1
|
Berillo O, Paradis P, Schiffrin EL. Role of Immune Cells in Perivascular Adipose Tissue in Vascular Injury in Hypertension. Arterioscler Thromb Vasc Biol 2025; 45:563-575. [PMID: 40079139 DOI: 10.1161/atvbaha.124.321689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Hypertension is associated with vascular injury characterized by vascular dysfunction, remodeling, and stiffening, which contributes to end-organ damage leading to cardiovascular events and potentially death. Innate (macrophages and dendritic cells), innate-like (γδ T cells) and adaptive immune cells (T and B cells) play a role in hypertension and vascular injury. Perivascular adipose tissue that is the fourth layer of the blood vessel wall is an important homeostatic regulator of vascular tone. Increased infiltration of immune cells in perivascular adipose tissue in hypertension results in generation of oxidative stress and production of cytokines that may cause vascular injury. This review presents an overview of the role of the different immune cells that infiltrate the perivascular adipose tissue and are involved in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Quebec, Canada (O.B., P.P., E.L.S.)
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada (E.L.S.)
- McGill University, Montréal, Québec, Canada (E.L.S.)
| |
Collapse
|
2
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
3
|
Agas D, Sabbieti MG. Untangling Ariadne's Thread Within the Bone Marrow Maze: A Close-Up View of Stem/Progenitor Cells' Interactome and Secretome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40035957 DOI: 10.1007/5584_2024_847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The bone marrow (BM) is a multifactorial, highly dynamic, still not fully "mapped," reservoir. The BM labyrinthine landscape is subject to a relentless debate on the specialized and stem/progenitor cells' scattering within designated microareas. Certainly, BM tissue plays a watchdog role in bone modeling and remodeling, hematopoiesis, immune surveillance, and endocrine response integration. Parameters like tissue topographical distinctiveness, stiffness and porosity grade, and cells' behavioral idiosyncrasies in terms of stem/progenitor cell housing, activation, and motility represent a knotty problem not easily solved. Given that the disruption of BM microdomains has been associated with a number of severe pathological disorders, the comprehension and preservation of the BM workspace at multiple levels have become mandatory. Solid evidence has showed the existence of an intricate and tightly regulated cross-talk between the BM cellular occupants. Direct physical cell-cell connections and soluble mediators, including cytokines, chemokines, growth factors, exosomes and microvesicles, orchestrate composite intracellular signaling routes. The spatiotemporal action of definite biofactors ensures a functional blood-producing organ with a physiological bone turnover and prompts the action of multipotent stromal/hematopoietic cells. Recently, significant research efforts have been addressed to build bioengineered niche-mimic models based on biofunctionalized scaffolds and organoid-like constructs. These artificial BM niches combine and transduce various aspects of bioinformatics and tissue engineering to unravel the complexities of BM organization. This chapter aims to unfold the recent breakthroughs in the understanding of a BM intramural cell-cell dialogue in a physiological and, in some cases, within an inflammatory background. BM maze is gradually being discovered, but there is still a long way to go.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | | |
Collapse
|
4
|
Dashti P, Lewallen EA, Stein GS, van der Eerden BC, van Leeuwen JP, van Wijnen AJ. Dynamic strain and β-catenin mediated suppression of interferon responsive genes in quiescent mesenchymal stromal/stem cells. Biochem Biophys Rep 2024; 40:101847. [PMID: 39512854 PMCID: PMC11541450 DOI: 10.1016/j.bbrep.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis. The sensitivity of MSCs to external mechanical forces may be altered by cessation of proliferation, when MSCs begin to express extracellular matrix (ECM) proteins and generate cell/cell contact. Therefore, we assessed whether and how gene expression of proliferating versus quiescent MSCs responds to mechanical stimuli. We used RNA-seq and RT-qPCR to evaluate transcriptomes at 3 h after dynamic strain (200 cycles × 2 % for 20 min) once daily during a two-day time course in naïve (uninduced) MSCs. Transcriptomes of untreated MSCs show that cells become quiescent at day 2 when proliferation markers are downregulated, and ECM related genes are upregulated. On both day 1 and day 2, dynamic strain stimulates expression of oxidative stress related genes (e.g., Nqo1, Prl2c2, Prl2c3). Strikingly, in quiescent MSCs, we observe that dynamic strain suppresses multiple interferon (IFN) responsive genes (e.g., Irf7, Oasl2 and Isg15). IFN responsive genes are activated in MSCs depleted of β-catenin using siRNAs, indicating that β-catenin normally suppresses these genes. Our data indicate that the functional effects of dynamic strain and β-catenin on IFN responsive genes in MSCs are mechanistically coupled. Because dynamic strain and β-catenin reduce the osteogenic potential of MSCs, our findings suggest that IFN responsive genes are novel biomarkers and potential regulators of mechanical responses at early stages of lineage-commitment in post-proliferative MSCs.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A. Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Bram C.J. van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Andre J. van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| |
Collapse
|
5
|
Li S, Yan W, Sun K, Miao J, Liu Z, Xu J, Wang X, Li B, Zhang Q. Norisoboldine, a Natural Alkaloid from Lindera aggregata (Sims) Kosterm, Promotes Osteogenic Differentiation via S6K1 Signaling Pathway and Prevents Bone Loss in OVX Mice. Mol Nutr Food Res 2024; 68:e2400193. [PMID: 38813717 DOI: 10.1002/mnfr.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
SCOPE Norisoboldine (NOR) is a major isoquinoline alkaloid component in the traditional Chinese herbal plant Lindera aggregata (Sims) Kosterm, with previously reported anti-osteoclast differentiation and antiarthritis properties. However, the roles of NOR on osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoporosis in vivo have never been well established. METHODS AND RESULTS This study investigates the ability of NOR to improve bone formation in vitro and in vivo. Osteoblasts and BMSCs are used to study the effect of NOR on osteogenic and adipogenic differentiation. It finds that NOR promotes osteogenic differentiation of osteoblasts and BMSCs, while inhibiting adipogenic differentiation of BMSCs by reducing the relative expression of peroxisome proliferator-activated receptor γ (Ppar-γ) and adiponectin, C1Q and collagen domain containing (Adipoq). Mechanistic studies show that NOR increases osteoblast differentiation through the mechanistic target of rapamycin kinase (mTOR)/ribosomal protein S6 kinase; polypeptide 1 (S6K1) pathway, and treatment with an mTOR inhibitor rapamycin blocked the NOR-induced increase in mineral accumulation. Finally, the study evaluates the therapeutic potential of NOR in a mouse model of ovariectomy (OVX)-induced bone loss. NOR prevents bone loss in both trabecular and cortical bone by increasing osteoblast number and phospho-S6K1 (p-S6K1) expression in osteoblasts. CONCLUSION NOR effects in enhancing osteoblast-induced bone formation via S6K1 pathway, suggesting the potential of NOR in osteoporosis treatment by increasing bone formation.
Collapse
Affiliation(s)
- Shiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wenliang Yan
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Kainong Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingyuan Miao
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
7
|
Li Y, Wang T, Li X, Li W, Lei Y, Shang Q, Zheng Z, Fang J, Cao L, Yu D, Meng Z, Zhang S, Liu R, Liu C, Xu C, Ding Y, Chen Y, Candi E, Melino G, Wang Y, Shi Y, Shao C. SOD2 promotes the immunosuppressive function of mesenchymal stem cells at the expense of adipocyte differentiation. Mol Ther 2024; 32:1144-1157. [PMID: 38310354 PMCID: PMC11163202 DOI: 10.1016/j.ymthe.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tingting Wang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Wen Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Yan Lei
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daojiang Yu
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhenzhen Meng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Shengchao Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chunxiao Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Chenchang Xu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
8
|
Wu Z, Lin X, Yuan G, Li N, Xu R. Innate lymphoid cells: New players in osteoimmunology. Eur J Immunol 2024; 54:e2350381. [PMID: 38234001 DOI: 10.1002/eji.202350381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Innate lymphoid cells (ILCs) are the most recently identified immune cell types existing in lymphoid and nonlymphoid organs. Albeit they lack the expression of antigen receptors, ILCs play vital roles in innate immune responses by producing multiple effector cytokines. The ILC family includes conventional natural killer cells and cytokine-producing ILCs, which are divided into group 1, group 2, and group 3 ILCs based on their effector cytokines and developmental requirements. Emerging evidence has indicated that ILCs are essential immune regulators of bone homeostasis, playing a critical role in osteoimmunology. In this mini-review, we discuss recent advances in the understanding of ILC functions in bone homeostasis under physiological and pathological conditions, with an emphasis on the communication between ILCs and bone cells including osteoclasts and osteoblasts, as well as the underlying immunoregulatory networks involving ILC-derived cytokines and growth factors. This review also discusses future research directions and the potential of targeting ILCs for the treatment of inflammation-associated bone disorders.
