1
|
Huang Y, Patil CD, Arte KS, Zhou Q(T, Qu L(L. Particle surface coating for dry powder inhaler formulations. Expert Opin Drug Deliv 2025; 22:711-727. [PMID: 40101203 PMCID: PMC12055444 DOI: 10.1080/17425247.2025.2482052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION The development of dry powder inhalers (DPIs) is challenging due to the need for micronized particles to achieve lung delivery. The high specific surface area of micronized particles renders them cohesive and adhesive. Addition of certain excipients like magnesium stearate has been reported to coat the particles and improve the aerosolization in the carrier-based DPI. Therefore, application of particle coating in DPI developments has been investigated and expanded over the years, along with the growing need of high-dose carrier-free DPIs. AREA COVERED In addition to modifying inter-particulate forces, particle coating has also been demonstrated to effectively provide moisture resistance, modify particle morphology, improve the stability of biologics, alter dissolution behaviors for DPI developments. These different coating functions have been discussed in the current work. Moreover, various coating techniques including solvent-based coating, dry coating, and vapor coating, as well as coating characterization have been summarized in the present review. EXPERT OPINION The extent of particle coating is critical to DPI performance; however, there is a demand for advanced characterization techniques to quantify and understand the coating quality. Further advancements in coating materials, methods, characterization techniques are needed to better relate coating properties to performance, especially for complex drug modalities.
Collapse
Affiliation(s)
- Yijing Huang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Chanakya D. Patil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Kinnari Santosh Arte
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Li (Lily) Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Li H, Chen N, Zhang S, Han Y, Gao X, Chen H, Bai Y, Gao W. Fast-Ion Conductor Coating Strategy Modified LiMn 2O 4 for Rocking-Chair Lithium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21269-21280. [PMID: 40156850 DOI: 10.1021/acsami.5c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Spinel LiMn2O4, with reversible capacity provided by earth-abundant Mn redox couple, highlights its attractiveness as a faradic cathode material due to its low cost, environmental friendliness, and unique three-dimensional Li+ diffusion channels. However, the surface degradation and Mn dissolution of LiMn2O4 are generally considered to be harmful and detrimental to achieving a long cycle life. Herein, a LiMn2O4 covered by LiTaO3 featuring as a fast-ion conductivity was synthesized and employed as a rocking-chair lithium-ion-capacitor cathode materials. As a result, the 3TaLMO with the optimal coating thickness displayed low impedance, the highest lithium-ion diffusion rate, and excellent cycling stability (half-cell, 80.90% capacity retention rate after 2000 cycles, at 0.3 A g-1). After further assembly into rocking-chair lithium-ion capacitor (LIC) with activated carbon, it achieves a high energy density (394.5 W h kg-1), high power density (90 kW kg-1), and an excellent long cycle life (77.27% of the initial capacity after 2000 cycles at 1.0 A g-1). The excellent electrochemical performance is mainly attributed to the excellent structural stability and fast-ion transfer characteristics of this coating composite structure. This modification strategy brings LMO one step closer to realizing a long cycle life faradic cathode material for rocking-chair LICs.
Collapse
Affiliation(s)
- Haoquan Li
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Nuo Chen
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Shangjun Zhang
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Yuehang Han
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Xiang Gao
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Huqiang Chen
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Yongxiao Bai
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| | - Wensheng Gao
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, Gansu Province 730000, China
| |
Collapse
|
3
|
Barcaro E, Marangon V, Bresser D, Hassoun J. Scalable Li-Ion Battery with Metal/Metal Oxide Sulfur Cathode and Lithiated Silicon Oxide/Carbon Anode. CHEMSUSCHEM 2025; 18:e202400615. [PMID: 39316031 PMCID: PMC11696217 DOI: 10.1002/cssc.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/24/2024] [Indexed: 09/25/2024]
Abstract
A Li-ion battery combines a cathode benefitting from Sn and MnO2 with high sulfur content, and a lithiated anode including fumed silica, few layer graphene (FLG) and amorphous carbon. This battery is considered a scalable version of the system based on lithium-sulfur (Li-S) conversion, since it exploits at the anode the Li-ion electrochemistry instead of Li-metal stripping/deposition. Sn and MnO2 are used as cathode additives to improve the electrochemical process, increase sulfur utilization, while mitigating the polysulfides loss typical of Li-S devices. The cathode demonstrates in half-cell a maximum capacity of ~1170 mAh gS -1, rate performance extended over 1 C, and retention of 250 cycles. The anode undergoes Li-(de)alloying with silicon, Li-(de)insertion into amorphous carbon, and Li-(de)intercalation through FLG, with capacity of 500 mAh g-1 in half-cell, completely retained over 400 cycles. The full-cells are assembled by combining a sulfur cathode with active material loading up to 3 mg cm-2 and lithiated version of the anode, achieved either using an electrochemical pathway or a chemical one. The cells deliver at C/5 initial capacity higher than 1000 mAh gS -1, retained for over ~40 % upon 400 cycles. The battery is considered a promising energy storage system for possible scaling-up in pouch or cylindrical cells.
