1
|
Madhuri V, Ramesh S, Goos A, Paul TV, Nidugala Kesava S, Mathews V, Walther-Jallow L, Götherström C. Evaluation of safety and efficacy of multiple intravenous and intraosseous doses of foetal liver-derived mesenchymal stem cells in children with severe osteogenesis imperfecta : the BOOST2B clinical trial protocol. Bone Jt Open 2025; 6:361-372. [PMID: 40122106 PMCID: PMC11930377 DOI: 10.1302/2633-1462.63.bjo-2024-0115.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Aims Current off-label bisphosphonate treatment for osteogenesis imperfecta (OI) does not induce healthy bone formation. Therefore, novel strategies to stimulate osteogenesis and reduce fractures are needed to meet the medical needs of these patients. Preclinical data and case studies show that multiple intravenous (IV) administrations of mesenchymal stem cells (MSCs) provide promising outcomes in the treatment of OI. In the Boost to Brittle Bones (BOOST2B) trial, we aim to assess the safety and tolerability of multiple IV and intraosseous (IO) administrations of foetal liver-derived MSCs in children aged one to five years diagnosed with severe OI. Methods A total of 15 children will receive four doses of foetal MSCs IV (3 × 106 cells per kg of body weight) and IO (0.1 × 106 cells per kg of body weight per long bone) at four-month intervals. As a secondary endpoint, the therapeutic effect of the four MSC doses will be assessed based on the annual fracture rate, time to first fracture, bone mineral density, growth, clinical status of OI, and biochemical bone turnover in peripheral blood. Exploratory parameters include quality of life and donor cell engraftment. Conclusion The BOOST2B trial has been approved by the regulatory agencies in India and is ongoing. It is the first clinical trial designed to evaluate IO administration of MSCs as a potential therapy for OI. Here, we describe the BOOST2B clinical trial protocol. The long-term data on safety and efficacy will be reported once completed.
Collapse
Affiliation(s)
- Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, India
- Center for Stem Cell Research, (a unit of inStem, Bengaluru, Christian Medical College), Vellore, India
- Department of Orthopaedics, Amara Hospital, Tirupati, India
| | - Sowmya Ramesh
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, India
- Center for Stem Cell Research, (a unit of inStem, Bengaluru, Christian Medical College), Vellore, India
| | - Annika Goos
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas V. Paul
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore, India
| | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Lee J, Var SR, Chen D, Natera-Rodriguez DE, Hassanipour M, West MD, Low WC, Grande AW, Larocca D. Exosomes derived from highly scalable and regenerative human progenitor cells promote functional improvement in a rat model of ischemic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631793. [PMID: 39829810 PMCID: PMC11741374 DOI: 10.1101/2025.01.07.631793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Globally, there are 15 million stroke patients each year who have significant neurological deficits. Today, there are no treatments that directly address these deficits. With demographics shifting to an older population, the problem is worsening. Therefore, it is crucial to develop feasible therapeutic treatments for stroke. In this study, we tested exosomes derived from embryonic endothelial progenitor cells (eEPC) to assess their therapeutic efficacy in a rat model of ischemic stroke. Importantly, we have developed purification methods aimed at producing robust and scalable exosomes suitable for manufacturing clinical grade therapeutic exosomes. We characterized exosome cargos including RNA-seq, miRNAs targets, and proteomic mass spectrometry analysis, and we found that eEPC-exosomes were enhanced with angiogenic miRNAs (i.e., miR-126), anti-inflammatory miRNA (i.e., miR-146), and anti-apoptotic miRNAs (i.e., miR-21). The angiogenic activity of diverse eEPC-exosomes sourced from a panel of eEPC production lines was assessed in vitro by live-cell vascular tube formation and scratch wound assays, showing that several eEPC-exosomes promoted the proliferation, tube formation, and migration in endothelial cells. We further applied the exosomes systemically in a rat middle cerebral artery occlusion (MCAO) model of stroke and tested for neurological recovery (mNSS) after injury in ischemic animals. The mNSS scores revealed that recovery of sensorimotor functioning in ischemic MCAO rats increased significantly after intravenous administration of eEPC-exosomes and outpaced recovery obtained through treatment with umbilical cord stem cells. Finally, we investigated the potential mechanism of eEPC-exosomes in mitigating ischemic stroke injury and inflammation by the expression of neuronal, endothelial, and inflammatory markers. Taken together, these data support the finding that eEPCs provide a valuable source of exosomes for developing scalable therapeutic products and therapies for stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Jieun Lee
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Derek Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Mohammad Hassanipour
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
| | - Michael D. West
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- LifeCraft Sciences, Inc., Alameda, California, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dana Larocca
- UniverXome Bioengineering, Inc., (formerly known as AgeX Therapeutics Inc.), Alameda, California, USA
- Further Biotechnologies, LLC, Alameda, California, USA
| |
Collapse
|
3
|
Larson A, Natera-Rodriguez DE, Crane A, Larocca D, Low WC, Grande AW, Lee J. Emerging Roles of Exosomes in Stroke Therapy. Int J Mol Sci 2024; 25:6507. [PMID: 38928214 PMCID: PMC11203879 DOI: 10.3390/ijms25126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is the number one cause of morbidity in the United States and number two cause of death worldwide. There is a critical unmet medical need for more effective treatments of ischemic stroke, and this need is increasing with the shift in demographics to an older population. Recently, several studies have reported the therapeutic potential of stem cell-derived exosomes as new candidates for cell-free treatment in stoke. This review focuses on the use of stem cell-derived exosomes as a potential treatment tool for stroke patients. Therapy using exosomes can have a clear clinical advantage over stem cell transplantation in terms of safety, cost, and convenience, as well as reducing bench-to-bed latency due to fewer regulatory milestones. In this review article, we focus on (1) the therapeutic potential of exosomes in stroke treatment, (2) the optimization process of upstream and downstream production, and (3) preclinical application in a stroke animal model. Finally, we discuss the limitations and challenges faced by exosome therapy in future clinical applications.
Collapse
Affiliation(s)
- Anthony Larson
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dilmareth E. Natera-Rodriguez
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Dana Larocca
- DC Biotechnology Consulting, Alameda, CA 94501, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (D.E.N.-R.); (A.C.); (W.C.L.); (A.W.G.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jieun Lee
- UniverXome Bioengineering, Inc. (Formerly Known as AgeX Therapeutics Inc.), Alameda, CA 94501, USA
| |
Collapse
|
4
|
Yin D, Wang C, Qi Y, Wang YC, Hagemann N, Mohamud Yusuf A, Dzyubenko E, Kaltwasser B, Tertel T, Giebel B, Gunzer M, Popa-Wagner A, Doeppner TR, Hermann DM. Neural precursor cell delivery induces acute post-ischemic cerebroprotection, but fails to promote long-term stroke recovery in hyperlipidemic mice due to mechanisms that include pro-inflammatory responses associated with brain hemorrhages. J Neuroinflammation 2023; 20:210. [PMID: 37715288 PMCID: PMC10504699 DOI: 10.1186/s12974-023-02894-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The intravenous delivery of adult neural precursor cells (NPC) has shown promising results in enabling cerebroprotection, brain tissue remodeling, and neurological recovery in young, healthy stroke mice. However, the translation of cell-based therapies to clinical settings has encountered challenges. It remained unclear if adult NPCs could induce brain tissue remodeling and recovery in mice with hyperlipidemia, a prevalent vascular risk factor in stroke patients. METHODS Male mice on a normal (regular) diet or on cholesterol-rich Western diet were exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle or 106 NPCs were intravenously administered immediately after reperfusion, at 3 day and 7 day post-MCAO. Neurological recovery was evaluated using the Clark score, Rotarod and tight rope tests over up to 56 days. Histochemistry and light sheet microscopy were used to examine ischemic injury and brain tissue remodeling. Immunological responses in peripheral blood and brain were analyzed through flow cytometry. RESULTS NPC administration reduced infarct volume, blood-brain barrier permeability and the brain infiltration of neutrophils, monocytes, T cells and NK cells in the acute stroke phase in both normolipidemic and hyperlipidemic mice, but increased brain hemorrhage formation and neutrophil, monocyte and CD4+ and CD8+ T cell counts and activation in the blood of hyperlipidemic mice. While neurological deficits in hyperlipidemic mice were reduced by NPCs at 3 day post-MCAO, NPCs did not improve neurological deficits at later timepoints. Besides, NPCs did not influence microglia/macrophage abundance and activation (assessed by morphology analysis), astroglial scar formation, microvascular length or branching point density (evaluated using light sheet microscopy), long-term neuronal survival or brain atrophy in hyperlipidemic mice. CONCLUSIONS Intravenously administered NPCs did not have persistent effects on post-ischemic neurological recovery and brain remodeling in hyperlipidemic mice. These findings highlight the necessity of rigorous investigations in vascular risk factor models to fully assess the long-term restorative effects of cell-based therapies. Without comprehensive studies in such models, the clinical potential of cell-based therapies cannot be definitely determined.