Collapse
Affiliation(s)
- Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Cai L, Lv Y, Yan Q, Guo W. Cytokines: The links between bone and the immune system. Injury 2024; 55:111203. [PMID: 38043143 DOI: 10.1016/j.injury.2023.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
Osteoporosis results from an imbalance in a highly balanced physiological process called bone remodeling, in which osteoclast-mediated bone resorption and osteoblast-mediated bone formation play important roles. Osteoimmunology is a newly discovered interdisciplinary research field that focuses on the relationship between bone and the immune system. Specifically, bone and the immune system interact through cytokines, immune cells secrete cytokines, and cytokines finely regulate bone metabolism by mediating the differentiation and activity of osteoclasts and osteoblasts. Therefore, understanding the influence of cytokines on bone metabolism is conducive for the development of novel targeted drugs against immune-related bone diseases. This review summarizes the pathophysiological functions of various common cytokines in bone and discusses the potential clinical value of multiple cytokines in immune-mediated bone diseases.
Collapse
Affiliation(s)
- Liping Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Department of Endocrinology, Rheumatology and Immunology, Anyang People's Hospital, Anyang, Henan 455000, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Liu W, Liu T, Zhao Q, Ma J, Jiang J, Shi H. Adipose Tissue-Derived Extracellular Vesicles: A Promising Biomarker and Therapeutic Strategy for Metabolic Disorders. Stem Cells Int 2023; 2023:9517826. [PMID: 38169960 PMCID: PMC10761228 DOI: 10.1155/2023/9517826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Adipose tissue plays an important role in systemic energy metabolism, and its dysfunction can lead to severe metabolic disorders. Various cells in adipose tissue communicate with each other to maintain metabolic homeostasis. Extracellular vesicles (EVs) are recognized as novel medium for remote intercellular communication by transferring various bioactive molecules from parental cells to distant target cells. Increasing evidence suggests that the endocrine functions of adipose tissue and even the metabolic homeostasis are largely affected by different cell-derived EVs, such as insulin signaling, lipolysis, and metabolically triggered inflammation regulations. Here, we provide an overview focused on the role of EVs released by different cell types of adipose tissue in metabolic diseases and their possible molecular mechanisms and highlight the potential applications of EVs as biomarkers and therapeutic targets. Moreover, the current EVs-based therapeutic strategies have also been discussed. This trial is registered with NCT05475418.
Collapse
Affiliation(s)
- Wenhui Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Tianyan Liu
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Qingyu Zhao
- Department of Nephrology, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Junqiu Ma
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Center of Laboratory Medicine, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou 215600, Jiangsu, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
11
|
Interferon-gamma regulates the levels of bone formation effectors in a stage-dependent manner. Mol Biol Rep 2022; 49:12007-12015. [DOI: 10.1007/s11033-022-07993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
|
12
|
A senescence stress secretome is a hallmark of therapy-related myeloid neoplasm stromal tissue occurring soon after cytotoxic exposure. Leukemia 2022; 36:2678-2689. [PMID: 36038666 PMCID: PMC9613466 DOI: 10.1038/s41375-022-01686-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
Therapy-related myeloid neoplasm (tMN) is considered a direct consequence of DNA damage in hematopoietic stem cells. Despite increasing recognition that altered stroma can also drive leukemogenesis, the functional biology of the tMN microenvironment remains unknown. We performed multiomic (transcriptome, DNA damage response, cytokine secretome and functional profiling) characterization of bone marrow stromal cells from tMN patients. Critically, we also compared (i) patients with myeloid neoplasm and another cancer but without cytotoxic exposure, (ii) typical primary myeloid neoplasm, and (iii) age-matched controls to decipher the microenvironmental changes induced by cytotoxics vs. neoplasia. Strikingly, tMN exhibited a profoundly senescent phenotype with induction of CDKN1A and β-Galactosidase, defective phenotype, and proliferation. Moreover, tMN stroma showed delayed DNA repair and defective adipogenesis. Despite their dormant state, tMN stromal cells were metabolically highly active with a switch toward glycolysis and secreted multiple pro-inflammatory cytokines indicative of a senescent-secretory phenotype that inhibited adipogenesis. Critically, senolytics not only eliminated dormant cells, but also restored adipogenesis. Finally, sequential patient sampling showed senescence phenotypes are induced within months of cytotoxic exposure, well prior to the onset of secondary cancer. Our data underscores a role of senescence in the pathogenesis of tMN and provide a valuable resource for future therapeutics.
Collapse
|
13
|
Ploner C, Rauchenwald T, Connolly CE, Joehrer K, Rainer J, Seifarth C, Hermann M, Nagl M, Lobenwein S, Wilflingseder D, Cappellano G, Morandi EM, Pierer G. Oxidant therapy improves adipogenic differentiation of adipose-derived stem cells in human wound healing. Stem Cell Res Ther 2021; 12:280. [PMID: 33971957 PMCID: PMC8111898 DOI: 10.1186/s13287-021-02336-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adipose-derived stem cells (ASC) and adipocytes are involved in numerous physiological and pathophysiological conditions, which have been extensively described in subcutaneous and visceral fat depots over the past two decades. However, much less is known about ASC and adipocytes outside classical fat tissue depots and their necessity in tissue remodeling after injury. Therefore, we investigated the etiology of adipocytes in human granulation tissue and define their possible role wound healing. Methods Identification of human wound tissue adipocytes was determined by immunohistochemical staining of granulation tissue sections from patients undergoing surgical debridement. Stromal cell fractions from granulation tissue and subcutaneous fat tissue were generated by collagenase type II-based protocols. Pro- and anti-inflammatory wound bed conditions were mimicked by THP1- and CD14+ monocyte-derived macrophage models in vitro. Effects of macrophage secretome on ASC differentiation and metabolism were determined by immunoblotting, flow cytometry, and microscopy assessing early and late adipocyte differentiation states. Functional rescuing experiments were conducted by lentiviral transduction of wildtype PPARG, IL1RA, and N-chlorotaurine (NCT) treatment. Results Single and clustered adipocyte populations were detected in 11 out of 13 granulation tissue specimens and single-cell suspensions from granulation tissue showed adipogenic differentiation potential. Pro-inflammatory signaling by IFNG/LPS-stimulated macrophages (M (IFNG/LPS)) inhibited the maturation of lipid droplets in differentiated ASC. In contrast, anti-inflammatory IL4/IL13-activated macrophages (M (IL4/IL13)) revealed minor effects on adipocyte development. The M (IFNG/LPS)-induced phenotype was associated with a switch from endogenous fatty acid synthesis to glycolysis-dominated cell metabolism and increased pro-inflammatory cytokine production. Impaired adipogenesis was associated with increased, but seemingly non-functional, CEBPB levels, which failed to induce downstream PPARG and CEBPA. Neither transgenic PPARG overexpression, nor inhibition of IL1B was sufficient to rescue the anti-adipogenic effects induced by IFNG/LPS-activated macrophages. Instead, macrophage co-treatment during stimulation with NCT, a mild oxidant produced by activated granulocytes present in human wounds in vivo, significantly attenuated the anti-adipogenic effects. Conclusions In conclusion, the appearance of adipocytes in wound tissue indicates a prevailing anti-inflammatory environment that could be promoted by NCT treatment and may be associated with improved healing outcomes. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02336-3.
Collapse
Affiliation(s)
- Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Karin Joehrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christof Seifarth
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
14
|
Amarasekara DS, Kim S, Rho J. Regulation of Osteoblast Differentiation by Cytokine Networks. Int J Mol Sci 2021; 22:ijms22062851. [PMID: 33799644 PMCID: PMC7998677 DOI: 10.3390/ijms22062851] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts, which are bone-forming cells, play pivotal roles in bone modeling and remodeling. Osteoblast differentiation, also known as osteoblastogenesis, is orchestrated by transcription factors, such as runt-related transcription factor 1/2, osterix, activating transcription factor 4, special AT-rich sequence-binding protein 2 and activator protein-1. Osteoblastogenesis is regulated by a network of cytokines under physiological and pathophysiological conditions. Osteoblastogenic cytokines, such as interleukin-10 (IL-10), IL-11, IL-18, interferon-γ (IFN-γ), cardiotrophin-1 and oncostatin M, promote osteoblastogenesis, whereas anti-osteoblastogenic cytokines, such as tumor necrosis factor-α (TNF-α), TNF-β, IL-1α, IL-4, IL-7, IL-12, IL-13, IL-23, IFN-α, IFN-β, leukemia inhibitory factor, cardiotrophin-like cytokine, and ciliary neurotrophic factor, downregulate osteoblastogenesis. Although there are gaps in the body of knowledge regarding the interplay of cytokine networks in osteoblastogenesis, cytokines appear to be potential therapeutic targets in bone-related diseases. Thus, in this study, we review and discuss our osteoblast, osteoblast differentiation, osteoblastogenesis, cytokines, signaling pathway of cytokine networks in osteoblastogenesis.
