1
|
Kim SB, Yapo JA, Yasuhara A, Yubuta K, Fokwa BPT. Vanadium-Stabilized MoB Nanoparticles Enable Hydrogen Evolution at Industry-Relevant High Current Densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412693. [PMID: 40264382 DOI: 10.1002/smll.202412693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Bulk molybdenum boride electrocatalysts have emerged as as cost-effective alternatives to platinum-based catalysts toward the hydrogen evolution reaction (HER), particularly under harsh industrial conditions requiring high current densities. However, differences in electrode preparation methods between molybdenum borides and Pt/C thus complicate direct activity comparison. In this study, vanadium-stabilized molybdenum monoboride (V0.3Mo0.7B) nanoparticles are synthesized and shown to outperform Pt/C at industrially relevant current densities under the same experimental conditions, achieving 1000 mA cm-2 with an overpotential of just 0.452 V compared to 0.837 V for Pt/C. Our density functional theory (DFT) calculations demonstrate that V0.31Mo0.69B exhibits improved Gibbs free energy for HER (ΔGH = -0.12 eV) at high hydrogen coverages (80 to 100%), showcasing its superior catalytic activity at high current densities. Stability tests demonstrate that the V0.3Mo0.7B electrode retains 97% of its performance after ≈28 h of operation at 1000 mA cm-2, positioning it as a compelling candidate for sustainable hydrogen production.
Collapse
Affiliation(s)
- Sang Bum Kim
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Johan A Yapo
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Akira Yasuhara
- JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Kunio Yubuta
- Institute for Aqua Regeneration (ARG), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Boniface P T Fokwa
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- Center for Catalysis, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
2
|
Huang S, Huang A, Huang H, Tan C, Yang Y, Tang W, Hao L, Xu X, Agathopoulos S. Self-Supported α-MoB/β-MoB 2 Ceramic Electrodes for Efficient High-Current-Density Hydrogen Evolution in Acidic, Neutral, and Alkaline pH-Values. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7739-7749. [PMID: 39871609 DOI: 10.1021/acsami.4c18604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
This paper describes the production and high-current-density hydrogen evolution reaction (HER) performance in the whole pH range (from acidic to basic pH values) of self-supported α-MoB/β-MoB2 ceramic electrodes, aiming for use in industrial electrocatalytic water splitting. Tape-casting and phase-inversion process, followed by sintering, were employed to synthesize self-supported β-MoB2 ceramic electrodes, which exhibited well arranged large finger-like pores, providing numerous active sites and channels for electrolyte entry and hydrogen release. The reaction between β-MoB2 and the sintering aid of MoO3 in situ produces α-MoB/β-MoB2 heterojunctions, which significantly improve the electrocatalytic performance. At a current density of 1000 mA·cm-2, the ceramic electrode manifested an overpotential of 289 mV and 294 mV in acidic and alkaline aqueous solutions, respectively, and a stable operation over time (>100 h). The electrode also performed well in a neutral solution, with an overpotential of 354 mV at 100 mA·cm-2. Theoretical (DFT) calculations demonstrated that the α-MoB/β-MoB2 heterojunction alters the electronic configuration of β-MoB2, favoring an effective electron transfer mechanism; thereby, the adsorption free energy of hydrogen ions is close to zero, and the adsorption and dissociation of water molecules under alkaline and neutral conditions are significantly enhanced.
Collapse
Affiliation(s)
- Sishi Huang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Anding Huang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haisen Huang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuntian Tan
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yang Yang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wangzhong Tang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Luyuan Hao
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xin Xu
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Simeon Agathopoulos
- Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina, Greece
| |
Collapse
|
3
|
Weng S, Deng X, Xu J, Wang Y, Zhu M, Wang Y, Hao W. Corrosion-resistant titanium-based electrodes synergistically stabilized with polymer for hydrogen evolution reaction. J Colloid Interface Sci 2025; 679:1196-1206. [PMID: 39423685 DOI: 10.1016/j.jcis.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The economic and reasonable design of highly stable and corrosion-resistant electrodes is fundamental to achieving the industrial-scale hydrogen productions via water electrolysis, but electrodes' premature failures are often caused by corrosion and stress damage. Therefore, these challenges are successfully solved by utilizing conductive and crack-resistant polyaniline "stabilizer" with a mild chemical plating process to construct the catalytic electrode on a titanium substrate (15 %PANI-NiB@Ti) in the present work. The 15 %PANI-NiB@Ti catalytic electrodes have been in continuous operation for 350 h at the current density of 200 mA cm-2 with the high efficiency of 98.4 % in a 323.15 K environment. With the high economy and universality, the catalytic electrodes have good catalytic performance and reliability in the extreme industrial environments, such as high temperature, air, and high current density. Except for the above advantages, the 15 %PANI-NiB@Ti catalytic electrodes also have good cracking resistance, which provides a novel and feasible approach to the industrial application of transition metal catalytic electrodes.