Collapse
Affiliation(s)
- Dongpei Yin
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Yachao Qi
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ya-Chao Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften –ISAS– e.V., Dortmund, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Department of Neurology, Justus-Liebig University Gießen, Giessen, Germany
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
5
|
Khaddaj-Mallat R, Aldib N, Bernard M, Paquette AS, Ferreira A, Lecordier S, Saghatelyan A, Flamand L, ElAli A. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiol Dis 2021; 161:105561. [PMID: 34780863 PMCID: PMC8590447 DOI: 10.1016/j.nbd.2021.105561] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.
Collapse
MESH Headings
- Actins/metabolism
- Angiotensin-Converting Enzyme 2/drug effects
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Brain/blood supply
- Brain/metabolism
- COVID-19/metabolism
- COVID-19/physiopathology
- Calcium Signaling
- Collagen Type I/metabolism
- Fibronectins/metabolism
- Humans
- Hypoxia/metabolism
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Inflammation/metabolism
- Lipid Peroxidation/drug effects
- Lipid Peroxidation/genetics
- Macrophage Migration-Inhibitory Factors/drug effects
- Macrophage Migration-Inhibitory Factors/metabolism
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myofibroblasts
- NF-kappa B/drug effects
- NF-kappa B/metabolism
- Nasal Mucosa
- Nitrosative Stress
- Oxidative Stress
- Pericytes/cytology
- Pericytes/drug effects
- Pericytes/metabolism
- Phenotype
- Receptor, Notch3/metabolism
- Receptors, Coronavirus/drug effects
- Receptors, Coronavirus/genetics
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/pharmacology
Collapse
Affiliation(s)
- Rayan Khaddaj-Mallat
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Natija Aldib
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Research Center CERVO, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Maxime Bernard
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Paquette
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aymeric Ferreira
- Research Center CERVO, Quebec City, QC, Canada; Department of Computer Science and Software Engineering, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- Research Center CERVO, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Louis Flamand
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Pokrovsky VM, Patrakhanov EA, Antsiferov OV, Kolesnik IM, Belashova AV, Soldatova VA, Pokopeiko ON, Karagodina AY, Arkhipov IA, Voronina DG, Sushkova DN. HEAT SHOCK PROTEIN HSP70: PREREQUISITES FOR USE AS A MEDICINAL PRODUCT. PHARMACY & PHARMACOLOGY 2021; 9:346-355. [DOI: 10.19163/2307-9266-2021-9-5-346-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Heat shock protein Hsp70 is one of the main cytoprotection components under the action of various external stimuli. The analysis of the literature data shows that nowadays, the researches’ overwhelming evidence has proven the role of Hsp70 as a biological target for the drug development; however, the ideas about its use as a drug are often multidirectional.The aim of the article is to analyze and generalize the literature data on the features of the physiological functions of heat shock protein Hsp 70, and indicate the possibilities of its use for the pharmacological correction of various pathological conditions.Materials and methods. In the process of selecting material for writing this review article, such databases as Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer, Publications, ResearchIndex, Ingenta, PubMed, KEGG, etc. were used The following words and word combinations were selected as markers for identifying the literature: Hsp70, Hsp70 stroke, Hsp70 neuroprotection, Hsp70 cytoprotection, recombinant drugs.Results. In this review, the pharmacology of one of the key members of this family, Hsp70, was focused on. The literary analysis confirms that this molecule is an endogenous regulator of many physiological processes and demonstrates tissue protective effects in modeling ischemic, neurodegenerative and inflammatory processes. The use of recombinant exogenous Hsp70 mimics the endogenous function of the protein, indicating the absence of a number of typical limitations characteristic of pharmacotherapy with high molecular weight compounds, such as immunogenicity, a rapid degradation by proteases, or a low penetration of histohematogenous barriers.Conclusion. Thus, Hsp70 may become a promising agent for clinical trials as a drug for the treatment of patients with neurological, immunological, and cardiovascular profiles.
Collapse
Affiliation(s)
- V. M. Pokrovsky
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - E. A. Patrakhanov
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - O. V. Antsiferov
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - I. M. Kolesnik
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - A. V. Belashova
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - V. A. Soldatova
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - O. N. Pokopeiko
- First Moscow State Medical University n. a. I.M. Sechenov (Sechenov University)
Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991
| | - A. Yu. Karagodina
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - I. A. Arkhipov
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - D. G. Voronina
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - D. N. Sushkova
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| |
Collapse
|
7
|
Ejma M, Madetko N, Brzecka A, Alster P, Budrewicz S, Koszewicz M, Misiuk-Hojło M, Tomilova IK, Somasundaram SG, Kirkland CE, Aliev G. The Role of Stem Cells in the Therapy of Stroke. Curr Neuropharmacol 2021; 20:630-647. [PMID: 34365923 PMCID: PMC9608230 DOI: 10.2174/1570159x19666210806163352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell-based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszynska 105, 53-439 Wroclaw. Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Borowska 213. Poland
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, 153012. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- Wroclaw Medical University, Department of Pulmonology and Lung Oncology, Wroclaw. Poland
| |
Collapse
|
8
|
Gu BJ, Kung DK, Chen HCI. Cell Therapy for Stroke: A Mechanistic Analysis. Neurosurgery 2021; 88:733-745. [PMID: 33370810 DOI: 10.1093/neuros/nyaa531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/26/2020] [Indexed: 11/12/2022] Open
Abstract
Cell therapy has been widely recognized as a promising strategy to enhance recovery in stroke survivors. However, despite an abundance of encouraging preclinical data, successful clinical translation remains elusive. As the field continues to advance, it is important to reexamine prior clinical trials in the context of their intended mechanisms, as this can inform future preclinical and translational efforts. In the present work, we review the major clinical trials of cell therapy for stroke and highlight a mechanistic shift between the earliest studies, which aimed to replace dead and damaged neurons, and later ones that focused on exploiting the various neuromodulatory effects afforded by stem cells. We discuss why both mechanisms are worth pursuing and emphasize the means through which cell replacement can still be achieved.
Collapse
Affiliation(s)
- Ben Jiahe Gu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David K Kung
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Han-Chiao Isaac Chen
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
11
|
Gao L, Song Z, Mi J, Hou P, Xie C, Shi J, Li Y, Manaenko A. The Effects and Underlying Mechanisms of Cell Therapy on Blood-Brain Barrier Integrity After Ischemic Stroke. Curr Neuropharmacol 2020; 18:1213-1226. [PMID: 32928089 PMCID: PMC7770640 DOI: 10.2174/1570159x18666200914162013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Zhenghong Song
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Jianhua Mi
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Pinpin Hou
- Central Laboratory, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai 201112, China
| | - Chong Xie
- Departmeng of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianquan Shi
- Departmeng of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yansheng Li
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Haupt M, Zheng X, Kuang Y, Lieschke S, Janssen L, Bosche B, Jin F, Hein K, Kilic E, Venkataramani V, Hermann DM, Bähr M, Doeppner TR. Lithium modulates miR-1906 levels of mesenchymal stem cell-derived extracellular vesicles contributing to poststroke neuroprotection by toll-like receptor 4 regulation. Stem Cells Transl Med 2020; 10:357-373. [PMID: 33146943 PMCID: PMC7900596 DOI: 10.1002/sctm.20-0086] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Lithium is neuroprotective in preclinical stroke models. In addition to that, poststroke neuroregeneration is stimulated upon transplantation of mesenchymal stem cells (MSCs). Preconditioning of MSCs with lithium further enhances the neuroregenerative potential of MSCs, which act by secreting extracellular vesicles (EVs). The present work analyzed whether MSC preconditioning with lithium modifies EV secretion patterns, enhancing the therapeutic potential of such derived EVs (Li‐EVs) in comparison with EVs enriched from native MSCs. Indeed, Li‐EVs significantly enhanced the resistance of cultured astrocytes, microglia, and neurons against hypoxic injury when compared with controls and to native EV‐treated cells. Using a stroke mouse model, intravenous delivery of Li‐EVs increased neurological recovery and neuroregeneration for as long as 3 months in comparison with controls and EV‐treated mice, albeit the latter also showed significantly better behavioral test performance compared with controls. Preconditioning of MSCs with lithium also changed the secretion patterns for such EVs, modifying the contents of various miRNAs within these vesicles. As such, Li‐EVs displayed significantly increased levels of miR‐1906, which has been shown to be a new regulator of toll‐like receptor 4 (TLR4) signaling. Li‐EVs reduced posthypoxic and postischemic TLR4 abundance, resulting in an inhibition of the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) signaling pathway, decreased proteasomal activity, and declined both inducible NO synthase and cyclooxygenase‐2 expression, all of which culminated in reduced levels of poststroke cerebral inflammation. Conclusively, the present study demonstrates, for the first time, an enhanced therapeutic potential of Li‐EVs compared with native EVs, interfering with a novel signaling pathway that yields both acute neuroprotection and enhanced neurological recovery.
