1
|
Chen S, Sun H, Chen Y, Fang Q, Huang Z, Liu Y, Chen J, Chen M, Cao D. Facile Preparation of High-Performance Free-Standing Micro-Supercapacitors by Optimizing Oxygen Groups on Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404307. [PMID: 39240072 DOI: 10.1002/smll.202404307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Free-standing micro-supercapacitor (MSC) devices without substrate or current collectors are promising for practical applications. However, it is still difficult to prepare high-performance free-standing MSC devices because of the requirement of optimized active sites, conductivity, ion diffusion, controlled patterns, moisture susceptibility, etc. Here, it is proposed that the optimization of oxygen level on graphene is promising to solve these requirements because of the balance of sp2 and sp3 hybridization. Using the medium-oxidized graphene, the flexible, conductive, hydro-stable, easy-processing film can be facilely obtained, which facilitates the preparation of free-standing MSC electrodes. After constructing with gel electrolyte, the free-standing MSC device shows a high capacitance of 898.4 mF cm-2 using aqueous-gel electrolyte and 383.6 mF cm-2 using ion-gel electrolyte with mass loading of ca. 10 mg cm-2. Correspondingly, the MSC device can achieve a landmark energy density of 42.6 µWh cm-2 at 0.85 mW cm-2 (7.1 mWh cm-3 at 141.7 mW cm-3). The advantages of high performance, facile preparation, and low inactive components make the free-standing MSC device promising for practical applications.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Institute of Laser & Optoelectronic Intelligent Manufacturing, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Hui Sun
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuewen Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Qihan Fang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Ziyuan Huang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuan Liu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Institute of Laser & Optoelectronic Intelligent Manufacturing, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jie Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Sinosteel New Materials Co., Ltd, Sinosteel Nanjing Advanced Materials Research Institute Co., Ltd, Maanshan, 243000, P. R. China
| | - Mingming Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dawei Cao
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Institute of Laser & Optoelectronic Intelligent Manufacturing, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
2
|
He Y, Guo S, Zuo X, Tian M, Zhang X, Qu L, Miao J. Smart Green Cotton Textiles with Hierarchically Responsive Conductive Network for Personal Healthcare and Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59358-59369. [PMID: 39422650 DOI: 10.1021/acsami.4c13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Whereas cotton as an abundant natural cellulose has been widely used for sustainable and skin-friendly textiles and clothes, developing cotton fabrics with smart functions that could respond to various stimuli is still eagerly desired while remaining a great challenge. Herein, smart multiresponsive cotton fabric with hierarchically copper nanowire interwoven MXene conductive networks that are seamlessly assembled along a 3D woven fabric template for efficient personal healthcare and thermal comfort regulation is successfully developed. The robust hierarchically interwoven conductive network was "glued" and protected by organic conductive polymer poly(3,4-ethylenedioxythiophene) along a 3D interconnected fabric template to enhance interfacial adherent and environmental stability. Benefiting from the robust multiresponsive hierarchically interwoven conductive network, smart cotton fabric exhibits real-time response to various external stimuli (light/electrical/heat/temperature/stress), and the details of human activities can be accurately recognized and monitored. Furthermore, the porous structure of 3D smart fabric induced strong capillary force and confinement to phase change materials PEG, which exhibits a wide range of phase transition temperatures for efficient thermal comfort regulation. After further encapsulation with transparent fluorosilicone resin, the smart cotton fabric exhibits excellent self-cleaning performance with water/oil repellent. The smart multiresponsive cotton fabrics hold great promise in next-generation wearable systems for efficient personal healthcare and thermal management.
Collapse
Affiliation(s)
- Yifan He
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Shanshan Guo
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Xingwei Zuo
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Mingwei Tian
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Lijun Qu
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| | - Jinlei Miao
- Shandong Key Laboratory of Medical and Health Textile Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
3
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
4
|
Chen X, He Y, Tian M, Qu L, Fan T, Miao J. Core-Sheath Heterogeneous Interlocked Conductive Fiber Enables Smart Textile for Personalized Healthcare and Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308404. [PMID: 38148325 DOI: 10.1002/smll.202308404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.