Collapse
Affiliation(s)
- Dulshara Sachini Amarasekara
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-6420; Fax: +82-42-822-7367
| |
Collapse
|
15
|
Duque G, Vidal C, Li W, Al Saedi A, Khalil M, Lim CK, Myers DE, Guillemin GJ. Picolinic Acid, a Catabolite of Tryptophan, Has an Anabolic Effect on Bone In Vivo. J Bone Miner Res 2020; 35:2275-2288. [PMID: 32629550 DOI: 10.1002/jbmr.4125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Fractures attributable to osteoporosis have a severe impact on our older population. Reports of side effects with commonly prescribed osteoporosis drugs have led to the investigation of new and safer treatments with novel mechanisms of action. Picolinic acid (PIC), a catabolite of tryptophan, induces in vitro osteogenic differentiation of mesenchymal stem cells. Here we demonstrate that PIC has an anabolic effect on bone in vivo by increasing bone formation, bone mass, and bone strength in normal and ovariectomized C57BL/6 mice. Activation of the osteogenic pathways triggered this osteoanabolic response without any cross-related effects on mineral absorption or calciotropic hormones. Because PIC was also well tolerated and absorbed with no side effects, it is an ideal potential candidate for the treatment of osteoporosis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Christopher Vidal
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Wei Li
- Sydney Medical School Nepean, The University of Sydney, Penrith, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Mamdouh Khalil
- ANZAC Research Institute, Sydney Medical School Concord, The University of Sydney, Concord, Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Cabezas J, Rojas D, Wong Y, Telleria F, Manriquez J, Mançanares ACF, Rodriguez-Alvarez LL, Castro FO. In vitro preconditioning of equine adipose mesenchymal stem cells with prostaglandin E 2, substance P and their combination changes the cellular protein secretomics and improves their immunomodulatory competence without compromising stemness. Vet Immunol Immunopathol 2020; 228:110100. [PMID: 32871408 DOI: 10.1016/j.vetimm.2020.110100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSC) are modern tools in regenerative therapies of humans and animals owed to their immunomodulatory properties, which are activated in a pro-inflammatory environment. Different preconditioning strategies had been devised to enhance the immunomodulatory properties of MSC. In this research, we evaluated the immunological attributes of equine adipose MSC (eAMSC) before and after preconditioning in vitro with prostaglandin E2 (PGE2), substance P (SP), their combination and IFNγ. PGE2/SP was the best combination to keep or enhance the mesodermal lineage differentiation of eAMSC. Alongside with this, preconditioning of eMSC with PGE2 and SP did not affect expression of stemness MSC surface phenotype: CD90+, CD44+, MHC class I+, MHC class II- and CD45-, assessed by cytometry. Both naïve and preconditioned eAMSC expressed genes related with immune properties, such as MHC-I, PTGES, IL6, IL1A, TNFα and IL8 assessed by qPCR. Only TNFα was under expressed in treated cells, while the other markers were either overexpressed or not changed. In no cases MHC-II expression was detected. The antiproliferative effect of preconditioned eAMSC exposed to activated peripheral blood mononuclear cells (PBMC) showed that SP treatment significantly inhibited proliferation of LPS stimulated PBMC. When eAMSC were stimulated with Poly I:C, all the treatments significantly inhibited proliferation of stimulated PBMC (p < 0.05). Direct contact (coculture) between the preconditioned eAMSC and PBMC, induced a shift of significantly more (CD4/CD25/FOXP3)+ T-regulatory PBMC than naïve eAMSC. In the experiments of this research, we investigated the secreted proteomic profile of naïve and preconditioned eAMSC, 42 up-regulated and 40 down-regulated proteins were found in the proteomic assay. Our proteomic data revealed profound changes in the secretory pattern of MSC exposed to different treatments, compared to naïve eAMSC as well as among treatments. In overall, compared to naïve cells, the protein profile of preconditioned cells resembled the mesenchymal-epithelial transition (MET). Here we showed that the combined use of PGE2 and SP provoked in overall the highest expression of anti-inflammatory markers as well as lead to an increased acquisition of a T-regulatory phenotype in preconditioned eAMSC without affecting their "stemness".
Collapse
Affiliation(s)
- J Cabezas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - D Rojas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Pathology, Chile.
| | - Y Wong
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - F Telleria
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - J Manriquez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - A C F Mançanares
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - L L Rodriguez-Alvarez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| | - F O Castro
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Science, Department of Animal Science, Laboratorio de Biotecnología Animal, Chile.
| |
Collapse
|
17
|
Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and the Orbicularis Oris Muscle: How Do They Behave When Exposed to a Proinflammatory Stimulus? Stem Cells Int 2020; 2020:3670412. [PMID: 32184831 PMCID: PMC7060870 DOI: 10.1155/2020/3670412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/04/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied as a promising type of stem cell for use in cell therapies because of their ability to regulate the immune response. Although they are classically isolated from the bone marrow, many studies have sought to isolate MSCs from noninvasive sources. The objective of this study was to evaluate how MSCs isolated from the dental pulp of human exfoliated deciduous teeth (SHED) and fragments of the orbicularis oris muscle (OOMDSCs) behave when treated with an inflammatory IFN-γ stimulus, specifically regarding their proliferative, osteogenic, and immunomodulatory potentials. The results demonstrated that the proliferation of SHED and OOMDSCs was inhibited by the addition of IFN-γ to their culture medium and that treatment with IFN-γ at higher concentrations resulted in a greater inhibition of the proliferation of these cells than treatment with IFN-γ at lower concentrations. SHED and OOMDSCs maintained their osteogenic differentiation potential after stimulation with IFN-γ. Additionally, SHED and OOMDSCs have been shown to have low immunogenicity because they lack expression of HLA-DR and costimulatory molecules such as CD40, CD80, and CD86 before and after IFN-γ treatment. Last, SHED and OOMDSCs expressed the immunoregulatory molecule HLA-G, and the expression of this antigen increased after IFN-γ treatment. In particular, an increase in intracellular HLA-G expression was observed. The results obtained suggest that SHED and OOMDSCs lack immunogenicity and have immunomodulatory properties that are enhanced when they undergo inflammatory stimulation with IFN-γ, which opens new perspectives for the therapeutic use of these cells.
Collapse
|
18
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence. Int J Mol Sci 2019; 20:ijms20061453. [PMID: 30909398 PMCID: PMC6471965 DOI: 10.3390/ijms20061453] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023] Open
Abstract
Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
Collapse
|
20
|
Ponzetti M, Rucci N. Updates on Osteoimmunology: What's New on the Cross-Talk Between Bone and Immune System. Front Endocrinol (Lausanne) 2019; 10:236. [PMID: 31057482 PMCID: PMC6482259 DOI: 10.3389/fendo.2019.00236] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
The term osteoimmunology was coined many years ago to describe the research field that deals with the cross-regulation between bone cells and the immune system. As a matter of fact, many factors that are classically considered immune-related, such as InterLeukins (i.e., IL-6, -11, -17, and -23), Tumor Necrosis Factor (TNF)-α, Receptor-Activator of Nuclear factor Kappa B (RANK), and its Ligand (RANKL), Nuclear Factor of Activated T-cell, cytoplasmatic-1 (NFATc1), and others have all been found to be crucial in osteoclast and osteoblast biology. Conversely, bone cells, which we used to think would only regulate each other and take care of remodeling bone, actually regulate immune cells, by creating the so-called "endosteal niche." Both osteoblasts and osteoclasts participate to this niche, either by favoring engraftment, or mobilization of Hematopoietic Stem Cells (HSCs). In this review, we will describe the main milestones at the base of the osteoimmunology and present the key cellular players of the bone-immune system cross-talk, including HSCs, osteoblasts, osteoclasts, bone marrow macrophages, osteomacs, T- and B-lymphocytes, dendritic cells, and neutrophils. We will also briefly describe some pathological conditions in which the bone-immune system cross-talk plays a crucial role, with the final aim to portray the state of the art in the mechanisms regulating the bone-immune system interplay, and some of the latest molecular players in the field. This is important to encourage investigation in this field, to identify new targets in the treatment of bone and immune diseases.
Collapse
|
21
|
Hughes MF, Lenighan YM, Godson C, Roche HM. Exploring Coronary Artery Disease GWAs Targets With Functional Links to Immunometabolism. Front Cardiovasc Med 2018; 5:148. [PMID: 30460244 PMCID: PMC6232936 DOI: 10.3389/fcvm.2018.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Finding genetic variants that cause functional disruption or regulatory change among the many implicated GWAs variants remains a key challenge to translating the findings from GWAs to therapeutic treatments. Defining the causal mechanisms behind the variants require functional screening experiments that can be complex and costly. Prioritizing variants for functional characterization using techniques that capture important functional and regulatory elements can assist this. The genetic architecture of complex traits such as cardiovascular disease and type II diabetes comprise an enormously large number of variants of small effect contributing to heritability and spread throughout the genome. This makes it difficult to distinguish which variants or core genes are most relevant for prioritization and how they contribute to the regulatory networks that become dysregulated leading to disease. Despite these challenges, recent GWAs for CAD prioritized genes associated with lipid metabolism, coagulation and adhesion along with novel signals related to innate immunity, adipose tissue and, vascular function as important core drivers of risk. We focus on three examples of novel signals associated with CAD which affect risk through missense or UTR mutations indicating their potential for therapeutic modification. These variants play roles in adipose tissue function vascular function and innate immunity which form the cornerstones of immuno-metabolism. In addition we have explored the putative, but potentially important interactions between the environment, specifically food and nutrition, with respect to key processes.