Collapse
Affiliation(s)
- Edoardo Barcaro
- Department of Chemical, Pharmaceutical and Agricultural SciencesUniversity of Ferraravia Fossato di Mortara 1744121FerraraItaly
| | - Vittorio Marangon
- Helmholtz Institute Ulm (HIU)Helmholtzstrasse 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | - Dominic Bresser
- Helmholtz Institute Ulm (HIU)Helmholtzstrasse 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021KarlsruheGermany
| | - Jusef Hassoun
- Department of Chemical, Pharmaceutical and Agricultural SciencesUniversity of Ferraravia Fossato di Mortara 1744121FerraraItaly
- Graphene LabsIstituto Italiano di Tecnologiavia Morego 3016163GenovaItaly
| |
Collapse
|
4
|
Song Z, Dong T, Chen S, Gao Z. Bio-Inspired Core-Shell Structured Electrode Particles with Protective Mechanisms for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409310. [PMID: 39544122 DOI: 10.1002/smll.202409310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Lithium-ion batteries (LIBs), as predominant energy storage devices, are applied to electric vehicles, which is an effective way to achieve carbon neutrality. However, the major obstructions to their applications are two dilemmas: enhanced cyclic life and thermal stability. Taking advantage of bio-inspired core-shell structures to optimize the self-protective mechanisms of the mercantile electrode particles, LIBs can improve electrochemical performance and thermal stability simultaneously. The favorable core-shell structures suppress volume expansion to stabilize electrode-electrolyte interfaces (EEIs), mitigate direct contact between the electrode material and electrolyte, and promote electrical connectivity. They possess wide operating temperatures, high-voltage resistance, and inhibit short circuits. During cycling, the cathode and anode generate a cathode-electrolyte interface (CEI) and a solid-electrolyte interface (SEI), respectively. Applying multitudinous coating approaches can generate multifarious bio-inspired core-shell structured electrode particles, which is helpful for the generation of the EEIs, self-healing the surface cracks, and maintaining the structural integrities of electrodes. The protected shells act as barriers to minimize unwanted side reactions and enhance thermal stability. These in-depth understandings of the bio-inspired evolution for electrode particles can inspire further enhancements in LIB lifetime and thermal safety, especially for bio-inspired core-shell structured electrodes possessing high-performance protective mechanisms.
Collapse
Affiliation(s)
- Zelai Song
- College of Automotive Engineering, Jilin University, Changchun, 130022, China
- National Key Laboratory of Automotive Chassis Integration and Bionic, Jilin University, Changchun, 130022, China
| | - Taowen Dong
- College of Automotive Engineering, Jilin University, Changchun, 130022, China
- National Key Laboratory of Automotive Chassis Integration and Bionic, Jilin University, Changchun, 130022, China
| | - Siyan Chen
- College of Automotive Engineering, Jilin University, Changchun, 130022, China
- National Key Laboratory of Automotive Chassis Integration and Bionic, Jilin University, Changchun, 130022, China
| | - Zhenhai Gao
- College of Automotive Engineering, Jilin University, Changchun, 130022, China
- National Key Laboratory of Automotive Chassis Integration and Bionic, Jilin University, Changchun, 130022, China
| |
Collapse
|
5
|
Sun Y, Chang C, Zheng J. Doping Effects on Ternary Cathode Materials for Lithium-Ion Batteries: A Review. Chemphyschem 2024; 25:e202300966. [PMID: 38787917 DOI: 10.1002/cphc.202300966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
The ongoing advancements in lithium-ion battery technology are pivotal in propelling the performance of modern electronic devices and electric vehicles. Amongst various components, the cathode material significantly influences the battery performance, such as the specific capacity, capacity retention and the rate performance. Ternary cathode materials, composed of nickel, manganese, and cobalt (NCM), offer a balanced combination of these traits. Recent developments focus on elemental doping, which involves substituting a fraction of NCM constituent ions with alternative cations such as aluminum, titanium, or magnesium. This strategic substitution aims to enhance structural stability, increase capacity retention, and improve resistance to thermal runaway. Doped ternary materials have shown promising results, with improvements in cycle life and operational safety. However, the quest for optimal doping elements and concentrations persists to maximize performance while minimizing cost and environmental impact, ensuring the progression towards high-energy-density, durable, and safe battery technologies.
