1
|
Hwang M, Jung H, Kim JY. Chirality Quantification for High-Performance Nanophotonic Biosensors. SMALL METHODS 2025:e2500112. [PMID: 40200644 DOI: 10.1002/smtd.202500112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Recent advancements in chiral metabolomics have facilitated the discovery of disease biomarkers through the enantioselective measurement of metabolites, offering new opportunities for diagnosis, prognosis, and personalized medicine. Although chiral photonic nanomaterials have emerged as promising platforms for chiral biosensing, enhancing sensitivity and enabling the detection of biomolecules at extremely low concentrations, a deeper understanding of the relationship between structural and optical chirality is crucial for optimizing these platforms. This perspective examines recent methods for quantifying chirality, including the Hausdorff Chirality Measure (HCM), Continuous Chirality Measure (CCM), Osipov-Pickup-Dunmur (OPD), and Graph-Theoretical Chirality (GTC) measure. These approaches have advanced the understanding of chirality in both materials and biomolecules, as well as its correlation with optical responses. This work emphasizes the role of chiral quantification in improving biosensor performance and explores the potential of near-field chiroptical studies to enhance sensor capabilities. Finally, this work addresses key challenges and outline future research directions for advancing chiral biosensors, with a focus on improving nano-bio interface interactions to drive the development of next-generation sensing technologies.
Collapse
Affiliation(s)
- Myonghoo Hwang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hyeongoo Jung
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ji-Young Kim
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
2
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Dehbi L, Kartikey P, Braik M, Belkhir A, Lau-Truong S, Gam-Derouich S, Chevillot-Biraud A, Mangeney C, Mezeghrane A, Baida FI, Felidj N. Tuning of plasmonic surface lattice resonances: on the crucial impact of the excitation efficiency of grazing diffraction orders. NANOSCALE 2025; 17:1536-1543. [PMID: 39625046 DOI: 10.1039/d4nr02364a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Metallic nanoparticles exhibit remarkable optical properties through localized surface plasmon (LSP) resonances. When arranged in arrays, nanoparticles form surface lattice resonances (SLRs) affected by inter-particle distance. SLRs can offer narrower bandwidths and stronger electric field enhancements than LSP modes, crucial for efficient optical device development. Among important aspects, grazing diffracted orders crucially impact SLR properties, facilitating long-range nanoparticle interactions. This study explores how these photonic modes propagating at the substrate surface influence SLRs, by using experimental and theoretical approaches, including Finite Difference Time Domain simulations on gold disk arrays. Results show SLR properties strongly rely on diffracted mode efficiency controlled by the grating constant along the incident polarization. Notably, large inter-particle spacing along the incident polarization can strongly reduce the SLR red-shift. Understanding and managing long-range interactions in engineered plasmonic structures are highlighted, providing insights for enhanced performance in advanced photonic and optoelectronic devices.
Collapse
Affiliation(s)
- Lynda Dehbi
- Université Mouloud Mammeri de Tizi-Ouzou, LPCQ, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | - Pandey Kartikey
- Université de Paris, Laboratoire ITODYS, CNRS, F-75006 Paris, France.
| | - Macilia Braik
- Université Mouloud Mammeri de Tizi-Ouzou, LPCQ, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | - Abderrahmane Belkhir
- Université Mouloud Mammeri de Tizi-Ouzou, LPCQ, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | | | | | | | - Claire Mangeney
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Abdelaziz Mezeghrane
- Université Mouloud Mammeri de Tizi-Ouzou, LPCQ, BP 17 RP, 15000 Tizi-Ouzou, Algeria
| | - Fadi Issam Baida
- Université de Bourgogne Franche-Comté, FEMTO-ST, CNRS, 25030 Besançon Cedex, France
| | - Nordin Felidj
- Université de Paris, Laboratoire ITODYS, CNRS, F-75006 Paris, France.
| |
Collapse
|
4
|
Chaâbani W, Lyu J, Marcone J, Goldmann C, Ten Veen EJM, Dumesnil C, Bizien T, Smallenburg F, Impéror-Clerc M, Constantin D, Hamon C. Prismatic Confinement Induces Tunable Orientation in Plasmonic Supercrystals. ACS NANO 2024; 18:9566-9575. [PMID: 38507585 DOI: 10.1021/acsnano.3c12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Throughout history scientists have looked to Nature for inspiration and attempted to replicate intricate complex structures formed by self-assembly. In the context of synthetic supercrystals, achieving such complexity remains a challenge due to the highly symmetric nature of most nanoparticles (NPs). Previous works have shown intricate coupling between the self-assembly of NPs and confinement in templates, such as emulsion droplets (spherical confinement) or tubes (cylindrical confinement). This study focuses on the interplay between anisotropic NP shape and tunable "prismatic confinement" leading to the self-assembly of supercrystals in cavities featuring polygonal cross sections. A multiscale characterization strategy is employed to investigate the orientation and structure of the supercrystals locally and at the ensemble level. Our findings highlight the role of the mold interface in guiding the growth of distinct crystal domains: each side of the mold directs the formation of a monodomain that extends until it encounters another, leading to the creation of grain boundaries. Computer simulations in smaller prismatic cavities were conducted to predict the effect of an increased confinement. Comparison between prismatic and cylindrical confinements shows that flat interfaces are key to orienting the growth of supercrystals. This work shows a method of inducing orientation in plasmonic supercrystals and controlling their textural defects, thus offering insight into the design of functional metasurfaces and hierarchically structured devices.