Collapse
Affiliation(s)
- Maria F Hughes
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,Nutrigenomics Research Group, UCD Institute of Food and Health, School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,Centre of Excellence for Public Health, Queen's University Belfast, Belfast, United Kingdom.,UCD Institute of Food and Health, School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Yvonne M Lenighan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Institute of Food and Health, School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Helen M Roche
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,Nutrigenomics Research Group, UCD Institute of Food and Health, School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Institute of Food and Health, School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018; 9:1508. [PMID: 30008722 PMCID: PMC6033972 DOI: 10.3389/fimmu.2018.01508] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoimmunology is the interdiscipline that focuses on the relationship between the skeletal and immune systems. They are interconnected by shared signal pathways and cytokines. Interferon-gamma (IFN-γ) plays important roles in immune responses and bone metabolism. IFN-γ enhances macrophage activation and antigen presentation. It regulates antiviral and antibacterial immunity as well as signal transduction. IFN-γ can promote osteoblast differentiation and inhibit bone marrow adipocyte formation. IFN-γ plays dual role in osteoclasts depending on its stage. Furthermore, IFN-γ is an important pathogenetic factor in some immune-mediated bone diseases including rheumatoid arthritis, postmenopausal osteoporosis, and acquired immunodeficiency syndrome. This review will discuss the contradictory findings of IFN-γ in osteoimmunology and its clinical application potential.
Collapse
Affiliation(s)
- Mengjia Tang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Clonal Analysis Delineates Transcriptional Programs of Osteogenic and Adipogenic Lineages of Adult Mouse Skeletal Progenitors. Stem Cell Reports 2018; 11:212-227. [PMID: 29937146 PMCID: PMC6067065 DOI: 10.1016/j.stemcr.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
Bone, cartilage, and marrow adipocytes are generated by skeletal progenitors, but the relationships between lineages and mechanisms controlling their differentiation are poorly understood. We established mouse clonal skeletal progenitors with distinct differentiation properties and analyzed their transcriptome. Unipotent osteogenic and adipogenic cells expressed specific transcriptional programs, whereas bipotent clones combined expression of those genes and did not show a unique signature. We tested potential regulators of lineage commitment and found that in the presence of interferon-γ (IFNγ) adipogenic clones can be induced to osteogenesis and that their adipogenic capacity is inhibited. Analysis of IFNγ-regulated genes showed that lineage signatures and fate commitment of skeletal progenitors were controlled by EGR1 and EGR2. Knockdown experiments revealed that EGR1 is a positive regulator of the adipogenic transcriptional program and differentiation capacity, whereas EGR2 inhibits the osteogenic program and potency. Therefore, our work revealed transcriptional signatures of osteogenic and adipogenic lineages and mechanism triggering cell fate. Bone marrow osteo- and adipogenic progenitors have specific transcriptional profiles Bipotent progenitors combine expression of osteogenic and adipogenic programs IFNγ inhibits adipogenesis and induces osteogenesis via downregulation of Egr1/Egr2 Egr1 maintains adipogenic and Egr2 suppresses osteogenic lineage commitment
Collapse
|
24
|
Goedhart M, Cornelissen AS, Kuijk C, Geerman S, Kleijer M, van Buul JD, Huveneers S, Raaijmakers MHGP, Young HA, Wolkers MC, Voermans C, Nolte MA. Interferon-Gamma Impairs Maintenance and Alters Hematopoietic Support of Bone Marrow Mesenchymal Stromal Cells. Stem Cells Dev 2018; 27:579-589. [PMID: 29649408 PMCID: PMC5934977 DOI: 10.1089/scd.2017.0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs. In this study, we elucidate the impact of IFN-γ on the hematopoietic support of BM-MSCs. We found that IFN-γ increases expression of interleukin (IL)-6 and stem cell factor by human BM-MSCs. IFN-γ-treated BM-MSCs drive HSPCs toward myeloid commitment in vitro, but impair subsequent differentiation of HSPC. Moreover, IFN-γ-ARE-Del mice with increased IFN-γ production specifically lose their BM-MSCs, which correlates with a loss of hematopoietic stem cells' quiescence. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, we conclude that IFN-γ negatively affects maintenance of BM-MSCs and their hematopoietic support in vitro and in vivo.
Collapse
Affiliation(s)
- Marieke Goedhart
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Anne S Cornelissen
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Carlijn Kuijk
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Sulima Geerman
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Marion Kleijer
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Jaap D van Buul
- 2 Sanquin Research and Landsteiner Laboratory, Department of Molecular Cell Biology, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Stephan Huveneers
- 2 Sanquin Research and Landsteiner Laboratory, Department of Molecular Cell Biology, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Marc H G P Raaijmakers
- 3 Department of Hematology and Erasmus Stem Cell Institute, Erasmus MC Cancer Institute , Rotterdam, Netherlands
| | - Howard A Young
- 4 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute , Frederick, Maryland
| | - Monika C Wolkers
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Carlijn Voermans
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| | - Martijn A Nolte
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, Netherlands
| |
Collapse
|
25
|
Insights into inflammatory priming of mesenchymal stromal cells: functional biological impacts. Inflamm Res 2018; 67:467-477. [PMID: 29362849 DOI: 10.1007/s00011-018-1131-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent adult cells with relevant biological properties making them interesting tools for cell-based therapy. These cells have the ability to home to sites of injury and secrete bioactive factors as part of their therapeutic functions. However, depending on the local environment, diverse functions of MSCs can be modulated and thus can influence their therapeutic value. The specific cytokine milieu within the site of inflammation is vital in determining the fate and cell behaviors of MSCs. Indeed, inflammatory signals (called as inflammatory priming), may induce critical changes on the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects. In summary, investigating MSC interactions with the inflammatory environment is necessary to empower the therapeutic value of MSCs.
Collapse
|
26
|
Boregowda SV, Booker CN, Phinney DG. Mesenchymal Stem Cells: The Moniker Fits the Science. Stem Cells 2017; 36:7-10. [PMID: 28960677 DOI: 10.1002/stem.2713] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained widespread use in regenerative medicine due to their demonstrated efficacy in a broad range of experimental animal models of disease and their excellent safety profile in human clinical trials. Outcomes from these studies suggest that MSCs achieve therapeutic effects in vivo in nonhomologous applications predominantly by paracrine action. This paracrine-centric viewpoint has become widely entrenched in the field, and has spurred a campaign to rename MSCs as "medicinal signaling cells" to better reflect this mode of action. In this Commentary, we argue that the paracrine-centric viewpoint and proposed name change ignores a wealth of old and new data that unequivocally demonstrate the stem cell nature of MSCs, and also overlooks a large effort to exploit homologous applications of MSCs in human clinical trials. Furthermore, we offer evidence that a stem cell-centric viewpoint of MSCs provides a comprehensive understanding of MSC biology that encompasses their paracrine activity, and provides a better foundation to develop metrics that quantify the biological potency of MSC batches for both homologous and nonhomologous clinical applications. Stem Cells 2018;36:7-10.