Collapse
Affiliation(s)
- Xiyu Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yifan He
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingwei Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Lijun Qu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Tingting Fan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Jinlei Miao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Research Center for Intelligent and Wearable Technology, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Jia X, Du Y, Xie F, Li H, Zhang M. Enhancing Electron/Ion Transport in SnO 2 Quantum Dots Decorated Polyaniline/Graphene Hybrid Fibers for Wearable Supercapacitors with High Energy Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17937-17945. [PMID: 38530251 DOI: 10.1021/acsami.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fiber-based supercapacitors are the potential power sources in the field of wearable electronics and energy storage textiles due to their unique advantages of electrochemical properties and mechanical flexibility, but achieving high energy density and practical energy supply still presents some challenges. In this study, we reported an approach of microfluidic assisted wet-spinning to fabricate SnO2 quantum dots encapsulated polyaniline/graphene hybrid fibers (SnO2 QDs@PGF) by incorporating uniformly polyaniline into graphene fibers and covalently bridging SnO2 quantum dots. The assembled SnO2 QDs@PGF fiber-typed flexible supercapacitors exhibit an ultralarge specific areal capacitance of 925 mF cm-2 in PVA/H2SO4, superior rate capabilities, and capacitance retention of 88% after 8000 cycles, indicating that the SnO2 QDs@PGF possess near-ideal capacitance properties, efficient ion transfer rate, and good cycling stability. In the EMITFSI/PVDF-HFP electrolyte system, SnO2 QDs@PGF realize a wide operating potential window of 2.5 V, a specific areal capacitance of 678.4 mF cm-2, and an energy density of 147.2 μWh cm-2 at 500 μW cm-2, which can be utilized to power an alarm clock, an electronic timer, and a desk lamp with a requirement of a 3 V battery. The exceptional performance of the SnO2 QDs@PGF can be attributed to the molecular-level homogeneous composite of granular polyaniline and graphene nanosheets and the interfacial C-O-Sn covalent coupling strategy employed between SnO2 QDs and PGF. These avenues not only effectively prevent the undesirable restacking of graphene nanosheets but also increase the interlayer electroactive sites, ordered ion diffusion channels, and strong interfacial charge transfer.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yuan Du
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Fanyu Xie
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Hongwei Li
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Mei Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
6
|
Zschiebsch W, Sturm Y, Kucher M, Hedayati DP, Behnisch T, Modler N, Böhm R. Multifunctionality Analysis of Structural Supercapacitors- A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:739. [PMID: 38591598 PMCID: PMC10856288 DOI: 10.3390/ma17030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 04/10/2024]
Abstract
Structural supercapacitors (SSCs) are multifunctional energy storage composites (MESCs) that combine the mechanical properties of fiber-reinforced polymers and the electrochemical performance of supercapacitors to reduce the overall mass in lightweight applications with electrical energy consumption. These novel MESCs have huge potentials, and their properties have improved dramatically since their introduction in the early 2000's. However, the current properties of SSCs are not sufficient for complete energy supply of electrically driven devices. To overcome this drawback, the aim of the current study is to identify key areas for enhancement of the multifunctional performance of SSCs. Critical modification paths for the SSC constituents are systematically analyzed. Special focus is given to the improvement of carbon fiber-based electrodes, the selection of structural electrolytes and the implementation of separators for the development of more efficient SSCs. Finally, current SSCs are compared in terms of their multifunctionality including material combinations and modifications.