Collapse
Affiliation(s)
- Shuo Weng
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xianzuan Deng
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Xu
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yizhou Wang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Mingliang Zhu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqin Wang
- University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Weiju Hao
- University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Zhang Z, Chen S, Zheng F, Antropov V, Sun Y, Ho KM. Accelerated Exploration of Empty Material Compositional Space: Mg-Fe-B Ternary Metal Borides. J Am Chem Soc 2024. [PMID: 39563173 DOI: 10.1021/jacs.4c12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Borides are a family of materials with valuable properties for various applications. Their diverse structures and compositions, yet disparity in the constituent chemical elements for the known compounds, give elemental substitutions for prototypes great potential for material discovery. To explore uncharted material compositional space, we develop a workflow that joins high-throughput crystal structure prediction and automated diffraction pattern matching to discover new compounds with significant prediction and synthesis hurdles. Utilizing the workflow, we explore the empty Mg-Fe-B ternary compositional space, previously uncharted largely due to the immiscibility of Mg and Fe, as a paradigm. A total of 275 ternary boride prototypes are classified, using which we predict 23 (158) stable and metastable ternary phases within 50 (200) meV/atom above the convex hull. We identify Gd2(FeB)7-type Mg2Fe7B7 and ZrCo3B2-type MgFe3B2 to match previously unsolved experimental powder X-ray diffraction (PXRD) patterns. The discovered Mg2Fe7B7 and related channeled structures feature mismatched Mg and (FeB) sublattice periods, for which we conduct structural analyses with respect to the PXRD. They are predicted to exhibit exceptionally fast superionic transport of Mg and outstanding electrochemical performance, which serve as post-Li-ion battery candidate electrode materials. This result opens a new avenue for borides' potential applications as electrode materials and fast ionic conductors. This work also portrays the map and landscape of ternary metal borides with similar chemical environments. With high efficiency, the prototype- and PXRD-assisted crystal structure prediction workflow opens a new avenue for exploring various material compositional spaces across the periodic table.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Shiya Chen
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Feng Zheng
- School of Science, Jimei University, Xiamen 361021, China
| | - Vladimir Antropov
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Yang Sun
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Kai-Ming Ho
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Huang J, Nie J, Li X, Zou L, Wang Y, Chen H, Wei G, Cheng J. Boron-Intercalation Engineering toward Defected 1T Phase-Rich MoB xS 2-x-Supported IrO x Clusters for Acidic OER. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23951-23961. [PMID: 39481053 DOI: 10.1021/acs.langmuir.4c03113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The construction of supported Ir-based catalysts can effectively reduce the amount of Ir and generate a synergistic effect that enhances the oxygen evolution reaction (OER) activity and stability, making it one of the effective solutions for optimizing acidic OER catalysts. However, most reported metal oxide supports suffer from poor acid resistance and low electrical conductivity, which are critical for the OER process. Herein, we synthesized a nanosheet-like defected 1T phase-rich MoBxS2-x via a molten salt calcination process, during which the 1T phase was formed, and B was intercalated into MoS2 to protect the 1T phase structure during annealing procedure. After the wet refluxing process, IrOx clusters were uniformly deposited on the surface of MoBxS2-x to form IrOx@MoBxS2-x, which exhibited an overpotential of 168 mV at a current density of 10 mA cm-2 with an Ir loading amount of 25.8 wt %. By comparing the OER performance of IrOx@MoBxS2-x, IrOx@MoS2(Calcinated), and IrOx@MoS2, it is demonstrated that calcination and B intercalation of MoS2 can significantly increase acidic OER performance. This work digs into the application of 1T-MoS2 as an OER catalyst support, providing strategies for the phase and morphology control of 1T-MoS2.