Collapse
Affiliation(s)
- Yubo Sun
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Chengkang Chang
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| | - Jiening Zheng
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, P. R. China
| |
Collapse
|
6
|
Song Z, Li W, Gao Z, Chen Y, Wang D, Chen S. Bio-Inspired Electrodes with Rational Spatiotemporal Management for Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400405. [PMID: 38682479 PMCID: PMC11267303 DOI: 10.1002/advs.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Lithium-ion batteries (LIBs) are currently the predominant energy storage power source. However, the urgent issues of enhancing electrochemical performance, prolonging lifetime, preventing thermal runaway-caused fires, and intelligent application are obstacles to their applications. Herein, bio-inspired electrodes owning spatiotemporal management of self-healing, fast ion transport, fire-extinguishing, thermoresponsive switching, recycling, and flexibility are overviewed comprehensively, showing great promising potentials in practical application due to the significantly enhanced durability and thermal safety of LIBs. Taking advantage of the self-healing core-shell structures, binders, capsules, or liquid metal alloys, these electrodes can maintain the mechanical integrity during the lithiation-delithiation cycling. After the incorporation of fire-extinguishing binders, current collectors, or capsules, flame retardants can be released spatiotemporally during thermal runaway to ensure safety. Thermoresponsive switching electrodes are also constructed though adding thermally responsive components, which can rapidly switch LIB off under abnormal conditions and resume their functions quickly when normal operating conditions return. Finally, the challenges of bio-inspired electrode designs are presented to optimize the spatiotemporal management of LIBs. It is anticipated that the proposed electrodes with spatiotemporal management will not only promote industrial application, but also strengthen the fundamental research of bionics in energy storage.
Collapse
Affiliation(s)
- Zelai Song
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Weifeng Li
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Zhenhai Gao
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190China
| | - Deping Wang
- General Research and Development InstituteChina FAW Corporation LimitedChangchun130013China
| | - Siyan Chen
- College of Automotive EngineeringJilin UniversityChangchun130022China
- National Key Laboratory of Automotive Chassis Integration and BionicJilin UniversityChangchun130022China
| |
Collapse
|
7
|
Li H, Wang L, Song Y, Zhang Z, Du A, Tang Y, Wang J, He X. Why the Synthesis Affects Performance of Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312292. [PMID: 38216139 DOI: 10.1002/adma.202312292] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Indexed: 01/14/2024]
Abstract
The limited cyclability of high-specific-energy layered transition metal oxide (LiTMO2) cathode materials poses a significant challenge to the industrialization of batteries incorporating these materials. This limitation can be attributed to various factors, with the intrinsic behavior of the crystal structure during the cycle process being a key contributor. These factors include phase transition induced cracks, reduced Li active sites due to Li/Ni mixing, and slower Li+ migration. In addition, the presence of synthesis-induced heterogeneous phases and lattice defects cannot be disregarded as they also contribute to the degradation in performance. Therefore, gaining a profound understanding of the intricate relationship among material synthesis, structure, and performance is imperative for the development of LiTMO2. This paper highlights the pivotal role of structural play in LiTMO2 materials and provides a comprehensive overview of how various control factors influence the specific pathways of structural evolution during the synthesis process. In addition, it summarizes the scientific challenges associated with diverse modification approaches currently employed to address the cyclic failure of materials. The overarching goal is to provide readers with profound insights into the study of LiTMO2.
Collapse
Affiliation(s)
- Hang Li
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Aimin Du
- School of Automotive Studies, Tongji University, Shanghai, 201804, China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|