Collapse
Affiliation(s)
- Willi Zschiebsch
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Yannick Sturm
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Michael Kucher
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Davood Peyrow Hedayati
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Thomas Behnisch
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany;
| | - Niels Modler
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany;
| | - Robert Böhm
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| |
Collapse
|
7
|
Tian X, Cheng X, Liao S, Chen J, Lv P, Wei Q. High Electrochemical Capacity MnO 2/Graphene Hybrid Fibers Based on Crystalline Regulatable MnO 2 for Wearable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37908058 DOI: 10.1021/acsami.3c10671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fiber-based supercapacitors (FSCs) exhibit desirable application potential and development prospects in wearable energy storage devices because of their flexibility and wearability. However, the low capacity in the unit volume and insufficient fiber strength hinder their further development in practical application. Herein, the MnO2 nanomaterials with regulatable crystalline structure were synthesized by one-step hydrothermal strategy. The formation of the MnO2 crystalline structure involved the "crimp-phase transition" process. Among them, the 2 × 2 tunnel type α-MnO2 nanowires exhibited excellent electrochemical capacitance (43.8 F g-1), high rate performance (61%, 0.25 to 6 A g-1), and remarkable cyclic stability (99%), which can be attributed to their good symmetry in space and high shared vertices proportion. On this basis, the α-MnO2 nanowires were coblended with GO to construct MnO2/rGO hybrid fibers by scalable continuous wet spinning and in situ acid reduction. Noteworthily, in MnO2/rGO hybrid fibers, the doping amount of MnO2 nanowires as high as 50 wt % could be achieved, while the strength reached 11.73 MPa, which can be ascribed to the superior surface morphology of MnO2 nanowires and the unique cement wall structure of hybrid fibers. Finally, the obtained hybrid fiber electrodes were assembled into symmetrical FSCs. Notably, the FSCs delivered remarkable volume specific capacitance (129.5 F cm-3) and impressive energy density (18 mWh cm-3) at 1.75 A cm-3. In addition, the assembled all-solid-state FSCs indicated excellent deformability and application potential. This work offers some insight for promoting the continuous preparation of fiber electrodes, the development of FSCs, and practical application in wearable energy textile.
Collapse
Affiliation(s)
- Xiaojuan Tian
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinyue Cheng
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Juanfen Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| |
Collapse
|
8
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Gadipelli S, Guo J, Li Z, Howard CA, Liang Y, Zhang H, Shearing PR, Brett DJL. Understanding and Optimizing Capacitance Performance in Reduced Graphene-Oxide Based Supercapacitors. SMALL METHODS 2023; 7:e2201557. [PMID: 36895068 DOI: 10.1002/smtd.202201557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Indexed: 06/09/2023]
Abstract
Reduced graphene-oxide (RGO)-based electrodes in supercapacitors deliver high energy/power capacities compared to typical nanoporous carbon materials. However, extensive critical analysis of literature reveals enormous discrepancies (up to 250 F g-1 ) in the reported capacitance (variation of 100-350 F g-1 ) of RGO materials synthesized under seemingly similar methods, inhibiting an understanding of capacitance variation. Here, the key factors that control the capacitance performance of RGO electrodes are demonstrated by analyzing and optimizing various types of commonly applied electrode fabrication methods. Beyond usual data acquisition parameters and oxidation/reduction properties of RGO, a substantial difference of more than 100% in capacitance values (with change from 190 ± 20 to 340 ± 10 F g-1 ) is found depending on the electrode preparation method. For this demonstration, ≈40 RGO-based electrodes are fabricated from numerous distinctly different RGO materials via typically applied methods of solution (aqueous and organic) casting and compressed powders. The influence of data acquisition conditions and capacitance estimation practices are also discussed. Furthermore, by optimizing electrode processing method, a direct surface area governed capacitance relationship for RGO structures is revealed.