Collapse
Affiliation(s)
- Matteo Haupt
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Xuan Zheng
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Yaoyun Kuang
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Simone Lieschke
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Lisa Janssen
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Bert Bosche
- MediClin Clinic Reichshof, Department of Neurocritical Care, First Stage Rehabilitation and Weaning, Germany.,Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Medical Faculty, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Katharina Hein
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Vivek Venkataramani
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
13
|
Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V, Kilic E, Hermann DM, Majid A, Bähr M, Doeppner TR. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles 2020; 10:e12024. [PMID: 33304476 PMCID: PMC7710129 DOI: 10.1002/jev2.12024] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Grafted mesenchymal stem cells (MSCs) yield neuroprotection in preclinical stroke models by secreting extracellular vesicles (EVs). The neuroprotective cargo of EVs, however, has not yet been identified. To investigate such cargo and its underlying mechanism, primary neurons were exposed to oxygen-glucose-deprivation (OGD) and cocultured with adipose-derived MSCs (ADMSCs) or ADMSC-secreted EVs. Under such conditions, both ADMSCs and ADMSC-secreted EVs significantly reduced neuronal death. Screening for signalling cascades being involved in the interaction between ADMSCs and neurons revealed a decreased autophagic flux as well as a declined p53-BNIP3 activity in neurons receiving either treatment paradigm. However, the aforementioned effects were reversed when ADMSCs were pretreated with the inhibitor of exosomal secretion GW4869 or when Hrs was knocked down. In light of miR-25-3p being the most highly expressed miRNA in ADMSC-EVs interacting with the p53 pathway, further in vitro work focused on this pathway. Indeed, a miR-25-3p oligonucleotide mimic reduced cell death, whereas the anti-oligonucleotide increased autophagic flux and cell death by modulating p53-BNIP3 signalling in primary neurons exposed to OGD. Likewise, native ADMSC-EVs but not EVs obtained from ADMSCs pretreated with the anti-miR-25-3p oligonucleotide (ADMSC-EVsanti-miR-25-3p) confirmed the aforementioned in vitro observations in C57BL/6 mice exposed to cerebral ischemia. The infarct size was reduced, and neurological recovery was increased in mice treated with native ADMSC-EVs when compared to ADMSC-EVsanti-miR-25-3p. ADMSCs induce neuroprotection by improved autophagic flux through secreted EVs containing miR-25-3p. Hence, our work uncovers a novel key factor in naturally secreted ADMSC-EVs for the regulation of autophagy and induction of neuroprotection in a preclinical stroke model.
Collapse
Affiliation(s)
- Yaoyun Kuang
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Xuan Zheng
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Lin Zhang
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Xiaoyu Ai
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Vivek Venkataramani
- University Medical Center GoettingenInstitute for PathologyGoettingenGermany
| | - Ertugrul Kilic
- Istanbul Medipol UniversityRegenerative and Restorative Medical Research CenterIstanbulTurkey
| | - Dirk M. Hermann
- Department of NeurologyUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Arshad Majid
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Mathias Bähr
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Thorsten R. Doeppner
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
- Istanbul Medipol UniversityRegenerative and Restorative Medical Research CenterIstanbulTurkey
| |
Collapse
|
14
|
Schäfer R, Schwab M, Siegel G, von Ameln-Mayerhofer A, Buadze M, Lourhmati A, Wendel HP, Kluba T, Krueger MA, Calaminus C, Scheer E, Dominici M, Grisendi G, Doeppner TR, Schlechter J, Finzel AK, Gross D, Klaffschenkel R, Gehring FK, Spohn G, Kretschmer A, Bieback K, Krämer-Albers EM, Barth K, Eckert A, Elser S, Schmehl J, Claussen CD, Seifried E, Hermann DM, Northoff H, Danielyan L. Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine 2020; 60:102987. [PMID: 32942121 PMCID: PMC7498853 DOI: 10.1016/j.ebiom.2020.102987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Limited knowledge of stem cell therapies` mechanisms of action hampers their sustainable implementation into the clinic. Specifically, the interactions of transplanted stem cells with the host vasculature and its implications for their therapeutic efficacy are not elucidated. We tested whether adhesion receptors and chemokine receptors on stem cells can be functionally modulated, and consequently if such modulation may substantially affect therapeutically relevant stem cell interactions with the host endothelium. METHODS We investigated the effects of cationic molecule polyethylenimine (PEI) treatment with or without nanoparticles on the functions of adhesion receptors and chemokine receptors of human bone marrow-derived Mesenchymal Stem Cells (MSC). Analyses included MSC functions in vitro, as well as homing and therapeutic efficacy in rodent models of central nervous system´s pathologies in vivo. FINDINGS PEI treatment did not affect viability, immunomodulation or differentiation potential of MSC, but increased the CCR4 expression and functionally blocked their adhesion receptors, thus decreasing their adhesion capacity in vitro. Intravenously applied in a rat model of brain injury, the homing rate of PEI-MSC in the brain was highly increased with decreased numbers of adherent PEI-MSC in the lung vasculature. Moreover, in comparison to untreated MSC, PEI-MSC featured increased tumour directed migration in a mouse glioblastoma model, and superior therapeutic efficacy in a murine model of stroke. INTERPRETATION Balanced stem cell adhesion and migration in different parts of the vasculature and tissues together with the local microenvironment impacts their therapeutic efficacy. FUNDING Robert Bosch Stiftung, IZEPHA grant, EU grant 7 FP Health.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany; Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Peter Wendel
- Departments of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Torsten Kluba
- Departments of Orthopaedic Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Eva Scheer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen, Essen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Schlechter
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Anne Kathrin Finzel
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Dominic Gross
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Roland Klaffschenkel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Frank K Gehring
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany; 3T GmbH & Co. KG, Tuttlingen, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Anja Kretschmer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Eva-Maria Krämer-Albers
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Stefanie Elser
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Joerg Schmehl
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Claus D Claussen
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Extracellular Vesicles Derived from Neural Progenitor Cells--a Preclinical Evaluation for Stroke Treatment in Mice. Transl Stroke Res 2020; 12:185-203. [PMID: 32361827 PMCID: PMC7803677 DOI: 10.1007/s12975-020-00814-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Stem cells such as mesenchymal stem cells (MSCs) enhance neurological recovery in preclinical stroke models by secreting extracellular vesicles (EVs). Since previous reports have focused on the application of MSC-EVs only, the role of the most suitable host cell for EV enrichment and preclinical stroke treatment remains elusive. The present study aimed to evaluate the therapeutic potential of EVs derived from neural progenitor cells (NPCs) following experimental stroke. Using the PEG technique, EVs were enriched and characterized by electron microscopy, proteomics, rt-PCR, nanosight tracking analysis, and Western blotting. Different dosages of NPC-EVs displaying a characteristic profile in size, shape, cargo protein, and non-coding RNA contents were incubated in the presence of cerebral organoids exposed to oxygen-glucose deprivation (OGD), significantly reducing cell injury when compared with control organoids. Systemic administration of NPC-EVs in male C57BL6 mice following experimental ischemia enhanced neurological recovery and neuroregeneration for as long as 3 months. Interestingly, the therapeutic impact of such NPC-EVs was found to be not inferior to MSC-EVs. Flow cytometric analyses of blood and brain samples 7 days post-stroke demonstrated increased blood concentrations of B and T lymphocytes after NPC-EV delivery, without affecting cerebral cell counts. Likewise, a biodistribution analysis after systemic delivery of NPC-EVs revealed the majority of NPC-EVs to be found in extracranial organs such as the liver and the lung. This proof-of-concept study supports the idea of EVs being a general concept of stem cell–induced neuroprotection under stroke conditions, where EVs contribute to reverting the peripheral post-stroke immunosuppression.
Collapse
|
16
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
17
|
Multimodal Therapeutic Effects of Neural Precursor Cells Derived from Human-Induced Pluripotent Stem Cells through Episomal Plasmid-Based Reprogramming in a Rodent Model of Ischemic Stroke. Stem Cells Int 2020; 2020:4061516. [PMID: 32269595 PMCID: PMC7125504 DOI: 10.1155/2020/4061516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/15/2020] [Accepted: 03/03/2020] [Indexed: 01/07/2023] Open
Abstract
Stem cell therapy is a promising option for treating functional deficits in the stroke-damaged brain. Induced pluripotent stem cells (iPSCs) are attractive sources for cell therapy as they can be efficiently differentiated into neural lineages. Episomal plasmids (EPs) containing reprogramming factors can induce nonviral, integration-free iPSCs. Thus, iPSCs generated by an EP-based reprogramming technique (ep-iPSCs) have an advantage over gene-integrating iPSCs for clinical applications. However, there are few studies regarding the in vivo efficacy of ep-iPSCs. In this study, we investigated the therapeutic potential of intracerebral transplantation of neural precursor cells differentiated from ep-iPSCs (ep-iPSC-NPCs) in a rodent stroke model. The ep-iPSC-NPCs were transplanted intracerebrally in a peri-infarct area in a rodent stroke model. Rats transplanted with fibroblasts and vehicle were used as controls. The ep-iPSC-NPC-transplanted animals exhibited functional improvements in behavioral and electrophysiological tests. A small proportion of ep-iPSC-NPCs were detected up to 12 weeks after transplantation and were differentiated into both neuronal and glial lineages. In addition, transplanted cells promoted endogenous brain repair, presumably via increased subventricular zone neurogenesis, and reduced poststroke inflammation and glial scar formation. Taken together, these results strongly suggest that intracerebral transplantation of ep-iPSC-NPCs is a useful therapeutic option to treat clinical stroke through multimodal therapeutic mechanisms.
