMCID: PMC10811488 DOI: 10.1002/advs.202305890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Indexed: 12/03/2023]
Abstract
Biomaterials encounter considerable challenges in extensive bone defect regeneration. The amelioration of outcomes may be attainable through the orchestrated modulation of both innate and adaptive immunity. Silicon-hydroxyapatite, for instance, which solely focuses on regulating innate immunity, is inadequate for long-term bone regeneration. Herein, extra manganese (Mn)-doping is utilized for enhancing the osteogenic ability by mediating adaptive immunity. Intriguingly, Mn-doping engenders heightened recruitment of CD4+ T cells to the bone defect site, concurrently manifesting escalated T helper (Th) 2 polarization and an abatement in Th1 cell polarization. This consequential immune milieu yields a collaborative elevation of interleukin 4, secreted by Th2 cells, coupled with attenuated interferon gamma, secreted by Th1 cells. This orchestrated interplay distinctly fosters the osteogenesis of bone marrow stromal cells and effectuates consequential regeneration of the mandibular bone defect. The modulatory mechanism of Th1/Th2 balance lies primarily in the indispensable role of manganese superoxide dismutase (MnSOD) and the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). In conclusion, this study highlights the transformative potential of Mn-doping in amplifying the osteogenic efficacy of silicon-hydroxyapatite nanowires by regulating T cell-mediated adaptive immunity via the MnSOD/AMPK pathway, thereby creating an anti-inflammatory milieu favorable for bone regeneration.
Collapse
Affiliation(s)
- Ruomei Li
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Zhiyu Zhu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Bolin Zhang
- Department of StomatologyXinHua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong University1665 Kongjiang RoadShanghai200092China
| | - Ting Jiang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Cheng Zhu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Peng Mei
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Yu Jin
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Ruiqing Wang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Yixin Li
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Weiming Guo
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Chengxiao Liu
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Lunguo Xia
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| | - Bing Fang
- Department of OrthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University500 Quxi RoadShanghai200011China
| |
Collapse
|
11
|
Yan Y, Zhou P, Ding L, Hu W, Chen W, Su B. T Cell Antigen Recognition and Discrimination by Electrochemiluminescence Imaging. Angew Chem Int Ed Engl 2023; 62:e202314588. [PMID: 37903724 DOI: 10.1002/anie.202314588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Adoptive T lymphocyte (T cell) transfer and tumour-specific peptide vaccines are innovative cancer therapies. An accurate assessment of the specific reactivity of T cell receptors (TCRs) to tumour antigens is required because of the high heterogeneity of tumour cells and the immunosuppressive tumour microenvironment. In this study, we report a label-free electrochemiluminescence (ECL) imaging approach for recognising and discriminating between TCRs and tumour-specific antigens by imaging the immune synapses of T cells. Various T cell stimuli, including agonistic antibodies, auxiliary molecules, and tumour-specific antigens, were modified on the electrode's surface to allow for their interaction with T cells bearing different TCRs. The formation of immune synapses activated by specific stimuli produced a negative (shadow) ECL image, from which T cell antigen recognition and discrimination were evaluated by analysing the spreading area and the recognition intensity of T cells. This approach provides an easy way to assess TCR-antigen specificity and screen both of them for immunotherapies.
Collapse
Affiliation(s)
- Yajuan Yan
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lurong Ding
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hu
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Education Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation, Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310012, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
13
|
Yin B, Zhang Q, Yan J, Huang Y, Li C, Chen J, Wen C, Wong SHD, Yang M. Nanomanipulation of Ligand Nanogeometry Modulates Integrin/Clathrin-Mediated Adhesion and Endocytosis of Stem Cells. NANO LETTERS 2023; 23:9160-9169. [PMID: 37494286 DOI: 10.1021/acs.nanolett.3c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nanosubstrate engineering can be a biomechanical approach for modulating stem cell differentiation in tissue engineering. However, the study of the effect of clathrin-mediated processes on manipulating this behavior is unexplored. Herein, we develop integrin-binding nanosubstrates with confined nanogeometries that regulate clathrin-mediated adhesion- or endocytosis-active signaling pathways for modulating stem fates. Isotropically presenting ligands on the nanoscale enhances the expression of clathrin in cells, thereby facilitating uptake of dexamethasone-loaded nanoparticles (NPs) to boost osteogenesis of stem cells. In contrast, anisotropic ligand nanogeometry suppresses this clathrin-mediated NP entry by strengthening the association between clathrin and adhesion spots to reinforce mechanotransduced signaling, which can be abrogated by the pharmacological inhibition of clathrin. Meanwhile, inhibiting focal adhesion formation hinders cell spreading and enables a higher endocytosis efficiency. Our findings reveal the crucial roles of clathrin in both endocytosis and mechanotransduction of stem cells and provide the parameter of ligand nanogeometry for the rational design of biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
14
|
Yin B, Wong WK, Ng YM, Yang M, Leung FKC, Wong DSH. Smart Design of Nanostructures for Boosting Tumor Immunogenicity in Cancer Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15051427. [PMID: 37242669 DOI: 10.3390/pharmaceutics15051427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Although tumor immunotherapy has emerged as a promising therapeutic method for oncology, it encounters several limitations, especially concerning low response rates and potential off-targets that elicit side effects. Furthermore, tumor immunogenicity is the critical factor that predicts the success rate of immunotherapy, which can be boosted by the application of nanotechnology. Herein, we introduce the current approach of cancer immunotherapy and its challenges and the general methods to enhance tumor immunogenicity. Importantly, this review highlights the integration of anticancer chemo/immuno-based drugs with multifunctional nanomedicines that possess imaging modality to determine tumor location and can respond to stimuli, such as light, pH, magnetic field, or metabolic changes, to trigger chemotherapy, phototherapy, radiotherapy, or catalytic therapy to upregulate tumor immunogenicity. This promotion rouses immunological memory, such as enhanced immunogenic cell death, promoted maturation of dendritic cells, and activation of tumor-specific T cells against cancer. Finally, we express the related challenges and personal perspectives of bioengineered nanomaterials for future cancer immunotherapy.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Wai-Ki Wong
- State Key Laboratory for Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yip-Ming Ng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Franco King-Chi Leung
- State Key Laboratory for Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Dexter Siu-Hong Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
15
|
Perez-Potti A, Rodríguez-Pérez M, Polo E, Pelaz B, Del Pino P. Nanoparticle-based immunotherapeutics: from the properties of nanocores to the differential effects of administration routes. Adv Drug Deliv Rev 2023; 197:114829. [PMID: 37121275 DOI: 10.1016/j.addr.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
The engagement with the immune system is one of the main cornerstones in the development of nanotechnologies for therapy and diagnostics. Recent advances have made possible the tuning of features like size, shape and biomolecular modifications that influence such interactions, however, the capabilities for immune modulation of nanoparticles are still not well defined and exploited. This review focuses on recent advances made in preclinical research for the application of nanoparticles to modulate immune responses, and the main features making them relevant for such applications. We review and discuss newest evidence in the field, which include in vivo experiments with an extensive physicochemical characterization as well as detailed study of the induced immune response. We emphasize the need of incorporating knowledge about immune response development and regulation in the design and application of nanoparticles, including the effect by parameters such as the administration route and the differential interactions with immune subsets.
Collapse
Affiliation(s)
- André Perez-Potti
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Rodríguez-Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|