Collapse
Affiliation(s)
- Srinivas Gadipelli
- College of Physics, Sichuan University, Chengdu, 610064, China
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jian Guo
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Zhuangnan Li
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Christopher A Howard
- Department of Physics & Astronomy, University College London, London, WC1E 6BT, UK
| | - Yini Liang
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
10
|
Subjalearndee N, He N, Cheng H, Tesatchabut P, Eiamlamai P, Phothiphiphit S, Saensuk O, Limthongkul P, Intasanta V, Gao W, Zhang X. Wet Spinning of Graphene Oxide Fibers with Different MnO 2 Additives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19514-19526. [PMID: 37017220 DOI: 10.1021/acsami.3c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We present the fabrication of graphene oxide (GO) and manganese dioxide (MnO2) composite fibers via wet spinning processes, which entails the effects of MnO2 micromorphology and mass loading on the extrudability of GO/MnO2 spinning dope and on the properties of resulted composite fibers. Various sizes of rod and sea-urchin shaped MnO2 microparticles have been synthesized via hydrothermal reactions with different oxidants and hydrothermal conditions. Both the microparticle morphology and mass loading significantly affect the extrudability of the GO/MnO2 mixture. In addition, the orientation of MnO2 microparticles within the fibers is largely affected by their microscopic surface areas. The composite fibers have been made electrically conductive via chemical or thermal treatments and then applied as fiber cathodes in Zn-ion battery prototypes. Thermal annealing under an argon atmosphere turns out to be an appropriate method to avoid MnO2 dissolution and leaching, which have been observed in the chemical treatments. These rGO/MnO2 fiber cathodes have been assembled into prototype Zn-ion batteries with Zn wire as the anode and xanthan-gum gel containing ZnSO4 and MnSO4 salts as the electrolyte. The resulted electrochemical output depends on the annealing temperature and MnO2 distribution within the fiber cathodes, while the best performer shows stable cycling stability at a maximum capacity of ca. 80 mA h/g.
Collapse
Affiliation(s)
- Nakarin Subjalearndee
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nanfei He
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Hui Cheng
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Panpanat Tesatchabut
- National Energy Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Priew Eiamlamai
- National Energy Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Somruthai Phothiphiphit
- NSTDA Characterization and Testing Service Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Orapan Saensuk
- NSTDA Characterization and Testing Service Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pimpa Limthongkul
- National Energy Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Varol Intasanta
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wei Gao
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
11
|
Ma F, Li L, Jia C, He X, Li Q, Sun J, Jiang R, Lei Z, Liu ZH. All-solid-state Ti 3C 2T x neutral symmetric fiber supercapacitors with high energy density and wide temperature range. J Colloid Interface Sci 2023; 643:92-101. [PMID: 37054547 DOI: 10.1016/j.jcis.2023.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
All-solid-state Ti3C2Tx neutral symmetric fiber supercapacitors (PVA EGHG Ti3C2Tx FSCs) with high energy density and wide temperature range are constructed by using polyvinyl alcohol (PVA)-ethylene glycol hydrogel (EGHG)-sodium perchlorate (NaClO4) as electrolyte and separator, and Ti3C2Tx fiber as electrodes. Ti3C2Tx fiber is prepared using 130 mg mL-1 Ti3C2Tx nanosheet ink as an assembly unit in a coagulation bath of isopropyl alcohol (IPA) and distilled water with 5 wt% CaCl2 by a wet spinning method. The prepared Ti3C2Tx fiber exhibits a specific capacity of 385 F cm-3 and a capacitance retention of 94 % after 10,000 cycles in 1 M NaClO4 electrolyte. The assembled PVA EGHG Ti3C2Tx FSCs deliver a specific capacitance of 41 F cm-3, a volumetric energy density of 5 mWh cm-3, and a capacitance retention of 92 % after 500 times continuous bending. Furthermore, it shows good flexibility and excellent capacitance over a wide temperature range of -40 to 40 °C and maintains its electrochemical performance under varying degrees of bending. This study provides a viable strategy for designing and assembling all-solid-state neutral symmetric fiber supercapacitors with high energy density and wide temperature range.