Collapse
|
18
|
Xie F, Liu H, Liu Y. Adult Neurogenesis Following Ischemic Stroke and Implications for Cell-Based Therapeutic Approaches. World Neurosurg 2020; 138:474-480. [PMID: 32147554 DOI: 10.1016/j.wneu.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is one of the most intractable diseases of the central nervous system and is also a major cause of mortality and disability in adult humans. Unfortunately, current therapies target vessel recanalization, which has a narrow treatment window, and the potential adverse effects lead to a low rate of clinical employment; in addition, neuroprotective strategies are not effective for stroke treatment. It is necessary to discover new approaches to develop neuroprotective, neuroregenerative treatment strategies for stroke. At present, accumulating evidence suggests that adult neurogenesis is a novel topic with extensive research on its potential to be harnessed for therapy in various neurologic disorders, and the neurogenesis capacity in the subventricular zone was shown to be increased in response to brain ischemic stroke. In this review, we describe the cellular and molecular mechanisms underlying potential adult neurogenesis and review current preclinical and clinical cell-based therapies for enhancing neural regeneration after adult ischemic stroke. Although stroke-induced neurogenesis in humans does not seem to translate to neurofunctional recovery, we also summarize factors of potential treatment strategies with transplanted cells, including transplantation time, cell dosage, and administration route, to achieve optimum and effective cell-based therapy, thereby harnessing this neuroregenerative response to improve neurofunctional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Fei Xie
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Hongbin Liu
- Department of Neurosurgery, Ziyang First People's Hospital, Ziyang, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Yamamoto H, Fukui N, Adachi M, Saiki E, Yamasaki A, Matsumura R, Kuroyanagi D, Hongo K, Mizobata T, Kawata Y. Human Molecular Chaperone Hsp60 and Its Apical Domain Suppress Amyloid Fibril Formation of α-Synuclein. Int J Mol Sci 2019; 21:ijms21010047. [PMID: 31861692 PMCID: PMC6982183 DOI: 10.3390/ijms21010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins play roles in assisting other proteins to fold correctly and in preventing the aggregation and accumulation of proteins in misfolded conformations. However, the process of aging significantly degrades this ability to maintain protein homeostasis. Consequently, proteins with incorrect conformations are prone to aggregate and accumulate in cells, and this aberrant aggregation of misfolded proteins may trigger various neurodegenerative diseases, such as Parkinson's disease. Here, we investigated the possibilities of suppressing α-synuclein aggregation by using a mutant form of human chaperonin Hsp60, and a derivative of the isolated apical domain of Hsp60 (Hsp60 AD(Cys)). In vitro measurements were used to detect the effects of chaperonin on amyloid fibril formation, and interactions between Hsp60 proteins and α-synuclein were probed by quartz crystal microbalance analysis. The ability of Hsp60 AD(Cys) to suppress α-synuclein intracellular aggregation and cytotoxicity was also demonstrated. We show that Hsp60 mutant and Hsp60 AD(Cys) both effectively suppress α-synuclein amyloid fibril formation, and also demonstrate for the first time the ability of Hsp60 AD(Cys) to function as a mini-chaperone inside cells. These results highlight the possibility of using Hsp60 AD as a method of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hanae Yamamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
| | - Naoya Fukui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
| | - Mayuka Adachi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
| | - Eiichi Saiki
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
| | - Anna Yamasaki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
| | - Rio Matsumura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
| | - Daichi Kuroyanagi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Koyama-Minami, Tottori University, Tottori 680-8552, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Koyama-Minami, Tottori University, Tottori 680-8552, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (H.Y.); (N.F.); (D.K.); (K.H.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Koyama-Minami, Tottori 680-8552, Japan; (M.A.); (A.Y.); (R.M.)
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Koyama-Minami, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Koyama-Minami, Tottori University, Tottori 680-8552, Japan
- Correspondence: ; Tel.: +81-857-31-5787
| |
Collapse
|
20
|
From Tumor Metastasis towards Cerebral Ischemia-Extracellular Vesicles as a General Concept of Intercellular Communication Processes. Int J Mol Sci 2019; 20:ijms20235995. [PMID: 31795140 PMCID: PMC6928831 DOI: 10.3390/ijms20235995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been tremendous carriers in both experimental and translational science. These vesicles—formerly regarded as artifacts of in vitro research—have a heterogeneous population of vesicles derived from virtually all eukaryotic cells. EVs consist of a bilayer lipid structure with a diameter of about 30 to 1000 nm and have a characteristic protein and non-coding RNA content that make up different forms of EVs such as exosomes, microvesicles, and others. Despite recent progress in the EV field, which is known to serve as potential biomarkers and therapeutic tools under various pathological conditions, fundamental questions are yet to be answered. This short review focuses on recently reported data regarding EVs under pathological conditions with a particular emphasis on the role of EVs under such different conditions like tumor formation and cerebral ischemia. The review strives to point out general concepts of EV intercellular communication processes that might be vital to both diagnostic and therapeutic strategies in the long run.
Collapse
|
21
|
Heat shock protein 70 increases cell proliferation, neuroblast differentiation, and the phosphorylation of CREB in the hippocampus. Lab Anim Res 2019; 35:21. [PMID: 32257909 PMCID: PMC7081702 DOI: 10.1186/s42826-019-0020-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
In the present study, we investigated the effects of heat shock protein 70 (HSP70) on novel object recognition, cell proliferation, and neuroblast differentiation in the hippocampus. To facilitate penetration into the blood–brain barrier and neuronal plasma membrane, we created a Tat-HSP70 fusion protein. Eight-week-old mice received intraperitoneal injections of vehicle (10% glycerol), control-HSP70, or Tat-HSP70 protein once a day for 21 days. To elucidate the delivery efficiency of HSP70 into the hippocampus, western blot analysis for polyhistidine was conducted. Polyhistidine protein levels were significantly increased in control-HSP70- and Tat-HSP70-treated groups compared to the control or vehicle-treated group. However, polyhistidine protein levels were significantly higher in the Tat-HSP70-treated group compared to that in the control-HSP70-treated group. In addition, immunohistochemical study for HSP70 showed direct evidences for induction of HSP70 immunoreactivity in the control-HSP70- and Tat-HSP70-treated groups. Administration of Tat-HSP70 increased the novel object recognition memory compared to untreated mice or mice treated with the vehicle. In addition, the administration of Tat-HSP70 significantly increased the populations of proliferating cells and differentiated neuroblasts in the dentate gyrus compared to those in the control or vehicle-treated group based on the Ki67 and doublecortin (DCX) immunostaining. Furthermore, the phosphorylation of cAMP response element-binding protein (pCREB) was significantly enhanced in the dentate gyrus of the Tat-HSP70-treated group compared to that in the control or vehicle-treated group. Western blot study also demonstrated the increases of DCX and pCREB protein levels in the Tat-HSP70-treated group compared to that in the control or vehicle-treated group. In contrast, administration of control-HSP70 moderately increased the novel object recognition memory, cell proliferation, and neuroblast differentiation in the dentate gyrus compared to that in the control or vehicle-treated group. These results suggest that Tat-HSP70 promoted hippocampal functions by increasing the pCREB in the hippocampus.
Collapse
|
22
|
Manrique-Castano D, Sardari M, Silva de Carvalho T, Doeppner TR, Popa-Wagner A, Kleinschnitz C, Chan A, Hermann DM. Deactivation of ATP-Binding Cassette Transporters ABCB1 and ABCC1 Does Not Influence Post-ischemic Neurological Deficits, Secondary Neurodegeneration and Neurogenesis, but Induces Subtle Microglial Morphological Changes. Front Cell Neurosci 2019; 13:412. [PMID: 31572128 PMCID: PMC6751309 DOI: 10.3389/fncel.2019.00412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2019] [Indexed: 11/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters prevent the access of pharmacological compounds to the ischemic brain, thereby impeding the efficacy of stroke therapies. ABC transporters can be deactivated by selective inhibitors, which potently increase the brain accumulation of drugs. Concerns have been raised that long-term ABC transporter deactivation may promote neuronal degeneration and, under conditions of ischemic stroke, compromise neurological recovery. To elucidate this issue, we exposed male C57BL/6 mice to transient intraluminal middle cerebral artery occlusion (MCAO) and examined the effects of the selective ABCB1 inhibitor tariquidar (8 mg/kg/day) or ABCC1 inhibitor MK-571 (10 mg/kg/day), which were administered alone or in combination with each other over up to 28 days, on neurological recovery and brain injury. Mice were sacrificed after 14, 28, or 56 days. The Clark score, RotaRod, tight rope, and open field tests revealed reproducible motor-coordination deficits in mice exposed to intraluminal MCAO, which were not influenced by ABCB1, ABCC1, or combined ABCB1 and ABCC1 deactivation. Brain volume, striatum volume, and corpus callosum thickness were not altered by ABCB1, ABCC1 or ABCB1, and ABCC1 inhibitors. Similarly, neuronal survival and reactive astrogliosis, evaluated by NeuN and GFAP immunohistochemistry in the ischemic striatum, were unchanged. Iba1 immunohistochemistry revealed no changes of the overall density of activated microglia in the ischemic striatum of ABC transporter inhibitor treated mice, but subtle changes of microglial morphology, that is, reduced microglial cell volume by ABCB1 deactivation after 14 and 28 days and reduced microglial ramification by ABCB1, ABCC1 and combined ABCB1 and ABCC1 deactivation after 56 days. Endogenous neurogenesis, assessed by BrdU incorporation analysis, was not influenced by ABCB1, ABCC1 or combined ABCB1 and ABCC1 deactivation. Taken together, this study could not detect any exacerbation of neurological deficits or brain injury after long-term ABC transporter deactivation in this preclinical stroke model.