Collapse
Affiliation(s)
- Jiawei Huang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Nie
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zou
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
| | - Yuanxing Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Lu Y, Deng N, Wang H, Zhang F, Wang Y, Jin Y, Cheng B, Kang W. Progresses and Perspectives of Carbon-Free Metal Compounds-Modified Separators for High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405141. [PMID: 39194403 DOI: 10.1002/smll.202405141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Lithium-sulfur batteries (LSBs) have the advantages of high theoretical specific capacity, excellent energy density, abundant elemental sulfur reserves. However, the LSBs is mainly limited by shuttling of lithium polysulfides (LiPSs), slow reaction kinetics of sulfur cathode. For solving the above problems, by developing high-performance battery separators, the reversible capacity, Coulombic efficiency (CE) and cycle life of LSBs can be effectively enhanced. Carbon-free based metal compounds are expected to be highly efficient separator modifiers for a new generation of high-performance LSBs by virtue of superior chemical adsorption capacity, strong catalytic properties and excellent lithophilicity to a certain extent. They can give play to the synergistic effect of their "adsorption-catalysis" sites to accelerate the redox kinetics of LiPSs, and their good lithophilicity can accelerate the Li+ transport kinetics, thus showing more remarkable electrochemical performances. However, a comprehensive summary of carbon-free metal compounds-modified separators for LSBs is still lacking. Here, this review systematically summarizes the researching progresses and performance characteristics of carbon-free-based metal compounds modified materials for separators of LSBs, and summarizes the corresponding mechanisms of using carbon-based separators to enhance the performance of LSBs. Finally, the review also looks forward to the prospects of LSBs using carbon-free metal compounds separators.
Collapse
Affiliation(s)
- Yayi Lu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Fan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yilong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yongbing Jin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
7
|
Rout CS, Shinde PV, Patra A, Jeong SM. Recent Developments and Future Perspectives of Molybdenum Borides and MBenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308178. [PMID: 38526182 DOI: 10.1002/advs.202308178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Metal borides have received a lot of attention recently as a potentially useful material for a wide range of applications. In particular, molybdenum-based borides and MBenes are of great significance, due to their remarkable properties like good electronic conductivity, considerable stability, high surface area, and environmental harmlessness. Therefore, in this article, the progress made in molybdenum-based borides and MBenes in recent years is reviewed. The first step in understanding these materials is to begin with an overview of their structural and electronic properties. Then synthetic technologies for the production of molybdenum borides, such as high-temperature/pressure methods, physical vapor deposition (PVD), chemical vapor deposition (CVD), element reaction route, molten salt-assisted, and selective etching methods are surveyed. Then, the critical performance of these materials in numerous applications like energy storage, catalysis, biosensors, biomedical devices, surface-enhanced Raman spectroscopy (SERS), and tribology and lubrication are summarized. The review concludes with an analysis of the current progress of these materials and provides perspectives for future research. Overall, this review will offer an insightful reference for the understanding molybdenum-based borides and their development in the future.
Collapse
Affiliation(s)
- Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain Global Campus, Jain (Deemed-to-be University), Kanakapura Road, Bangalore, Karnataka, 562112, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Pratik V Shinde
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Mestre, 30172, Italy
| | - Abhinandan Patra
- Centre for Nano and Material Sciences, Jain Global Campus, Jain (Deemed-to-be University), Kanakapura Road, Bangalore, Karnataka, 562112, India
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
8
|
Gan W, Geng L, Huang B, Hansen K, Luo Z. Dehydrogenation of diborane on small Nb n+ clusters. Phys Chem Chem Phys 2024; 26:9586-9592. [PMID: 38465400 DOI: 10.1039/d3cp06135c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The reactivity of Nbn+ (1 ≤ n ≤ 21) clusters with B2H6 is studied by using a self-developed multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). The Nbn+ clusters were generated by a magnetron sputtering source and reacted with the B2H6 gas under fully thermalized conditions in the downstream flow tube where the reaction time was accurately controlled and adjustable. The complete and partial dehydrogenation products NbnB1-4+ and NbnB1-4H1,2,4+ were detected, indicative of the removal of H2 and likely BHx moieties. Interestingly, these NbnB1-4+ and NbnB1-4H1,2,4+ products are limited to 3 ≤ n ≤ 6, suggesting that the small Nbn+ clusters are relatively more reactive than the larger Nbn>6+ clusters under the same conditions. By varying the B2H6 gas concentrations and the reactant doses introduced into the flow tube, and by changing the reaction time, we performed a detailed analysis of the reaction dynamics in combination with the DFT-calculated thermodynamics. It is demonstrated that the lack of cooperative active sites on the Nb1+ cations accounts for the weakened dehydrogenation efficiency. Nb2+ forms partial dehydrogenation products at a faster rate. In contrast, the Nbn>6+ clusters are subject to more flexible vibrational relaxation which disperse the energy gain of B2H6-adsorption and thus are unable to overcome the energy barriers for subsequent hydrogen atom transfer and H2 release.