Collapse
Affiliation(s)
- Fuquan Ma
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ling Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
12
|
Sheng Z, Liu Z, Hou Y, Jiang H, Li Y, Li G, Zhang X. The Rising Aerogel Fibers: Status, Challenges, and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205762. [PMID: 36658735 PMCID: PMC10037991 DOI: 10.1002/advs.202205762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Aerogel fibers garner tremendous scientific interest due to their unique properties such as ultrahigh porosity, large specific surface area, and ultralow thermal conductivity, enabling diverse potential applications in textile, environment, energy conversion and storage, and high-tech areas. Here, the fabrication methodologies to construct the aerogel fibers starting from nanoscale building blocks are overviewed, and the spinning thermodynamics and spinning kinetics associated with each technology are revealed. The huge pool of material choices that can be assembled into aerogel fibers is discussed. Furthermore, the fascinating properties of aerogel fibers, including mechanical, thermal, sorptive, optical, and fire-retardant properties are elaborated on. Next, the nano-confining functionalization strategy for aerogel fibers is particularly highlighted, touching upon the driving force for liquid encapsulation, solid-liquid interface adhesion, and interfacial stability. In addition, emerging applications in thermal management, smart wearable fabrics, water harvest, shielding, heat transfer devices, artificial muscles, and information storage, are discussed. Last, the existing challenges in the development of aerogel fibers are pointed out and light is shed on the opportunities in this burgeoning field.
Collapse
Affiliation(s)
- Zhizhi Sheng
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Zengwei Liu
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Yinglai Hou
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Haotian Jiang
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Yuzhen Li
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangyong Li
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Xuetong Zhang
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
13
|
Li Q, Tang R, Zhou H, Hu X, Zhang S. A high-performance and flexible electrode film based on bacterial cellulose/polypyrrole/nitrogen-doped graphene for supercapacitors. Carbohydr Polym 2023; 311:120754. [PMID: 37028857 DOI: 10.1016/j.carbpol.2023.120754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
With the development and popularity of portable electronic devices, there is an urgent need for flexible energy storage devices suitable for mass production. We report freestanding paper electrodes for supercapacitors fabricated via a simple but efficient two-step method. Nitrogen-doped graphene (N-rGO) was first prepared via a hydrothermal method. This not only obtained nitrogen atom-doped nanoparticles but also formed reduced graphene oxide. Pyrrole (Py) was then deposited on the bacterial cellulose (BC) fibers as a polypyrrole (PPy) pseudo-capacitance conductive layer by in situ polymerization and filtered with nitrogen-doped graphene to prepare a self-standing flexible paper electrode with a controllable thickness. The synthesized BC/PPy/N15-rGO paper electrode has a remarkable mass specific capacitance of 441.9 F g-1, a long cycle life (96 % retention after 3000 cycles), and excellent rate performance. The BC/PPy/N15-rGO-based symmetric supercapacitor shows a high volumetric specific capacitance of 244 F cm-3 and a max energy density of 67.9 mWh cm-3 with a power density of 1.48 W cm-3, suggesting that they will be promising materials for flexible supercapacitors.
Collapse
|
14
|
Chen L, Wang CF, Liu C, Chen S. Facile Access to Fabricate Carbon Dots and Perspective of Large-Scale Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2206671. [PMID: 36479832 DOI: 10.1002/smll.202206671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), fluorescent carbon nanoparticles with particle sizes < 10 nm, are constantly being developed for potential large-scale applications. Recently, methods allow CD synthesis to be carried out on large-scale preparation in a controlled fashion are potentially important for multiple disciplines, including bottom-up strategy, top-down method. In this review, the recent progresses in the research of the methods for large-scale production of CDs and their functionalization are summarized. Especially, the methods of CD synthesis, such as large-scale preparation, hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia microfluidic and other methods, along with functionalization of CDs, are summarized in detail. By promising applications of CDs, there are three aspects have been already reported, such as enhancing mechanical properties, flame retardancy, and energy storage. Also, future development of CDs is prospected.
Collapse
Affiliation(s)
- Lintao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional, Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
15
|
Wei W, Liu J, Huang J, Cao F, Qian K, Yao Y, Li W. Recent advances and perspectives of shape memory polymer fibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|