Collapse
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, Florida, USA
| | - Cori N Booker
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, Florida, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Scripps Research Institute - Scripps Florida, Jupiter, Florida, USA
| |
Collapse
|
27
|
Bermeo S, Al-Saedi A, Kassem M, Vidal C, Duque G. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation. J Cell Biochem 2017; 118:4425-4435. [PMID: 28449239 DOI: 10.1002/jcb.26096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
Abstract
Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Bermeo
- Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia.,Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Ahmed Al-Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Odense University Hospital & University of Southern Denmark, J.B. Odense C, Denmark
| | - Christopher Vidal
- Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Agas D, Gusmão Silva G, Laus F, Marchegiani A, Capitani M, Vullo C, Catone G, Lacava G, Concetti A, Marchetti L, Sabbieti MG. INF-γ encoding plasmid administration triggers bone loss and disrupts bone marrow microenvironment. J Endocrinol 2017; 232:309-321. [PMID: 27908965 DOI: 10.1530/joe-16-0538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
IFN-γ is a pleotropic cytokine produced in the bone microenvironment. Although IFN-γ is known to play a critical role on bone remodeling, its function is not fully elucidated. Consistently, outcomes on the effects of IFN-γ recombinant protein on bone loss are contradictory among reports. In our work we explored, for the first time, the role of IFN-γ encoding plasmid (pIFN-γ) in a mouse model of osteopenia induced by ovariectomy and in the sham-operated counterpart to estimate its effects in skeletal homeostasis. Ovariectomy produced a dramatic decrease of bone mineral density (BMD). pINF-γ injected mice showed a pathologic bone and bone marrow phenotype; the disrupted cortical and trabecular bone microarchitecture was accompanied by an increased release of pro-inflammatory cytokine by bone marrow cells. Moreover, mesenchymal stem cells' (MSCs) commitment to osteoblast was found impaired, as evidenced by the decline of osterix-positive (Osx+) cells within the mid-diaphyseal area of femurs. For instance, a reduction and redistribution of CXCL12 cells have been found, in accordance with bone marrow morphological alterations. As similar effects were observed both in sham-operated and in ovariectomized mice, our studies proved that an increased IFN-γ synthesis in bone marrow might be sufficient to induce inflammatory and catabolic responses even in the absence of pathologic predisposing substrates. In addition, the obtained data might raise questions about pIFN-γ's safety when it is used as vaccine adjuvant.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Guilherme Gusmão Silva
- Departamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fulvio Laus
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Andrea Marchegiani
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Melania Capitani
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Cecilia Vullo
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Giuseppe Catone
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Giovanna Lacava
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Antonio Concetti
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | - Luigi Marchetti
- School of Bioscience and Veterinary MedicineUniversity of Camerino, Camerino, Italy
| | | |
Collapse
|
29
|
Li G, Xu Z, Hou L, Li X, Li X, Yuan W, Polat M, Chang S. Differential effects of bisphenol A diglicydyl ether on bone quality and marrow adiposity in ovary-intact and ovariectomized rats. Am J Physiol Endocrinol Metab 2016; 311:E922-E927. [PMID: 27756728 DOI: 10.1152/ajpendo.00267.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
Bisphenol A diglycidyl ether (BADGE), a PPARγ2 antagonist, has been shown to inhibit marrow adipogenesis and promote bone formation in intact animals. We investigated the impact of BADGE on a new and more clinically relevant physiological model, the ovariectomized (OVX) rat model. Forty female Wistar rats were divided into four treatment groups for 12 wk (n = 10/group): sham+vehicle, sham+BADGE, OVX+vehicle, and OVX+BADGE. Postmortem analyses included MRI, micro-CT, serological test, histomorphometry, biomechanical tests, RT-PCR, and Western blot. Overall, OVX induced a sequential marrow fat expansion accompanied by bone deterioration. Compared with OVX controls, BADGE reduced fat fraction of the distal femur by 36.3%, adipocyte density by 33.0%, adipocyte size by 28.6%, adipocyte volume percentage by 57.8%, and adipogenic markers PPARγ2 and C/EBPα by ∼50% in OVX rats. Similar results were observed in sham rats vs. vehicle. BADGE could promote bone quality in sham rats; however, BADGE did not significantly improve trabecular microarchitecture, biomechanical strength, and dynamic histomorphometric parameters except for trabecular separation in OVX rats. We concluded that early BADGE treatment at a dose of 30 mg/kg attenuates marrow adiposity in ovary-intact and OVX rats and stimulates bone formation in ovary-intact rats but does not significantly rescue bone quality in OVX rats.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai, China
| | - Lingmi Hou
- Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Gerontology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yuan
- Department of Spinal Disease Unit, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Maki Polat
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Abstract
Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli - notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells, and have revealed unanticipated cell-lineage relationships between vascular smooth muscle cells and beige adipocytes, and between skeletal muscle cells and brown fat. In addition, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells, have crucial roles in regulating the differentiation and function of brown and beige fat.
Collapse
Affiliation(s)
- Wenshan Wang
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
31
|
Vigo T, Procaccini C, Ferrara G, Baranzini S, Oksenberg JR, Matarese G, Diaspro A, Kerlero de Rosbo N, Uccelli A. IFN-γ orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. J Allergy Clin Immunol 2016; 139:1667-1676. [PMID: 27670240 DOI: 10.1016/j.jaci.2016.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) display a therapeutic plasticity because of their ability to modulate immunity, foster tissue repair, and differentiate into mesodermal cells. IFN-γ has been described to differently affect human mesenchymal stem cell (hMSC) and mouse mesenchymal stem cell (mMSC) immunomodulation and differentiation, depending on the inflammatory milieu. OBJECTIVE We aimed at dissecting the relevant intracellular pathways through which IFN-γ affects MSC plasticity and the consequence of their manipulation on MSC functions. METHODS Modification of relevant IFN-γ-dependent pathways in mMSCs was carried out in vitro through gene silencing or chemical inhibition of key components. Functional outcomes were assessed by means of Western blotting, real-time PCR, differentiation, and proliferation assays on MSCs. The effect on T cells was addressed by T-cell proliferation assays; the effect of mammalian target of rapamycin (mTOR) manipulation in MSCs was studied in vivo in a mouse model of delayed-type hypersensitivity assay. To address whether similar mechanisms are involved also in hMSCs on IFN-γ stimulation, the effect of chemical inhibition on the same intracellular pathways was assessed by means of Western blotting, and the final outcome on immunomodulatory properties was evaluated based on real-time PCR and T-cell proliferation. RESULTS We revealed that in mMSCs IFN-γ-induced immunoregulation is mediated by early phosphorylation of signal transducer and activator of transcription (STAT) 1 and STAT3, which is significantly enhanced by an extracellular signal-regulated kinase 1/2-dependent mTOR inhibition, thereby promoting pSTAT1 nuclear translocation. Accordingly, after intracellular mTOR inhibition, MSCs augmented their ability to inhibit T-cell proliferation and control delayed-type hypersensitivity in vivo. Similarly, on mTOR blockade, hMSCs also enhanced their immunoregulatory features. A sustained exposure to IFN-γ led to inhibition of STAT3 activity, which in mMSCs resulted in an impaired proliferation and differentiation. CONCLUSION These results provide new insights about MSC intracellular pathways affected by IFN-γ, demonstrating that pharmacologic or genetic manipulation of MSCs can enhance their immunomodulatory functions, which could be translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Tiziana Vigo
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili, Facoltà di Medicina e Chirurgia, Università di Genova, Genoa, Italy; Center of Excellence for Biomedical Research (CEBR), Genoa, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| | - Giovanni Ferrara
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili, Facoltà di Medicina e Chirurgia, Università di Genova, Genoa, Italy; Center of Excellence for Biomedical Research (CEBR), Genoa, Italy
| | - Sergio Baranzini
- Department of Neurology, University of California, San Francisco, Calif
| | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, Calif
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| | | | - Nicole Kerlero de Rosbo
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili, Facoltà di Medicina e Chirurgia, Università di Genova, Genoa, Italy; Center of Excellence for Biomedical Research (CEBR), Genoa, Italy
| | - Antonio Uccelli
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili, Facoltà di Medicina e Chirurgia, Università di Genova, Genoa, Italy; Center of Excellence for Biomedical Research (CEBR), Genoa, Italy; IRCCS AOU San Martino-IST, Genoa, Italy.
| |
Collapse
|
32
|
Panax notoginseng saponins mitigate ovariectomy-induced bone loss and inhibit marrow adiposity in rats. Menopause 2016; 22:1343-50. [PMID: 26035148 DOI: 10.1097/gme.0000000000000471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Previous data have suggested that Panax notoginseng saponins (PNS) can prevent estrogen deficiency-induced bone loss by dual action: stimulation of new bone formation and inhibition of bone resorption. Marrow adipogenesis has been identified as a negative indicator of skeletal strength and integrity. This study assessed the effects of early PNS supplementation on bone microarchitecture preservation and marrow fat content in an ovariectomized rat model. METHODS Forty adult female Sprague-Dawley rats were randomly assigned to four equal groups for 12 weeks of treatment: (1) sham operation (SHAM) + vehicle; (2) ovariectomy (OVX) + vehicle; (3) OVX + 17β-estradiol (25 μg/kg); (4) OVX + PNS (300 mg/kg/d, PO). Marrow fat content of the femur was determined, using fat/water magnetic resonance imaging (MRI), at baseline and 6 and 12 weeks after operation. At the end of the experiment, bone turnover, trabecular microarchitecture, and marrow adipocytes were assessed by serum biomarkers, micro-computed tomography (micro-CT), and histopathology, respectively. The effects of PNS on adipocytic differentiation were reflected by expression levels of the adipogenic genes PPARγ2 and C/EBPα, as determined by reverse transcription-polymerase chain reaction. RESULTS Ovariectomized rats experienced remarkable increases in marrow fat content across time points, which were accompanied by elevated rate of bone turnover, global volumetric bone density, and trabecular microarchitecture deterioration. These OVX-induced pathological changes are reversible in that most of them could be mostly corrected upon 17β-estradiol treatment. PNS treatment significantly reduced marrow adipogenesis (adipocyte density, -27.2%; size, -22.7%; adipocyte volume-to-tissue volume ratio, -53.3%; all P < 0.01) and adipocyte marker gene expression, and prevented bone mass loss and microarchitecture deterioration. Moreover, PNS enhanced osteoblast activity but suppressed osteoclast turnover, as evidenced by decreased levels of serum C-terminal telopeptides of type I collagen and elevated levels of alkaline phosphatase. CONCLUSIONS PNS mitigates estrogen deficiency-induced deterioration of trabecular microarchitecture and suppresses marrow adipogenesis.