Collapse
Affiliation(s)
- Wen Gan
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Lijun Geng
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Benben Huang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Klavs Hansen
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
9
|
Zhang J, Yan X, Cheng Z, Han Y, Zhang Y, Dong Y. Applications, prospects and challenges of metal borides in lithium sulfur batteries. J Colloid Interface Sci 2024; 657:511-528. [PMID: 38070337 DOI: 10.1016/j.jcis.2023.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g-1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the "shuttle effect". Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.
Collapse
Affiliation(s)
- Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueli Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
11
|
Cha DC, Singh TI, Maibam A, Kim TH, Nam DH, Babarao R, Lee S. Metal-Organic Framework-Derived Mesoporous B-Doped CoO/Co@N-Doped Carbon Hybrid 3D Heterostructured Interfaces with Modulated Cobalt Oxidation States for Alkaline Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301405. [PMID: 37165605 DOI: 10.1002/smll.202301405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Heteroatom-doped transition metal-oxides of high oxygen evolution reaction (OER) activities interfaced with metals of low hydrogen adsorption energy barrier for efficient hydrogen evolution reaction (HER) when uniformly embedded in a conductive nitrogen-doped carbon (NC) matrix, can mitigate the low-conductivity and high-agglomeration of metal-nanoparticles in carbon matrix and enhances their bifunctional activities. Thus, a 3D mesoporous heterostructure of boron (B)-doped cobalt-oxide/cobalt-metal nanohybrids embedded in NC and grown on a Ni foam substrate (B-CoO/Co@NC/NF) is developed as a binder-free bifunctional electrocatalyst for alkaline water-splitting via a post-synthetic modification of the metal-organic framework and subsequent annealing in different Ar/H2 gas ratios. B-CoO/Co@NC/NF prepared using 10% H2 gas (B-CoO/Co@NC/NF [10% H2 ]) shows the lowest HER overpotential (196 mV) and B-CoO/Co@NC/NF (Ar), developed in Ar, shows an OER overpotential of 307 mV at 10 mA cm-2 with excellent long-term durability for 100 h. The best anode and cathode electrocatalyst-based electrolyzer (B-CoO/Co@NC/NF (Ar)(+)//B-CoO/Co@NC/NF (10% H2 )(-)) generates a current density of 10 mA cm-2 with only 1.62 V with long-term stability. Further, density functional theory investigations demonstrate the effect of B-doping on electronic structure and reaction mechanism of the electrocatalysts for optimal interaction with reaction intermediates for efficient alkaline water-splitting which corroborates the experimental results.
Collapse
Affiliation(s)
- Dun Chan Cha
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Thangjam Ibomcha Singh
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Physics, Manipur University, Canchipur, Manipur, 795003, India
| | - Ashakiran Maibam
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad, Uttar Pradesh, 201002, India
| | - Tae Hyeong Kim
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Dong Hwan Nam
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Ravichandar Babarao
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
- Manufacturing, CSIRO, Normanby Road, Clayton, Victoria, 3168, Australia
| | - Seunghyun Lee
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| |
Collapse
|
12
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Zhang G, Li X, Chen K, Guo Y, Ma D, Chu K. Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes. Angew Chem Int Ed Engl 2023; 62:e202300054. [PMID: 36734975 DOI: 10.1002/anie.202300054] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1 cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion.
Collapse
Affiliation(s)
- Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
14
|
Si J, Yu J, Lan H, Niu L, Luo J, Yu Y, Li L, Ding Y, Zeng M, Fu L. Chemical Potential-Modulated Ultrahigh-Phase-Purity Growth of Ultrathin Transition-Metal Boride Single Crystals. J Am Chem Soc 2023; 145:3994-4002. [PMID: 36706380 DOI: 10.1021/jacs.2c11139] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two-dimensional (2D) transition-metal borides (TMBs) are especially expected to exhibit excellent performance in various fields among electricity, superconductivity, magnetism, mechanics, biotechnology, battery, and catalysis. However, the synthesis of ultrathin TMB single crystals with ultrahigh phase purity was deemed extremely challenging and has not been realized till date. That is because TMBs have the most kinds of crystal structures among inorganic compounds, which possess generous phase structures with similar formation energies compared with other transition-metal compounds, attributing to the metalloid and electron-deficient characteristics of boron. Herein, for the first time, we demonstrate a chemical potential-modulated strategy to realize the precise synthesis of various ultrahigh-phase-purity (approximately 100%) ultrathin TMB single crystals, and the precision in the phase formation energy can reach as low as 0.01 eV per atom. The ultrathin MoB2 single crystals exhibit an ultrahigh Young's modulus of 517 GPa compared to other 2D materials. Our work establishes a chemical potential-modulated strategy to synthesize ultrathin single crystals with ultrahigh phase purity, especially those with similar formation energies, and undoubtedly provides excellent platforms for their extensive research and applications.