Collapse
Affiliation(s)
- Daniel Manrique-Castano
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maryam Sardari
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tayana Silva de Carvalho
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Aurel Popa-Wagner
- Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med 2019; 23:5846-5858. [PMID: 31273911 PMCID: PMC6714234 DOI: 10.1111/jcmm.14479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins (HSPs) are induced after haemorrhagic stroke, which includes subarachnoid haemorrhage (SAH) and intracerebral haemorrhage (ICH). Most of these proteins function as neuroprotective molecules to protect cerebral neurons from haemorrhagic stroke and as markers to indicate cellular stress or damage. The most widely studied HSPs in SAH are HSP70, haeme oxygenase-1 (HO-1), HSP20 and HSP27. The subsequent pathophysiological changes following SAH can be divided into two stages: early brain injury and delayed cerebral ischaemia, both of which determine the outcome for patients. Because the mechanisms of HSPs in SAH are being revealed and experimental models in animals are continually maturing, new agents targeting HSPs with limited side effects have been suggested to provide therapeutic potential. For instance, some pharmaceutical agents can block neuronal apoptosis signals or dilate cerebral vessels by modulating HSPs. HO-1 and HSP70 are also critical topics for ICH research, which can be attributed to their involvement in pathophysiological mechanisms and therapeutic potential. However, the process of HO-1 metabolism can be toxic owing to iron overload and the activation of succedent pathways, for example, the Fenton reaction and oxidative damage; the overall effect of HO-1 in SAH and ICH tends to be protective and harmful, respectively, given the different pathophysiological changes in these two types of haemorrhagic stroke. In the present study, we focus on the current understanding of the role and therapeutic potential of HSPs involved in haemorrhagic stroke. Therefore, HSPs may be potential therapeutic targets, and new agents targeting HSPs are warranted.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Giebel B, Hermann DM. Identification of the right cell sources for the production of therapeutically active extracellular vesicles in ischemic stroke. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:188. [PMID: 31205906 DOI: 10.21037/atm.2019.03.49] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Zagrean AM, Hermann DM, Opris I, Zagrean L, Popa-Wagner A. Multicellular Crosstalk Between Exosomes and the Neurovascular Unit After Cerebral Ischemia. Therapeutic Implications. Front Neurosci 2018; 12:811. [PMID: 30459547 PMCID: PMC6232510 DOI: 10.3389/fnins.2018.00811] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Restorative strategies after stroke are focused on the remodeling of cerebral endothelial cells and brain parenchymal cells. The latter, i.e., neurons, neural precursor cells and glial cells, synergistically interact with endothelial cells in the ischemic brain, providing a neurovascular unit (NVU) remodeling that can be used as target for stroke therapies. Intercellular communication and signaling within the NVU, the multicellular brain-vessel-blood interface, including its highly selective blood-brain barrier, are fundamental to the central nervous system homeostasis and function. Emerging research designates cell-derived extracellular vesicles and especially the nano-sized exosomes, as a complex mean of cell-to-cell communication, with potential use for clinical applications. Through their richness in active molecules and biological information (e.g., proteins, lipids, genetic material), exosomes contribute to intercellular signaling, a condition particularly required in the central nervous system. Cerebral endothelial cells, perivascular astrocytes, pericytes, microglia and neurons, all part of the NVU, have been shown to release and uptake exosomes. Also, exosomes cross the blood-brain and blood-cerebrospinal fluid barriers, allowing communication between periphery and brain, in normal and disease conditions. As such exosomes might be a powerful diagnostic tool and a promising therapeutic shuttle of natural nanoparticles, but also a means of disease spreading (e.g., immune system modulation, pro-inflammatory action, propagation of neurodegenerative factors). This review highlights the importance of exosomes in mediating the intercellular crosstalk within the NVU and reveals the restorative therapeutic potential of exosomes harvested from multipotent mesenchymal stem cells in ischemic stroke, a frequent neurologic condition lacking an efficient therapy.
Collapse
Affiliation(s)
- Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dirk M Hermann
- Department of Neurology, Chair of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, Essen, Germany.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ioan Opris
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Aurel Popa-Wagner
- Department of Neurology, Chair of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, Essen, Germany.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,School of Medicine, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
26
|
Doeppner TR, Zechmeister B, Kaltwasser B, Jin F, Zheng X, Majid A, Venkataramani V, Bähr M, Hermann DM. Very Delayed Remote Ischemic Post-conditioning Induces Sustained Neurological Recovery by Mechanisms Involving Enhanced Angioneurogenesis and Peripheral Immunosuppression Reversal. Front Cell Neurosci 2018; 12:383. [PMID: 30420796 PMCID: PMC6216109 DOI: 10.3389/fncel.2018.00383] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023] Open
Abstract
Ischemic conditioning is defined as a transient and subcritical period of ischemia integrated in an experimental paradigm that involves a stimulus of injurious ischemia, activating endogenous tissue repair mechanisms that lead to cellular protection under pathological conditions like stroke. Whereas ischemic pre-conditioning is irrelevant for stroke treatment, ischemic post-conditioning, and especially non-invasive remote ischemic post-conditioning (rPostC) is an innovative and potential strategy for stroke treatment. Although rPostC has been shown to induce neuroprotection in stroke models before, resulting in some clinical trials on the way, fundamental questions with regard to its therapeutic time frame and its underlying mechanisms remain elusive. Hence, we herein used a model of non-invasive rPostC of hind limbs after cerebral ischemia in male C57BL6 mice, studying the optimal timing for the application of rPostC and its underlying mechanisms for up to 3 months. Mice undergoing rPostC underwent three different paradigms, starting with the first cycle of rPostC 12 h, 24 h, or 5 days after stroke induction, which is a very delayed time point of rPostC that has not been studied elsewhere. rPostC as applied within 24 h post-stroke induces reduction of infarct volume on day three. On the contrary, very delayed rPostC does not yield reduction of infarct volume on day seven when first applied on day five, albeit long-term brain injury is significantly reduced. Likewise, very delayed rPostC yields sustained neurological recovery, whereas early rPostC (i.e., <24 h) results in transient neuroprotection only. The latter is mediated via heat shock protein 70 that is a well-known signaling protein involved in the pathophysiological cellular cascade of cerebral ischemia, leading to decreased proteasomal activity and decreased post-stroke inflammation. Very delayed rPostC on day five, however, induces a pleiotropic effect, among which a stimulation of angioneurogenesis, a modulation of the ischemic extracellular milieu, and a reversal of the stroke-induced immunosuppression occur. As such, very delayed rPostC appears to be an attractive tool for future adjuvant stroke treatment that deserves further preclinical attention before large clinical trials are in order, which so far have predominantly focused on early rPostC only.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Bozena Zechmeister
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| | - Fengyan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan Zheng
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Vivek Venkataramani
- Department of Hematology & Oncology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
27
|
Doeppner TR, Bähr M, Giebel B, Hermann DM. Immunological and non-immunological effects of stem cell-derived extracellular vesicles on the ischaemic brain. Ther Adv Neurol Disord 2018; 11:1756286418789326. [PMID: 30083231 PMCID: PMC6071165 DOI: 10.1177/1756286418789326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
Following the implementation of thrombolysis and endovascular recanalization
strategies, stroke therapy has profoundly changed in recent years. In spite of
these advancements, a considerable proportion of stroke patients still exhibit
functional impairment in the long run, increasing the need for adjuvant
therapies that promote neurological recovery. Stem cell therapies have initially
attracted great interest in the stroke field, since there were hopes that
transplanted cells may allow for the replacement of lost cells. After the
recognition that transplanted cells integrate poorly into existing neural
networks and that they induce brain remodelling in a paracrine way by secreting
a heterogeneous group of nanovesicles, these extracellular vesicles (EVs) have
been identified as key players that mediate restorative effects of stem and
progenitor cells in ischaemic brain tissue. We herein review restorative effects
of EVs in stroke models and discuss immunological and non-immunological
mechanisms that may underlie recovery of function.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Department of Neurology, Goettingen, Germany
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
28
|
Zhang XG, Shan C, Zhu JZ, Bao XY, Tong Q, Wu XF, Tang XC, Xue T, Liu J, Zheng GQ, Wang Y. Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice. Front Physiol 2018; 8:1133. [PMID: 29387017 PMCID: PMC5776113 DOI: 10.3389/fphys.2017.01133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Intravenous stem cell transplantation initiates neuroprotection related to the secretion of trophic factor. Borneol, a potential herbal neuroprotective agent, is a penetration enhancer. Here, we aimed to investigate whether they have additive neuroprotective effect on cerebral ischemia. Borneol was given to mice by gavage 3 days before middle cerebral artery occlusion (MCAO) induction until the day when the mice were sacrificed. Mesenchymal stem cells (MSCs) were intravenously injected at 24 h after MCAO induction. Neurological deficits, infarct volume, cell death, and neurogenesis were evaluated. Combined use of MSCs and borneol could more effectively reduce infarction volume and cell apoptosis, enhance neurogenesis, and improve the functional recovery than that of MSCs alone. The findings showed that combined use of borneol and stem cells provided additive neuroprotective effect on cerebral ischemia. However, the supposed effect of borneol on the improved MSC penetration still needs further direct evidence.