Collapse
|
33
|
Lee K, Um SH, Rhee DK, Pyo S. Interferon-alpha inhibits adipogenesis via regulation of JAK/STAT1 signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2416-2427. [PMID: 27424923 DOI: 10.1016/j.bbagen.2016.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND INFORMATION Adipose tissue regulates energy metabolism by means of adipocyte hypertrophy and/or the differentiation of pre-existing adipocytes. Excessive production of some cytokines in adipose tissue is known to be a negative regulator of adipocyte differentiation, and the resulting impaired adipogenesis contributes to disorders like insulin resistance. IFN-α is a key immunoregulatory cytokine in the development of type 1 diabetes, lipid disorders and insulin resistance; however, its effect on adipogenesis remains unknown. METHOD We examined the effect of IFN-α on adipocyte differentiation and its mechanisms. The effect of IFN-α on adipogenesis was evaluated by Western blotting, qRT-PCR, flow cytometric analysis and Oil Red O staining. We also investigated the role of STAT1 in adipogenesis using gene silencing analysis. RESULTS IFN-α inhibited the accumulation of lipid droplets and the expression of adipogenesis related genes. The inhibition of adipocyte differentiation by IFN-α occurred in the early stages of differentiation. IFN-α arrested the cell cycle at the G0/G1 phase and regulated the expression of CDK2 and p21. These results were confirmed in MEF cells. Treatment with IFN-α increased STAT1 phosphorylation, and STAT1 siRNA or inhibitor prevented IFN-α from inhibiting the expression of PPARγ and C/EBPα as well as cell cycle progression in 3T3-L1 cells. CONCLUSION We suggest that IFN-α inhibits adipocyte differentiation during the early stage of adipogenesis by regulating the expression of PPARγ and C/EBPα as well as the cell cycle through JAK/STAT1 signaling pathways. GENERAL SIGNIFICANCE Our study provides new insights into possible mechanisms of the anti-adipogenetic effects of IFN-α.
Collapse
Affiliation(s)
- Kyoungran Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
34
|
Li B, Jiang Y, Sun J, Liang J, Jin Y. MR spectroscopy for assessing the effects of oxytocin on marrow adipogenesis induced by glucocorticoid in rabbits. Acta Radiol 2016; 57:701-7. [PMID: 26297728 DOI: 10.1177/0284185115599804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/19/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies suggest that oxytocin (OT) negatively modulates adipogenesis while promoting osteogenesis in vitro. Because of its effects on marrow stromal cells, OT might have potential utility in therapy for glucocorticoid-induced osteoporosis (GIO). PURPOSE To explore the effects of OT on marrow adipogenesis in a rabbit model of GIO. MATERIAL AND METHODS Thirty-six-month-old female New Zealand rabbits were randomly assigned to the control, GIO, and GIO + OT groups. Magnetic resonance (MR) spectroscopy and multi-detector computed tomography (MDCT) were performed to detect marrow fat content (MFC) and bone mineral density (BMD) at baseline, and 1, 2, and 3 months. After 3 months of treatment, marrow adipocytes were quantitatively evaluated by histopathology. RESULTS In the GIO group, MFC substantially increased from 34.1% to 43.2% at month 1, and it was maintained until month 3 (by 59.2%, all P <0.01). MFC values in the GIO group were significantly different from the control and OT-treated groups over time. Early OT treatment reversed marrow adiposity to levels of the controls. BMD values were significantly lower in the GIO group at months 2 and 3 compared to the controls; however, partial recovery of vertebral BMD (87.1% of baseline) and femoral BMD (89.3% of baseline) in the OT-treated group were observed. The mean diameter and density of adipocyte and percentage of adipocyte area increased by 30.0%, 70.1%, and 88.9%, respectively (all P <0.05) in the GIO group, but remained unchanged in the OT-treated group. CONCLUSION Early OT treatment was sufficient to eliminate glucocorticoid-induced marrow adiposity.
Collapse
Affiliation(s)
- Baoqing Li
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Yuqing Jiang
- Clinical Laboratory, Beijing Hospital, The First Affiliated College of Peking University, Beijing, PR China
| | - Jinlei Sun
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Jie Liang
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| | - Yulian Jin
- Department of Radiology, Shijingshan Hospital, Beijing, PR China
| |
Collapse
|
35
|
Bermeo S, Vidal C, Zhou H, Duque G. Lamin A/C Acts as an Essential Factor in Mesenchymal Stem Cell Differentiation Through the Regulation of the Dynamics of the Wnt/β-Catenin Pathway. J Cell Biochem 2016; 116:2344-53. [PMID: 25846419 DOI: 10.1002/jcb.25185] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/01/2015] [Indexed: 11/07/2022]
Abstract
Changes in the expression of lamin A/C, a fibrilar protein of the nuclear envelope, are associated with the cellular features of age-related bone loss. Reduced expression of lamin A/C inhibits osteoblastogenesis while facilitating adipogenic differentiation of mesenchymal stem cells (MSC) in vitro and in vivo. In this study we investigated the regulatory role that lamin A/C plays on the essential elements of the Wnt/β-catenin pathway, which are pivotal in MSC differentiation. Initially, we assessed the effect of lamin A/C gene (LMNA) overexpression on MSC differentiation while compared it to lamin A/C depleted MSC. Osteogenesis and gene expression of osteogenic factors were higher in LMNA-transfected MSC as compared to control. Conversely, adipogenesis and expression of adipogenic factors were significantly lower in LMNA transfected cells. Nuclear β-catenin was significantly higher (∼two fold) in MSC expressing higher levels of LMNA as compared to control with nuclear β-catenin levels being significantly lower (∼ -42%) in siRNA-treated MSC. Luciferase activity for β-catenin-mediated transcriptional activation was significantly higher in cells overexpressing LMNA. These data indicate that MSC overexpressing LMNA have higher osteogenic and lower adipogenic differentiation potential. In conclusion, our studies demonstrate that lamin A/C plays a significant role in the differentiation of both osteoblasts and adipocytes by regulating some of the elements of Wnt/β-catenin signaling during early MSC differentiation.
Collapse
Affiliation(s)
- Sandra Bermeo
- Musculoskeletal Ageing Research Program, Sydney Medical School Nepean, The University of Sydney, Penrith, New South Wales, Australia
| | - Christopher Vidal
- Musculoskeletal Ageing Research Program, Sydney Medical School Nepean, The University of Sydney, Penrith, New South Wales, Australia
| | - Hong Zhou
- ANZAC Research Institute, The University of Sydney, Concord, New South Wales, Australia
| | - Gustavo Duque
- Musculoskeletal Ageing Research Program, Sydney Medical School Nepean, The University of Sydney, Penrith, New South Wales, Australia
| |
Collapse
|
36
|
Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation. NPJ Microgravity 2016; 2:16016. [PMID: 28725730 PMCID: PMC5515514 DOI: 10.1038/npjmgrav.2016.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/10/2016] [Accepted: 03/13/2016] [Indexed: 11/22/2022] Open
Abstract
There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts.
Collapse
|
37
|
Estève D, Boulet N, Volat F, Zakaroff-Girard A, Ledoux S, Coupaye M, Decaunes P, Belles C, Gaits-Iacovoni F, Iacovoni JS, Rémaury A, Castel B, Ferrara P, Heymes C, Lafontan M, Bouloumié A, Galitzky J. Human white and brite adipogenesis is supported by MSCA1 and is impaired by immune cells. Stem Cells 2016; 33:1277-91. [PMID: 25523907 DOI: 10.1002/stem.1916] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 11/10/2022]
Abstract
Obesity-associated inflammation contributes to the development of metabolic diseases. Although brite adipocytes have been shown to ameliorate metabolic parameters in rodents, their origin and differentiation remain to be characterized in humans. Native CD45-/CD34+/CD31- cells have been previously described as human adipocyte progenitors. Using two additional cell surface markers, MSCA1 (tissue nonspecific alkaline phosphatase) and CD271 (nerve growth factor receptor), we are able to partition the CD45-/CD34+/CD31- cell population into three subsets. We establish serum-free culture conditions without cell expansion to promote either white/brite adipogenesis using rosiglitazone, or bone morphogenetic protein 7 (BMP7), or specifically brite adipogenesis using 3-isobuthyl-1-methylxanthine. We demonstrate that adipogenesis leads to an increase of MSCA1 activity, expression of white/brite adipocyte-related genes, and mitochondriogenesis. Using pharmacological inhibition and gene silencing approaches, we show that MSCA1 activity is required for triglyceride accumulation and for the expression of white/brite-related genes in human cells. Moreover, native immunoselected MSCA1+ cells exhibit brite precursor characteristics and the highest adipogenic potential of the three progenitor subsets. Finally, we provided evidence that MSCA1+ white/brite precursors accumulate with obesity in subcutaneous adipose tissue (sAT), and that local BMP7 and inflammation regulate brite adipogenesis by modulating MSCA1 in human sAT. The accumulation of MSCA1+ white/brite precursors in sAT with obesity may reveal a blockade of their differentiation by immune cells, suggesting that local inflammation contributes to metabolic disorders through impairment of white/brite adipogenesis. Stem Cells 2015;33:1277-1291.