Collapse
Affiliation(s)
- Jingjing Si
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jinqiu Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Haihui Lan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lixin Niu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jingrui Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yantao Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Linyang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Ding
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Kang Y, Tang Y, Zhu L, Jiang B, Xu X, Guselnikova O, Li H, Asahi T, Yamauchi Y. Porous Nanoarchitectures of Nonprecious Metal Borides: From Controlled Synthesis to Heterogeneous Catalyst Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yunqing Kang
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Yi Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Liyang Zhu
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai200234, China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Olga Guselnikova
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai200234, China
| | - Toru Asahi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo169-0051, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo169-0051, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
16
|
Integrating trace ruthenium cluster with cobalt boride toward superior overall water splitting in neutral media. J Colloid Interface Sci 2022; 623:897-904. [DOI: 10.1016/j.jcis.2022.05.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
17
|
Das C, Sinha N, Roy P. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202033. [PMID: 35703063 DOI: 10.1002/smll.202202033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The identification of hydrogen as green fuel in the near future has stirred global realization toward a sustainable outlook and thus boosted extensive research in the field of water electrolysis focusing on the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). A huge class of compounds consisting of transition metal-based nitrides, carbides, chalcogenides, phosphides, and borides, which can be collectively termed transition metal non-oxides (TMNOs), has emerged recently as an efficient class of electrocatalysts in terms of performance and longevity when compared to transition metal oxides (TMOs). Moreover, the superiority of TMNOs over TMOs to effectively catalyze not only OERs but also HERs and ORRs renders bifunctionality and even trifunctionality in some cases and therefore can replace conventional noble metal electrocatalysts. In this review, the crystal structure and phases of different classes of nanostructured TMNOs are extensively discussed, focusing on recent advances in design strategies by various regulatory synthetic routes, and hence diversified properties of TMNOs are identified to serve as next-generation bi/trifunctional electrocatalysts. The challenges and future perspectives of materials in the field of energy conversion and storage aiding toward a better hydrogen economy are also discussed in this review.
Collapse
Affiliation(s)
- Chandni Das
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nibedita Sinha
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poulomi Roy
- Materials Processing & Microsystems Laboratory, CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
18
|
Zhao S, Zhou W, Xiang X, Cao X, Chen N, Chen W, Yu X, Yan B, Gou H. Structure Determination, Mechanical Properties, Thermal Stability of Co 2MoB 4 and Fe 2MoB 4. MATERIALS 2022; 15:ma15093031. [PMID: 35591366 PMCID: PMC9102238 DOI: 10.3390/ma15093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023]
Abstract
The precise determination of atomic position of materials is critical for understanding the relationship between structure and properties, especially for compounds with light elements of boron and single or multiple transition metals. In this work, the single crystal X-ray diffraction is employed to analyze the atomic positions of Co2MoB4 and Fe2MoB4 with a Ta3B4-type structure, and it is found that the lengths of B-B bonds connecting the two zig-zag boron chains are 1.86 Å and 1.87 Å, but previously unreported 1.4 Å. Co and Fe atoms occupy the same crystallographic position in lattice for the doped samples and the valence is close to the metal itself, and Co/Fe K-edge X-ray Absorption Fine Structure(XAFS) spectra of borides with different ratios of Co to Fe are collected to detect the local environment and chemical valence of Co and Fe. Vickers hardness and nano indentation measurements are performed, together with the Density Functional Theory (DFT) calculations. Finally, Co2MoB4 possess better thermal stability than Fe2MoB4 evaluated by Thermogravimetric Differential Thermal Analysis (TG-DTA) results.
Collapse
Affiliation(s)
- Shijing Zhao
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
| | - Wenju Zhou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
| | - Xiaojun Xiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (X.Y.)
| | - Xuyan Cao
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
| | - Ning Chen
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (N.C.); (W.C.)
| | - Weifeng Chen
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada; (N.C.); (W.C.)
| | - Xiaohui Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; (X.X.); (X.Y.)
| | - Bingmin Yan
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
- Correspondence: (B.Y.); (H.G.)
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (S.Z.); (W.Z.); (X.C.)
- Correspondence: (B.Y.); (H.G.)
| |
Collapse
|
19
|
Integrating preparation of borides and separation of alkaline- and rare-earth ions through an electrochemical alloying approach in molten salts. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|