Collapse
Affiliation(s)
- Xiao-Guang Zhang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Jia-Zhen Zhu
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yi Bao
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Fan Wu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Chen Tang
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Ting Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Guo-Qing Zheng
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Transl Stroke Res 2017; 9:356-374. [PMID: 29075984 DOI: 10.1007/s12975-017-0580-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Doeppner TR, Bähr M, Hermann DM, Giebel B. Concise Review: Extracellular Vesicles Overcoming Limitations of Cell Therapies in Ischemic Stroke. Stem Cells Transl Med 2017; 6:2044-2052. [PMID: 28941317 PMCID: PMC6430061 DOI: 10.1002/sctm.17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in stroke therapy, current therapeutic concepts are still limited. Thus, additional therapeutic strategies are in order. In this sense, the transplantation of stem cells has appeared to be an attractive adjuvant tool to help boost the endogenous regenerative capacities of the brain. Although transplantation of stem cells is known to induce beneficial outcome in (preclinical) stroke research, grafted cells do not replace lost tissue directly. Rather, these transplanted cells like neural progenitor cells or mesenchymal stem cells act in an indirect manner, among which the secretion of extracellular vesicles (EVs) appears to be one key factor. Indeed, the application of EVs in preclinical stroke studies suggests a therapeutic role, which appears to be noninferior in comparison to the transplantation of stem cells themselves. In this short review, we highlight some of the recent advances in the field of EVs as a therapeutic means to counter stroke. Stem Cells Translational Medicine2017;6:2044–2052
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
31
|
Huang B, Jiang XC, Zhang TY, Hu YL, Tabata Y, Chen Z, Pluchino S, Gao JQ. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm 2017; 531:90-100. [PMID: 28827201 DOI: 10.1016/j.ijpharm.2017.08.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have been regarded as potential targeting vehicles and demonstrated to exert therapeutic benefits for brain diseases. Direct homing to diseased tissue is crucial for stem cell-based therapy. In this study, a peptide-based targeting approach was established to enhance cell homing to cerebral ischemic lesion. Palmitic acid-peptide painted onto the cell membrane was able to direct MSCs to ischemic tissues without any observed cell cytotoxicity and influence on differentiation, thus reducing accumulation of cells in peripheral organs and increasing engraftment of cells in the targeted tissues. With enhanced cell homing, MSCs were used to deliver miR-133b to increase the expression level of miR-133b in an ischemic lesion and further improve therapeutic effects. This study is the first to develop MSCs co-modified with targeting peptide and microRNAs as potential targeting therapeutic agents. This targeting delivery system is expected to be applicable to other cell types and other diseases aside from stroke.
Collapse
Affiliation(s)
- Bing Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xin-Chi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Tian-Yuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yu-Lan Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridgeshire, UK
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
32
|
Bernstock JD, Peruzzotti-Jametti L, Ye D, Gessler FA, Maric D, Vicario N, Lee YJ, Pluchino S, Hallenbeck JM. Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering. J Cereb Blood Flow Metab 2017; 37:2314-2319. [PMID: 28303738 PMCID: PMC5531358 DOI: 10.1177/0271678x17700432] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 01/10/2023]
Abstract
Ischemic stroke continues to be a leading cause of morbidity and mortality throughout the world. To protect and/or repair the ischemic brain, a multitiered approach may be centered on neural stem cell (NSC) transplantation. Transplanted NSCs exert beneficial effects not only via structural replacement, but also via immunomodulatory and/or neurotrophic actions. Unfortunately, the clinical translation of such promising therapies remains elusive, in part due to their limited persistence/survivability within the hostile ischemic microenvironment. Herein, we discuss current approaches for the development of NSCs more amenable to survival within the ischemic brain as a tool for future cellular therapies in stroke.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Daniel Ye
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Florian A Gessler
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Dragan Maric
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Nunzio Vicario
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yang-Ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| |
Collapse
|
33
|
Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, Caglayan AB, Bähr M, Hermann DM. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways. J Cereb Blood Flow Metab 2017; 37:914-926. [PMID: 27126323 PMCID: PMC5363471 DOI: 10.1177/0271678x16647738] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lithium promotes acute poststroke neuronal survival, which includes mechanisms that are not limited to GSK3β inhibition. However, whether lithium induces long-term neuroprotection and enhanced brain remodeling is unclear. Therefore, mice were exposed to transient middle cerebral artery occlusion and lithium (1 mg/kg bolus followed by 2 mg/kg/day over up to 7 days) was intraperitoneally administered starting 0-9 h after reperfusion onset. Delivery of lithium no later than 6 h reduced infarct volume on day 2 and decreased brain edema, leukocyte infiltration, and microglial activation, as shown by histochemistry and flow cytometry. Lithium-induced neuroprotection persisted throughout the observation period of 56 days and was associated with enhanced neurological recovery. Poststroke angioneurogenesis and axonal plasticity were also enhanced by lithium. On the molecular level, lithium increased miR-124 expression, reduced RE1-silencing transcription factor abundance, and decreased protein deubiquitination in cultivated cortical neurons exposed to oxygen-glucose deprivation and in brains of mice exposed to cerebral ischemia. Notably, this effect was not mimicked by pharmacological GSK3β inhibition. This study for the first time provides efficacy data for lithium in the postacute ischemic phase, reporting a novel mechanism of action, i.e. increased miR-124 expression facilitating REST degradation by which lithium promotes postischemic neuroplasticity and angiogenesis.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany.,2 Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.,3 Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Britta Kaltwasser
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | | | - Ahmet B Caglayan
- 2 Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Mathias Bähr
- 3 Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Dirk M Hermann
- 1 Department of Neurology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Modification of Bone Marrow Stem Cells for Homing and Survival During Cerebral Ischemia. BONE MARROW STEM CELL THERAPY FOR STROKE 2017. [PMCID: PMC7121342 DOI: 10.1007/978-981-10-2929-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the last decade, major advances have been made in stem cell-based therapy for ischemic stroke, which is one of the leading causes of death and disability worldwide. Various stem cells from bone marrow, such as mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), and endothelial progenitor cells (EPCs), have shown therapeutic potential for stroke. Concomitant with these exciting findings are some fundamental bottlenecks that must be overcome in order to accelerate their clinical translation, including the low survival and engraftment caused by the harsh microenvironment after transplantation. In this chapter, strategies such as gene modification, hypoxia/growth factor preconditioning, and biomaterial-based methods to improve cell survival and homing are summarized, and the potential strategies for their future application are also discussed.
Collapse
|
35
|
Doeppner TR, Doehring M, Kaltwasser B, Majid A, Lin F, Bähr M, Kilic E, Hermann DM. Ischemic Post-Conditioning Induces Post-Stroke Neuroprotection via Hsp70-Mediated Proteasome Inhibition and Facilitates Neural Progenitor Cell Transplantation. Mol Neurobiol 2016; 54:6061-6073. [PMID: 27699598 DOI: 10.1007/s12035-016-0137-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
In view of the failure of pharmacological therapies, alternative strategies promoting post-stroke brain repair are needed. Post-conditioning is a potentially promising therapeutic strategy, which induces acute neuroprotection against ischemic injury. To elucidate longer lasting actions of ischemic post-conditioning, mice were exposed to a 60-min stroke and post-conditioning by an additional 10-min stroke that was induced 10 min after reperfusion onset. Animals were sacrificed 24 h or 28 days post-stroke. Post-conditioning reduced infarct volume and neurological deficits 24 h post-stroke, enhancing blood-brain barrier integrity, reducing brain leukocyte infiltration, and reducing oxidative stress. On the molecular level, post-conditioning yielded increased Hsp70 expression, whereas nuclear factor (NF)-κB and proteasome activities were decreased. Reduced infarct volume and proteasome inhibition were reversed by Hsp70 knockdown, suggesting a critical role of the Hsp70 proteasome pathway in ischemic post-conditioning. The survival-promoting effects of ischemic post-conditioning, however, were not sustainable as neuroprotection and neurological recovery were lost 28 days post-stroke. Although angioneurogenesis was not increased by post-conditioning, the favorable extracellular milieu facilitated intracerebral transplantation of neural progenitor cells 6 h post-stroke, resulting in persisted neuroprotection and neurological recovery. Thus, post-conditioning might support brain repair processes, but in view of its transient, neuroprotection is unlikely useful as stroke therapy in its current form.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany. .,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey. .,Department of Neurology, University of Göttingen Medical School, Göttingen, Germany.