Collapse
Affiliation(s)
- David Estève
- Inserm, UMR1048, Team 1, Institute of Metabolic and Cardiovascular Diseases, BP84225, Toulouse Cedex 4, France; Paul Sabatier University, 118, Route de Narbonne, Toulouse Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
A Clinical Indications Prediction Scale Based on TWIST1 for Human Mesenchymal Stem Cells. EBioMedicine 2015; 4:62-73. [PMID: 26981553 PMCID: PMC4776067 DOI: 10.1016/j.ebiom.2015.12.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs) also exhibit potent effector (angiogenic, antiinflammatory, immuno-modulatory) functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties. Here we demonstrate that stem/progenitor and effector functions are coordinately regulated at the cellular level by the transcription factor Twist1 and specified within populations according to a hierarchical model. We further show that manipulation of Twist1 levels by genetic approaches or by exposure to widely used culture supplements including fibroblast growth factor 2 (Ffg2) and interferon gamma (IFN-gamma) alters MSC efficacy in cell-based and in vivo assays in a predictable manner. Thus, by mechanistically linking stem/progenitor and effector functions our studies provide a unifying framework in the form of an MSC hierarchy that models the functional complexity of populations. Using this framework, we developed a CLinical Indications Prediction (CLIP) scale that predicts how donor-to-donor heterogeneity and culture conditions impact the therapeutic efficacy of MSC populations for different disease indications. Mesenchymal stem cells exhibit stem/progenitor and effector (angiogenic, anti-inflammatory, immuno-modulatory) functions. Twist1 coordinately regulates stem/progenitor and effector functions, which are specified hierarchically in populations. Twist1 levels predict inter-population differences in therapeutic efficacy of mesenchymal stem cells for different disease indications.
Mesenchymal stem cells are being evaluated in human clinical trials for treating ischemic, inflammatory, and immunological diseases. However, most completed trials have yielded suboptimal outcomes due to the inability to predict the potency of different donor populations, which are functionally heterogeneous. We demonstrate that clinically relevant biological activities of MSCs are coordinately regulated by the transcription factor Twist1. Furthermore, we showed that TWIST1 levels reliably predict differences in the angiogenic, anti-inflammatory, and immuno-modulatory activity of populations and as such used it to develop a Clinical Indications Prediction (CLIP) scale. By predicting potency of MSC populations for different disease indications the CLIP scale is expected to dramatically improve MSC-based clinical trial outcomes.
Collapse
|
39
|
Bionaz M, Monaco E, Wheeler MB. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLoS One 2015; 10:e0137644. [PMID: 26398344 PMCID: PMC4580618 DOI: 10.1371/journal.pone.0137644] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
The importance of mesenchymal stem cells (MSC) for bone regeneration is growing. Among MSC the bone marrow-derived stem cells (BMSC) are considered the gold standard in tissue engineering and regenerative medicine; however, the adipose-derived stem cells (ASC) have very similar properties and some advantages to be considered a good alternative to BMSC. The molecular mechanisms driving adipogenesis are relatively well-known but mechanisms driving osteogenesis are poorly known, particularly in pig. In the present study we have used transcriptome analysis to unravel pathways and biological functions driving in vitro adipogenesis and osteogenesis in BMSC and ASC. The analysis was performed using the novel Dynamic Impact Approach and functional enrichment analysis. In addition, a k-mean cluster analysis in association with enrichment analysis, networks reconstruction, and transcription factors overlapping analysis were performed in order to uncover the coordination of biological functions underlining differentiations. Analysis indicated a larger and more coordinated transcriptomic adaptation during adipogenesis compared to osteogenesis, with a larger induction of metabolism, particularly lipid synthesis (mostly triglycerides), and a larger use of amino acids for synthesis of feed-forward adipogenic compounds, larger cell signaling, lower cell-to-cell interactions, particularly for the cytoskeleton organization and cell junctions, and lower cell proliferation. The coordination of adipogenesis was mostly driven by Peroxisome Proliferator-activated Receptors together with other known adipogenic transcription factors. Only a few pathways and functions were more induced during osteogenesis compared to adipogenesis and some were more inhibited during osteogenesis, such as cholesterol and protein synthesis. Up-stream transcription factor analysis indicated activation of several lipid-related transcription regulators (e.g., PPARs and CEBPα) during adipogenesis but osteogenesis was driven by inhibition of several up-stream regulators, such as MYC. Between MSCs the data indicated an ‘adipocyte memory’ in ASC with also an apparent lower immunogenicity compared to BMSC during differentiations. Overall the analysis allowed proposing a dynamic model for the adipogenic and osteogenic differentiation in porcine ASC and BMSC.
Collapse
Affiliation(s)
- Massimo Bionaz
- Laboratory of Stem Cell Biology and Engineering in the Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elisa Monaco
- Laboratory of Stem Cell Biology and Engineering in the Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew B. Wheeler
- Laboratory of Stem Cell Biology and Engineering in the Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Vidal C, Li W, Santner-Nanan B, Lim CK, Guillemin GJ, Ball HJ, Hunt NH, Nanan R, Duque G. The kynurenine pathway of tryptophan degradation is activated during osteoblastogenesis. Stem Cells 2015; 33:111-21. [PMID: 25186311 DOI: 10.1002/stem.1836] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
The mechanisms involved in the anabolic effect of interferon gamma (IFNγ) on bone have not been carefully examined. Using microarray expression analysis, we found that IFNγ upregulates a set of genes associated with a tryptophan degradation pathway, known as the kynurenine pathway, in osteogenic differentiating human mesenchymal stem cells (hMSC). We, therefore, hypothesized that activation of the kynurenine pathway plays a role in osteoblastogenesis even in the absence of IFNγ. Initially, we observed a strong increase in tryptophan degradation during osteoblastogenesis with and without IFNγ in the media. We next blocked indoleamine 2,3-dioxygenase-1 (IDO1), the most important enzyme in the kynurenine pathway, using a siRNA and pharmacological approach and observed a strong inhibition of osteoblastogenesis with a concomitant decrease in osteogenic factors. We next examined the bone phenotype of Ido1 knockout (Ido1(-/-)) mice. Compared to their wild-type littermates, Ido1(-/-) mice exhibited osteopenia associated with low osteoblast and high osteoclast numbers. Finally, we tested whether the end products of the kynurenine pathway have an osteogenic effect on hMSC. We identified that picolinic acid had a strong and dose-dependent osteogenic effect in vitro. In summary, we demonstrate that the activation of the kynurenine pathway plays an important role during the commitment of hMSC into the osteoblast lineage in vitro, and that this process can be accelerated by exogenous addition of IFNγ. In addition, we found that mice lacking IDO1 activity are osteopenic. These data therefore support a new role for the kynurenine pathway and picolinic acid as essential regulators of osteoblastogenesis and as potential new targets of bone-forming cells in vivo.