Collapse
Affiliation(s)
- Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Jieli Lyu
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Jules Marcone
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Eleonora J M Ten Veen
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, 3584 CC Utrecht, Netherlands
| | - Clément Dumesnil
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Thomas Bizien
- SWING Beamline, SOLEIL Synchrotron, 91190 Gif-sur-Yvette, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, 67034 Strasbourg, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
5
|
Moon T, Joo H, Das B, Koo Y, Kang M, Lee H, Kim S, Chen C, Suh YD, Kim DS, Park KD. Adaptive Gap-Tunable Surface-Enhanced Raman Spectroscopy. NANO LETTERS 2024; 24:3777-3784. [PMID: 38497654 DOI: 10.1021/acs.nanolett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Gap plasmon (GP) resonance in static surface-enhanced Raman spectroscopy (SERS) structures is generally too narrow and not tunable. Here, we present an adaptive gap-tunable SERS device to selectively enhance and modulate different vibrational modes via active flexible Au nanogaps, with adaptive optical control. The tunability of GP resonance is up to ∼1200 cm-1 by engineering gap width, facilitated by mechanical bending of a polyethylene terephthalate substrate. We confirm that the tuned GP resonance selectively enhances different Raman spectral regions of the molecules. Additionally, we dynamically control the SERS intensity through the wavefront shaping of excitation beams. Furthermore, we demonstrate simulation results, exhibiting the mechanical and optical properties of a one-dimensional flexible nanogap and their advantage in high-speed biomedical sensing. Our work provides a unique approach for observing and controlling the enhanced chemical responses with dynamic tunability.
Collapse
Affiliation(s)
- Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bamadev Das
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sunghwan Kim
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Cheng Chen
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yung Doug Suh
- Department of Chemistry & School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
6
|
Qi X, Pérez LA, Alonso MI, Mihi A. High Q-Factor Plasmonic Surface Lattice Resonances in Colloidal Nanoparticle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1259-1267. [PMID: 38011896 PMCID: PMC10788823 DOI: 10.1021/acsami.3c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Surface lattice resonances (SLRs) sustained by ordered metal arrays are characterized by their narrow spectral features, remarkable quality factors, and the ability to tune their spectral properties based on the periodicity of the array. However, the majority of these structures are fabricated using classical lithographic processes or require postannealing steps at high temperatures to enhance the quality of the metal. These limitations hinder the widespread utilization of these periodic metal arrays in various applications. In this work, we use the scalable technique of template-assisted assembly of metal colloids to produce plasmonic supercrystals over centimeter areas capable of sustaining SLRs with high Q factors reaching up to 270. Our approach obviates the need for any postprocessing, offering a streamlined and efficient fabrication route. Furthermore, our method enables extensive tunability across the entire visible and near-infrared spectral ranges, empowering the design of tailored plasmonic resonant structures for a wide range of applications.
Collapse
Affiliation(s)
| | | | - Maria Isabel Alonso
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Agustín Mihi
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
7
|
Charconnet M, Korsa MT, Petersen S, Plou J, Hanske C, Adam J, Seifert A. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. SMALL METHODS 2023; 7:e2201546. [PMID: 36807876 DOI: 10.1002/smtd.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Periodic superlattices of noble metal nanoparticles have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.
Collapse
Affiliation(s)
- Mathias Charconnet
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Matiyas Tsegay Korsa
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Søren Petersen
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Javier Plou
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
- CIBER-BBN, ISCIII, San Sebastián, 20014, Spain
| | - Christoph Hanske
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Jost Adam
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Andreas Seifert
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
8
|
Yaiwong P, Lertvachirapaiboon C, Shinbo K, Kato K, Ounnunkad K, Baba A. Tunable surface plasmon resonance enhanced fluorescence via the stretching of a gold quantum dot-coated aluminum-coated elastomeric grating substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3188-3195. [PMID: 35938318 DOI: 10.1039/d2ay00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the surface plasmon resonance (SPR)-enhanced fluorescence properties of gold quantum dots (AuQDs) on an aluminum (Al)-coated polydimethylsiloxane (PDMS) grating substrate were investigated by changing the grating pitch via mechanical stretching. The SPR-excitation wavelength of the AuQDs/Al-coated PDMS-grating substrate was tuned by changing the incident light angle from 5° to 60° and stretching it from 0 to 1.0 mm. In addition, the SPR-enhanced fluorescence tuning ability was studied using an AuQD/Al-coated PDMS-grating film by stretching the substrate. The SPR-enhanced fluorescence (SPF) of the AuQDs on the Al-grating was observed using a violet laser as the excitation source at 405 nm with p-polarization. The wavelengths of the SPR excitation, corresponding to the SP-dispersion mode of +1, were shifted to a longer wavelength upon stretching the grating substrate from 0 to 1.0 mm. By stretching the AuQDs/Al-grating PDMS substrate, the SPR-enhanced fluorescence intensity increased at fixed incident angles of 15° and 35°, whereas the SPR-enhanced fluorescence intensity decreased at 40°. Moreover, the SPF could be tuned to exhibit different properties in tunable optical sensors.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chutiparn Lertvachirapaiboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Kazunari Shinbo
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Keizo Kato
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Kontad Ounnunkad
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Akira Baba
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
9
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Li X, Lin X, Fang G, Dong H, Li J, Cong S, Wang L, Yang S. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates. J Colloid Interface Sci 2022; 620:388-398. [DOI: 10.1016/j.jcis.2022.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
11
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
12
|
Abstract
Recent global warming has resulted in shifting of weather patterns and led to intensification of natural disasters and upsurges in pests and diseases. As a result, global food systems are under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such agrochemicals are harmful for humans and the environment, and consequently need to be monitored. Traditional detection methods currently used are time consuming in terms of sample preparation, are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering (SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection of contaminants relevant to the food industry and environmental monitoring. In this review, the principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following this, their development and applications for agrifood safety is reviewed, with focus on detection of dye molecules, melamine in food products, and the detection of different classes of pesticides such as organophosphate and neonicotinoids.
Collapse
|