| | - Maria Doehring
- Oberhavel Kliniken, Department of Internal Medicine, Oranienburg, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fengyan Lin
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
36
|
Li Q, Nakano Y, Shang J, Ohta Y, Sato K, Takemoto M, Hishikawa N, Yamashita T, Abe K. Temporal Profiles of Stress Protein Inductions after Focal Transient Ischemia in Mice Brain. J Stroke Cerebrovasc Dis 2016; 25:2344-51. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022] Open
|
37
|
Klein R, Mahlberg N, Ohren M, Ladwig A, Neumaier B, Graf R, Hoehn M, Albrechtsen M, Rees S, Fink GR, Rueger MA, Schroeter M. The Neural Cell Adhesion Molecule-Derived (NCAM)-Peptide FG Loop (FGL) Mobilizes Endogenous Neural Stem Cells and Promotes Endogenous Regenerative Capacity after Stroke. J Neuroimmune Pharmacol 2016; 11:708-720. [DOI: 10.1007/s11481-016-9694-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
|
38
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
39
|
Doeppner TR, Traut V, Heidenreich A, Kaltwasser B, Bosche B, Bähr M, Hermann DM. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis. Mol Neurobiol 2016; 54:1531-1540. [PMID: 26860410 DOI: 10.1007/s12035-016-9748-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022]
Abstract
Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany. .,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey. .,Department of Neurology, University of Göttingen Medical School, Göttingen, Germany.
| | - Viktorija Traut
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Alexander Heidenreich
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Bert Bosche
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany.,Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
40
|
Abstract
INTRODUCTION Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. AREAS COVERED In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. EXPERT OPINION To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.
Collapse
Affiliation(s)
- Taiyoun Rhim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Republic of Korea
| | - Minhyung Lee
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Republic of Korea
| |
Collapse
|
41
|
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BWM, Wauben M, Andaloussi SE, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4:30087. [PMID: 26725829 PMCID: PMC4698466 DOI: 10.3402/jev.v4.30087] [Citation(s) in RCA: 1037] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Collapse
Affiliation(s)
- Thomas Lener
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US23 Inserm, Villejuif, France
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
| | - Devasis Chatterjee
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Felipe A Court
- Department of Physiology, Faculty of Biology, Pontificia-Universidad Católica de Chile, Santiago, Chile
| | - Hernando A Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Juan M Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ursula Felderhoff-Mueser
- Department of Paediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boris W Kramer
- Experimental Perinatology/Neonatology, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - Sandra Laner-Plamberger
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Saara Laitinen
- Research and Cell Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Tommaso Leonardi
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Magdalena J Lorenowicz
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Casey A Maguire
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio Marcilla
- Dpto. Biología Celular y Parasitologia, Facultat de Farmacia, Universitat de Valencia, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shona Pedersen
- Centre for Cardiovascular Research, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Quesenberry
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Ilona G Reischl
- BASG - Bundesamt für Sicherheit im Gesundheitswesen - Federal Office for Safety in Health Care, AGES - Agentur für Gesundheit und Ernährungssicherheit - Austrian Agency for Health and Food Safety, Institut Überwachung - Institute Surveillance, Wien, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ralf Sanzenbacher
- Ralf Sanzenbacher, Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ineke Slaper-Cortenbach
- Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marca Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clotilde Théry
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
- INSERM U932, Institut Curie, Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria;
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| |
Collapse
|
42
|
Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition. Cell Death Dis 2015; 6:e2024. [PMID: 26673668 PMCID: PMC4720898 DOI: 10.1038/cddis.2015.365] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022]
Abstract
Although cellular prion protein (PrPc) has been suggested to have physiological roles in neurogenesis and angiogenesis, the pathophysiological relevance of both processes remain unknown. To elucidate the role of PrPc in post-ischemic brain remodeling, we herein exposed PrPc wild type (WT), PrPc knockout (PrP−/−) and PrPc overexpressing (PrP+/+) mice to focal cerebral ischemia followed by up to 28 days reperfusion. Improved neurological recovery and sustained neuroprotection lasting over the observation period of 4 weeks were observed in ischemic PrP+/+ mice compared with WT mice. This observation was associated with increased neurogenesis and angiogenesis, whereas increased neurological deficits and brain injury were noted in ischemic PrP−/− mice. Proteasome activity and oxidative stress were increased in ischemic brain tissue of PrP−/− mice. Pharmacological proteasome inhibition reversed the exacerbation of brain injury induced by PrP−/−, indicating that proteasome inhibition mediates the neuroprotective effects of PrPc. Notably, reduced proteasome activity and oxidative stress in ischemic brain tissue of PrP+/+ mice were associated with an increased abundance of hypoxia-inducible factor 1α and PACAP-38, which are known stimulants of neural progenitor cell (NPC) migration and trafficking. To elucidate effects of PrPc on intracerebral NPC homing, we intravenously infused GFP+ NPCs in ischemic WT, PrP−/− and PrP+/+ mice, showing that brain accumulation of GFP+ NPCs was greatly reduced in PrP−/− mice, but increased in PrP+/+ animals. Our results suggest that PrPc induces post-ischemic long-term neuroprotection, neurogenesis and angiogenesis in the ischemic brain by inhibiting proteasome activity.
Collapse
|
43
|
Lee YE, An J, Lee KH, Kim SS, Song HJ, Pyeon H, Nam H, Kang K, Joo KM. The Synergistic Local Immunosuppressive Effects of Neural Stem Cells Expressing Indoleamine 2,3-Dioxygenase (IDO) in an Experimental Autoimmune Encephalomyelitis (EAE) Animal Model. PLoS One 2015; 10:e0144298. [PMID: 26636969 PMCID: PMC4670164 DOI: 10.1371/journal.pone.0144298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/16/2015] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases provoke robust immunological reactions in the central nervous system (CNS), which further deteriorate the neural tissue damage. We hypothesized that the expression levels of indoleamine 2,3-dioxygenase (IDO), an enzyme that has potent immune suppressive activities, in neural stem cells (NSCs) would have synergistic therapeutic effects against neurodegenerative diseases, since NSCs themselves have low IDO expression. In this study, the synergistic immune suppressive effects of rat fetal NSCs expressing IDO (rfNSCs-IDO) were validated by mixed leukocyte reaction (MLR) in vitro and an experimental autoimmune encephalomyelitis (EAE) animal model in vivo. rfNSCs-IDO showed significantly more suppressive effects on T cell proliferation in the MLR compared to control rfNSCs (rfNSCs-Cont). Importantly, IDO inhibition using 1-methyl-DL-tryptophan (1-MT), an IDO inhibitor, reversed the synergistic effects, confirming IDO-specific effects in rfNSCs-IDO. In the EAE animal model, systemic rfNSCs-IDO injections resulted in significant local immune suppression in the cervical lymph nodes and CNS, evidenced by a reduction in the number of activated T lymphocytes and an increase in regulatory T cell numbers, which induced significantly fewer clinical symptoms and faster recovery. In contrast, rfNSCs-Cont failed to reduce symptoms in the EAE animal models, although they showed local immune suppression, which was significantly less than that in rfNSCs-IDO. Taken together, IDO expression in NSCs synergistically potentiates the immune suppression activities of NSCs and could be applicable for the development of therapeutic modalities against various neurodegenerative diseases.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression Regulation, Enzymologic/immunology
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Neural Stem Cells/immunology
- Neural Stem Cells/transplantation
- Rats
- Rats, Sprague-Dawley
- Stem Cell Transplantation
Collapse
Affiliation(s)
- Young Eun Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaeyeol An
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kee-Hang Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Su Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejang Pyeon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeongjin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail: (KMJ); (KK)
| | - Kyeung Min Joo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail: (KMJ); (KK)
| |
Collapse
|
44
|
Hosseini SM, Samimi N, Farahmandnia M, Shakibajahromi B, Sarvestani FS, Sani M, Mohamadpour M. The Preventive Effects of Neural Stem Cells and Mesenchymal Stem Cells Intra-ventricular Injection on Brain Stroke in Rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2015; 7:390-6. [PMID: 26605202 PMCID: PMC4630731 DOI: 10.4103/1947-2714.166216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. Aim: The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. Materials and Methods: The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. Results: During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. Conclusion: Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Samimi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benafshe Shakibajahromi
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sabet Sarvestani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Mohamadpour