Collapse
|
41
|
O'Donnell LA, Henkins KM, Kulkarni A, Matullo CM, Balachandran S, Pattisapu AK, Rall GF. Interferon gamma induces protective non-canonical signaling pathways in primary neurons. J Neurochem 2015; 135:309-22. [PMID: 26190522 DOI: 10.1111/jnc.13250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/29/2022]
Abstract
The signal transduction molecule, Stat1, is critical for the expression of type I and II interferon (IFN)-responsive genes in most cells; however, we previously showed that primary hippocampal mouse neurons express low basal Stat1, with delayed and attenuated expression of IFN-responsive genes. Moreover, IFNγ-dependent resolution of a neurotropic viral challenge in permissive mice is Stat1-independent. Here, we show that exogenous IFNγ has no deleterious impact on neuronal viability, and staurosporine-induced apoptosis in neurons is significantly blunted by the addition of IFNγ, suggesting that IFNγ confers a pro-survival signal in neurons. To identify the pathways induced by IFNγ in neurons, the activation of alternative signal transducers associated with IFNγ signaling was assessed. Rapid and pronounced activation of extracellular signal regulated kinase (Erk1/2) was observed in neurons, compared to a modest response in fibroblasts. Moreover, the absence of Stat1 in primary fibroblasts led to enhanced Erk activation following IFNγ addition, implying that the cell-specific availability of signal transducers can diversify the cellular response following IFN engagement.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA.,Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kristen M Henkins
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Christine M Matullo
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Siddharth Balachandran
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Anil K Pattisapu
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Glenn F Rall
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Involvement of Visceral Adipose Tissue in Immunological Modulation of Inflammatory Cascade in Preeclampsia. Mediators Inflamm 2015; 2015:325932. [PMID: 26089598 PMCID: PMC4458290 DOI: 10.1155/2015/325932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/04/2015] [Indexed: 01/12/2023] Open
Abstract
Objectives. The pathophysiology of preeclampsia is characterized by abnormal placentation, an exaggerated inflammatory response, and generalized dysfunction of the maternal endothelium. We investigated the effects of preeclampsia serum on the expression of inflammation-related genes by adipose tissue. Materials and Methods. Visceral adipose tissue was obtained from the omentum of patients with early ovarian cancer without metastasis. Adipose tissue was incubated with sera obtained from either five women affected with severe preeclampsia or five women from control pregnant women at 37°C in a humidified incubator at 5% CO2 for 24 hours. 370 genes in total mRNA were analyzed with quantitative RT-PCR (Inflammatory Response & Autoimmunity gene set). Results. Gene expression analysis revealed changes in the expression levels of 30 genes in adipose tissue treated with preeclampsia sera. Some genes are related to immune response, oxidative stress, insulin resistance, and adipogenesis, which plays a central role in excessive systemic inflammatory response of preeclampsia. In contrast, other genes have shown beneficial effects in the regulation of Th2 predominance, antioxidative stress, and insulin sensitivity. Conclusion. In conclusion, visceral adipose tissue offers protection against inflammation, oxidative insults, and other forms of cellular stress that are central to the pathogenesis of preeclampsia.
Collapse
|
43
|
Capobianchi MR, Uleri E, Caglioti C, Dolei A. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor Rev 2015; 26:103-11. [PMID: 25466633 PMCID: PMC7108279 DOI: 10.1016/j.cytogfr.2014.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Interferons (IFN) are key cytokines with multifaceted antiviral and cell-modulatory properties. Three distinct types of IFN are recognized (I-III) based on structural features, receptor usage, cellular source and biological activities. The action of IFNs is mediated by a complex, partially overlapping, transcriptional program initiated by the interaction with specific receptors. Genetic diversity, with polymorphisms and mutations, can modulate the extent of IFN responses and the susceptibility to infections. Almost all viruses developed mechanisms to subvert the IFN response, involving both IFN induction and effector mechanisms. Interactions between IFN types may occur, for both antiviral and cell-modulatory effects, in a complex interplay, involving both synergistic and antagonistic effects. Interferon-associated diseases, not related to virus infections may occur, some of them frequently observed in IFN-treated patients. On the whole, IFNs are pleiotropic biologic response modifiers, that, upon activation of thousands genes, induce a broad spectrum of activities, regulating cell cycle, differentiation, plasma membrane molecules, release of mediators, etc., that can be relevant for cell proliferation, innate and adaptive immunity, hematopoiesis, angiogenesis and other body functions.
Collapse
Affiliation(s)
- Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, Rome, Italy
| | - Elena Uleri
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Caglioti
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani", Via Portuense 292, Rome, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
44
|
Abstract
In this review, we will first discuss the concept of bone strength and introduce how fat at different locations, including the bone marrow, directly or indirectly regulates bone turnover. We will then review the current literature supporting the mechanistic relationship between marrow fat and bone and our understanding of the relationship between body fat, body weight, and bone with emphasis on its hormonal regulation. Finally, we will briefly discuss the importance and challenges of accurately measuring the fat compartments using non-invasive methods. This review highlights the complex relationship between fat and bone and how these new concepts will impact our diagnostic and therapeutic approaches in the very near future.
Collapse
Affiliation(s)
- Richard Kremer
- McGill University, Montreal, QC, Canada
- *Correspondence: Richard Kremer,
| | - Vicente Gilsanz
- Children’s Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
46
|
Abstract
Fat and bone have a complicated relationship. Although obesity has been associated with low fracture risk, there is increasing evidence that some of the factors that are released by peripheral fat into the circulation may also have a deleterious effect on bone mass, thus, predisposing to fractures. More importantly, the local interaction between fat and bone within the bone marrow seems to play a significant role in the pathogenesis of age-related bone loss and osteoporosis. This "local interaction" occurs inside the bone marrow and is associated with the autocrine and paracrine release of fatty acids and adipokines, which affect the cells in their vicinity including the osteoblasts, reducing their function and survival. In this review, we explore the particularities of the fat and bone cell interactions within the bone marrow, their significance in the pathogenesis of osteoporosis, and the potential therapeutic applications that regulating marrow fat may have in the near future as a novel pharmacologic treatment for osteoporosis.
Collapse
Affiliation(s)
- Sandra Bermeo
- Ageing Bone Research Program, Sydney Medical School Nepean, The University of Sydney, Level 5, South Block, Nepean Hospital, Penrith, NSW., Australia, 2750
| | | | | |
Collapse
|
47
|
Staphylococcal enterotoxin C2 promotes osteogenesis and suppresses osteoclastogenesis of human mesenchymal stem cells. Exp Cell Res 2014; 322:202-7. [DOI: 10.1016/j.yexcr.2013.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/17/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
|
48
|
Li H, Liu F, Guo H, Zhu Z, Jiao Y. Role of interferon-inducible protein 202 (p202) in the regulation of adipogenesis in mouse adipose-derived stem cells. Mol Cell Endocrinol 2014; 382:814-24. [PMID: 24246779 DOI: 10.1016/j.mce.2013.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023]
Abstract
The interferon-inducible protein 202 (p202) has emerged as a key regulator of cell proliferation and differentiation. To explore the role of p202 in adipocyte differentiation, p202 mRNA and protein levels in differentiating mouse adipose-derived stem cells (mASCs) were examined, and were found to continuously increase during mASC adipogenesis. The nuclear and cytoplasmic distribution of p202 in the differentiation process was also determined. In addition, suppression and overexpression of p202 impaired and enhanced the differentiation process, respectively. Further, results of co-immunoprecipitation and co-immunofluorescence showed the interaction and intracellular co-localization of p202 with C/EBPβ, C/EBPα, and PPARγ at intermediate and/or late differentiation stages. Knockdown of p202 interfered with the elevated expression of C/EBPβ, C/EBPα, and PPARγ. In conclusion, the temporal and spatial profiles of p202 and the observed manner in which p202 affected the expression of these transcription factors provided evidence that p202 plays a role during mASC adipogenesis.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Feihan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengjun Guo
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqian Zhu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Jiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
49
|
Duque G, Li W, Vidal C, Bermeo S, Rivas D, Henderson J. Pharmacological inhibition of PPARγ increases osteoblastogenesis and bone mass in male C57BL/6 mice. J Bone Miner Res 2013; 28:639-48. [PMID: 23044841 DOI: 10.1002/jbmr.1782] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/07/2012] [Accepted: 09/19/2012] [Indexed: 11/11/2022]
Abstract
Infiltration of bone marrow with fat is a prevalent feature in people with age-related bone loss and osteoporosis, which correlates inversely with bone formation and positively with high expression levels of peroxisomal proliferator-activated receptor gamma (PPARγ). Inhibition of PPARγ thus represents a potential therapeutic approach for age-related bone loss. In this study, we examined the effect of PPARγ inhibition on bone in skeletally mature C57BL/6 male mice. Nine-month-old mice were treated with a PPARγ antagonist, bisphenol-A-diglycidyl ether (BADGE), alone or in combination with active vitamin D (1,25[OH](2) D(3) ) for 6 weeks. Micro-computed tomography and bone histomorphometry indicated that mice treated with either BADGE or BADGE + 1,25(OH)(2) D(3) had significantly increased bone volume and improved bone quality compared with vehicle-treated mice. This phenotype occurred in the absence of alterations in osteoclast number. Furthermore, the BADGE + 1,25(OH)(2) D(3) -treated mice exhibited higher levels of unmineralized osteoid. All of the treated groups showed a significant increase in circulating levels of bone formation markers without changes in bone resorption markers, while blood glucose, parathyroid hormone, and Ca(+) remained normal. Furthermore, treatment with BADGE induced higher levels of expression of vitamin D receptor within the bone marrow. Overall, treated mice showed higher levels of osteoblastogenesis and bone formation concomitant with decreased marrow adiposity and ex vivo adipogenesis. Taken together, these observations demonstrate that pharmacological inhibition of PPARγ may represent an effective anabolic therapy for osteoporosis in the near future.
Collapse
Affiliation(s)
- Gustavo Duque
- Ageing Bone Research Program, Sydney Medical School Nepean, University of Sydney, Penrith, Australia.
| | | | | | | | | | | |
Collapse
|