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Jendelová P, Kubinová Š, Sandvig I, Erceg S, Sandvig A, Syková E. Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 2015; 16:43-56. [DOI: 10.1517/14712598.2016.1094457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 2015; 4:1131-43. [PMID: 26339036 DOI: 10.5966/sctm.2015-0078] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Although the initial concepts of stem cell therapy aimed at replacing lost tissue, more recent evidence has suggested that stem and progenitor cells alike promote postischemic neurological recovery by secreted factors that restore the injured brain's capacity to reshape. Specifically, extracellular vesicles (EVs) derived from stem cells such as exosomes have recently been suggested to mediate restorative stem cell effects. In order to define whether EVs indeed improve postischemic neurological impairment and brain remodeling, we systematically compared the effects of mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) with MSCs that were i.v. delivered to mice on days 1, 3, and 5 (MSC-EVs) or on day 1 (MSCs) after focal cerebral ischemia in C57BL6 mice. For as long as 28 days after stroke, motor coordination deficits, histological brain injury, immune responses in the peripheral blood and brain, and cerebral angiogenesis and neurogenesis were analyzed. Improved neurological impairment and long-term neuroprotection associated with enhanced angioneurogenesis were noticed in stroke mice receiving EVs from two different bone marrow-derived MSC lineages. MSC-EV administration closely resembled responses to MSCs and persisted throughout the observation period. Although cerebral immune cell infiltration was not affected by MSC-EVs, postischemic immunosuppression (i.e., B-cell, natural killer cell, and T-cell lymphopenia) was attenuated in the peripheral blood at 6 days after ischemia, providing an appropriate external milieu for successful brain remodeling. Because MSC-EVs have recently been shown to be apparently safe in humans, the present study provides clinically relevant evidence warranting rapid proof-of-concept studies in stroke patients. SIGNIFICANCE Transplantation of mesenchymal stem cells (MSCs) offers an interesting adjuvant approach next to thrombolysis for treatment of ischemic stroke. However, MSCs are not integrated into residing neural networks but act indirectly, inducing neuroprotection and promoting neuroregeneration. Although the mechanisms by which MSCs act are still elusive, recent evidence has suggested that extracellular vesicles (EVs) might be responsible for MSC-induced effects under physiological and pathological conditions. The present study has demonstrated that EVs are not inferior to MSCs in a rodent stroke model. EVs induce long-term neuroprotection, promote neuroregeneration and neurological recovery, and modulate peripheral post-stroke immune responses. Also, because EVs are well-tolerated in humans, as previously reported, the administration of EVs under clinical settings might set the path for a novel and innovative therapeutic stroke concept without the putative side effects attached to stem cell transplantation.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jana Schlechter
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Kristin Ludwig
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Radtke
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kyra de Miroschedji
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, Institute for Transfusion Medicine, and Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
47
|
Doeppner TR, Hermann DM. Editorial: Stem cells and progenitor cells in ischemic stroke-fashion or future? Front Cell Neurosci 2015; 9:334. [PMID: 26379504 PMCID: PMC4548157 DOI: 10.3389/fncel.2015.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|
48
|
Hermann DM, Zechariah A, Kaltwasser B, Bosche B, Caglayan AB, Kilic E, Doeppner TR. Sustained neurological recovery induced by resveratrol is associated with angioneurogenesis rather than neuroprotection after focal cerebral ischemia. Neurobiol Dis 2015; 83:16-25. [PMID: 26316359 DOI: 10.1016/j.nbd.2015.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/01/2015] [Accepted: 08/19/2015] [Indexed: 01/01/2023] Open
Abstract
According to the French paradox, red wine consumption reduces the incidence of vascular diseases even in the presence of highly saturated fatty acid intake. This phenomenon is widely attributed to the phytoalexin resveratrol, a red wine ingredient. Experimental studies suggesting that resveratrol has neuroprotective properties mostly used prophylactic delivery strategies associated with short observation periods. These studies did not allow conclusions to be made about resveratrol's therapeutic efficacy post-stroke. Herein, we systematically analyzed effects of prophylactic, acute and post-acute delivery of resveratrol (50mg/kg) on neurological recovery, tissue survival, and angioneurogenesis after focal cerebral ischemia induced by intraluminal middle cerebral artery occlusion in mice. Over an observation period of four weeks, only prolonged post-acute resveratrol delivery induced sustained neurological recovery as assessed by rota rod, tight rope and corner turn tests. Although prophylactic and acute resveratrol delivery reduced infarct volume and enhanced blood-brain-barrier integrity at 2 days post-ischemia by elevating resveratrol's downstream signal sirtuin-1, increasing cell survival signals (phosphorylated Akt, heme oxygenase-1, Bcl-2) and decreasing cell death signals (Bax, activated caspase-3), a sustained reduction of infarct size on day 28 was not observed in any of the three experimental conditions. Instead, enhanced angiogenesis and neurogenesis were noted in animals receiving post-acute resveratrol delivery, which were associated with elevated concentrations of GDNF and VEGF in the brain. Thus, sustained neurological recovery induced by resveratrol depends on successful brain remodeling rather than structural neuroprotection. The recovery promoting effect of delayed resveratrol delivery opens promising perspectives for stroke therapy.
Collapse
Affiliation(s)
- Dirk M Hermann
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Anil Zechariah
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology & Pharmacology, University of Calgary, AB, Canada
| | - Britta Kaltwasser
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Bert Bosche
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; Division of Neurosurgery, St. Michael's Hospital, Keenan Research Center for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ahmet B Caglayan
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Thorsten R Doeppner
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey.
| |
Collapse
|
49
|
Doeppner TR, Kaltwasser B, Teli MK, Sanchez-Mendoza EH, Kilic E, Bähr M, Hermann DM. Post-stroke transplantation of adult subventricular zone derived neural progenitor cells--A comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp Neurol 2015; 273:45-56. [PMID: 26253224 DOI: 10.1016/j.expneurol.2015.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 12/17/2022]
Abstract
With neuroprotective approaches having failed until recently, current focus on experimental stroke research has switched towards manipulation of post-ischemic neuroregeneration. Transplantation of subventricular zone (SVZ) derived neural progenitor cells (NPCs) is a promising strategy for promotion of neurological recovery. Yet, fundamental questions including the optimal cell delivery route still have to be addressed. Consequently, male C57BL6 mice were exposed to transient focal cerebral ischemia and allowed to survive for as long as 84 days post-stroke. At 6h post-stroke, NPCs were grafted using six different cell delivery routes, i.e., intravenous, intraarterial, ipsilateral intrastriatal, contralateral intrastriatal, ipsilateral intraventricular and ipsilateral intracortical injection. Control mice received PBS only using the aforementioned delivery routes. Intralesional numbers of GFP(+) NPCs were high only after ipsilateral intrastriatal transplantation, whereas other injection paradigms only yielded comparatively small numbers of grafted cells. However, acute neuroprotection and improved functional outcome were observed after both systemic (i.e., intraarterial and intravenous) and ipsilateral intrastriatal transplantation only. Whereas systemic cell delivery induced acute and long-term neuroprotection, reduction of brain injury after ipsilateral intrastriatal cell grafting was only temporary, in line with the loss of transplanted NPCs in the brain. Both systemic and ipsilateral intrastriatal NPC delivery reduced microglial activation and leukocyte invasion, thus reducing free radical formation within the ischemic brain. On the contrary, only systemic NPC administration stabilized the blood-brain-barrier and reduced leukocytosis in the blood. Although intraarterial NPC transplantation was as effective as intravenous cell grafting, mortality of stroke mice was high using the intraarterial delivery route. Consequently, intravenous delivery of native NPCs in our experimental model is an attractive and effective strategy for stroke therapy that deserves further proof-of-concept studies.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey.
| | - Britta Kaltwasser
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Mahesh K Teli
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany; National Institute of Technology Calicut, Calicut, Kerala, India
| | | | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mathias Bähr
- University of Goettingen Medical School, Department of Neurology, Goettingen, Germany
| | - Dirk M Hermann
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| |
Collapse
|
50
|
Boltze J, Arnold A, Walczak P, Jolkkonen J, Cui L, Wagner DC. The Dark Side of the Force - Constraints and Complications of Cell Therapies for Stroke. Front Neurol 2015; 6:155. [PMID: 26257702 PMCID: PMC4507146 DOI: 10.3389/fneur.2015.00155] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022] Open
Abstract
Cell therapies are increasingly recognized as a promising option to augment the limited therapeutic arsenal available to fight ischemic stroke. During the last two decades, cumulating preclinical evidence has indicated a substantial efficacy for most cell treatment paradigms and first clinical trials are currently underway to assess safety and feasibility in patients. However, the strong and still unmet demand for novel stroke treatment options and exciting findings reported from experimental studies may have drawn our attention away from potential side effects related to cell therapies and the ways by which they are commonly applied. This review summarizes common and less frequent adverse events that have been discovered in preclinical and clinical investigations assessing cell therapies for stroke. Such adverse events range from immunological and neoplastic complications over seizures to cell clotting and cell-induced embolism. It also describes potential complications of clinically applicable administration procedures, detrimental interactions between therapeutic cells, and the pathophysiological environment that they are placed into, as well as problems related to cell manufacturing. Virtually each therapeutic intervention comes at a certain risk for complications. Side effects do therefore not generally compromise the value of cell treatments for stroke, but underestimating such complications might severely limit therapeutic safety and efficacy of cell treatment protocols currently under development. On the other hand, a better understanding will provide opportunities to further improve existing therapeutic strategies and might help to define those circumstances, under which an optimal effect can be realized. Hence, the review eventually discusses strategies and recommendations allowing us to prevent or at least balance potential complications in order to ensure the maximum therapeutic benefit at minimum risk for stroke patients.
Collapse
Affiliation(s)
- Johannes Boltze
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany ; Translational Center for Regenerative Medicine, University of Leipzig , Leipzig , Germany
| | - Antje Arnold
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Institute for Cell Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Lili Cui
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Daniel-Christoph Wagner
- Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology , Leipzig , Germany
| |
Collapse
|