1
|
Xue Q, Ji S, Xu H, Yu S. O-GlcNAcylation: a pro-survival response to acute stress in the cardiovascular and central nervous systems. Eur J Med Res 2024; 29:174. [PMID: 38491477 PMCID: PMC10943874 DOI: 10.1186/s40001-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.
Collapse
Affiliation(s)
- Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226361, China
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, 399 Century Avenue, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
2
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
3
|
Shen Y, Kim IM, Tang Y. Uncovering the Heterogeneity of Cardiac Lin-KIT+ Cells: A scRNA-seq Study on the Identification of Subpopulations. Stem Cells 2023; 41:958-970. [PMID: 37539750 PMCID: PMC11009691 DOI: 10.1093/stmcls/sxad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Yaoliang Tang
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Ha C, Bakshi S, Brahma MK, Potter LA, Chang SF, Sun Z, Benavides GA, He L, Umbarkar P, Zou L, Curfman S, Sunny S, Paterson AJ, Rajasekaran N, Barnes JW, Zhang J, Lal H, Xie M, Darley‐Usmar VM, Chatham JC, Wende AR. Sustained Increases in Cardiomyocyte Protein O-Linked β-N-Acetylglucosamine Levels Lead to Cardiac Hypertrophy and Reduced Mitochondrial Function Without Systolic Contractile Impairment. J Am Heart Assoc 2023; 12:e029898. [PMID: 37750556 PMCID: PMC10727241 DOI: 10.1161/jaha.123.029898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
Background Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O-linked β-N acetylglucosamine (O-GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O-GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant-negative O-GlcNAcase (dnOGA) inducible cardiomyocyte-specific overexpression transgenic mouse model, we induced dnOGA in 8- to 10-week-old mouse hearts. We examined the effects of 2-week and 24-week dnOGA overexpression, which progressed to a 1.8-fold increase in protein O-GlcNAcylation. Two-week increases in protein O-GlcNAc levels did not alter heart weight or function; however, 24-week increases in protein O-GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24-week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA-sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24-week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O-GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2-week), which leads to cardiac remodeling (24-week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O-GlcNAcylation in heart.
Collapse
Affiliation(s)
- Chae‐Myeong Ha
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sayan Bakshi
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Manoja K. Brahma
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Luke A. Potter
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel F. Chang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Zhihuan Sun
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Gloria A. Benavides
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Lihao He
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Luyun Zou
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Samuel Curfman
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Sini Sunny
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Andrew J. Paterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | | | - Jarrod W. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Hind Lal
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Min Xie
- Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Victor M. Darley‐Usmar
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| | - Adam R. Wende
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
5
|
Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol 2023; 34:1480-1491. [PMID: 37340541 PMCID: PMC10482065 DOI: 10.1681/asn.0000000000000177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
ABSTRACT Fetal kidney development is characterized by increased uptake of glucose, ATP production by glycolysis, and upregulation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 alpha (HIF-1 α ), which (acting in concert) promote nephrogenesis in a hypoxic low-tubular-workload environment. By contrast, the healthy adult kidney is characterized by upregulation of sirtuin-1 and adenosine monophosphate-activated protein kinase, which enhances ATP production through fatty acid oxidation to fulfill the needs of a normoxic high-tubular-workload environment. During stress or injury, the kidney reverts to a fetal signaling program, which is adaptive in the short term, but is deleterious if sustained for prolonged periods when both oxygen tension and tubular workload are heightened. Prolonged increases in glucose uptake in glomerular and proximal tubular cells lead to enhanced flux through the hexosamine biosynthesis pathway; its end product-uridine diphosphate N -acetylglucosamine-drives the rapid and reversible O-GlcNAcylation of thousands of intracellular proteins, typically those that are not membrane-bound or secreted. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated only by O-GlcNAc transferase and O-GlcNAcase, which adds or removes N-acetylglucosamine, respectively, from target proteins. Diabetic and nondiabetic CKD is characterized by fetal reprogramming (with upregulation of mTOR and HIF-1 α ) and increased O-GlcNAcylation, both experimentally and clinically. Augmentation of O-GlcNAcylation in the adult kidney enhances oxidative stress, cell cycle entry, apoptosis, and activation of proinflammatory and profibrotic pathways, and it inhibits megalin-mediated albumin endocytosis in glomerular mesangial and proximal tubular cells-effects that can be aggravated and attenuated by augmentation and muting of O-GlcNAcylation, respectively. In addition, drugs with known nephroprotective effects-angiotensin receptor blockers, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter 2 inhibitors-are accompanied by diminished O-GlcNAcylation in the kidney, although the role of such suppression in mediating their benefits has not been explored. The available evidence supports further work on the role of uridine diphosphate N -acetylglucosamine as a critical nutrient surplus sensor (acting in concert with upregulated mTOR and HIF-1 α signaling) in the development of diabetic and nondiabetic CKD.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute , Dallas , Texas and Imperial College , London , United Kingdom
| |
Collapse
|
6
|
Kirkpatrick LT, Daughtry MR, El-Kadi S, Shi TH, Gerrard DE. O-GlcNAcylation is a gatekeeper of porcine myogenesis. J Anim Sci 2022; 100:skac326. [PMID: 36219104 PMCID: PMC9683508 DOI: 10.1093/jas/skac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/14/2022] Open
Abstract
Although it has long been known that growth media withdrawal is a prerequisite for myoblast differentiation and fusion, the underpinning molecular mechanism remains somewhat elusive. Using isolated porcine muscle satellite cells (SCs) as the model, we show elevated O-GlcNAcylation by O-GlcNAcase (OGA) inhibition impaired SC differentiation (D5 P < 0.0001) but had unnoticeable impacts on SC proliferation. To explore the mechanism of this phenotype, we examined the expression of the transcription factor myogenin, a master switch of myogenesis, and found its expression was downregulated by elevated O-GlcNAcylation. Because insulin/IGF-1/Akt axis is a strong promoter of myoblast fusion, we measured the phosphorylated Akt and found that hyper O-GlcNAcylation inhibited Akt phosphorylation, implying OGA inhibition may also work through interfering with this critical differentiation-promoting pathway. In contrast, inhibition of O-GlcNAc transferase (OGT) by its specific inhibitor had little impact on either myoblast proliferation or differentiation (P > 0.05). To confirm these in vitro findings, we used chemical-induced muscle injury in the pig as a model to study muscle regenerative myogenesis and showed how O-GlcNAcylation functions in this process. We show a significant decrease in muscle fiber cross sectional area (CSA) when OGA is inhibited (P < 0.05), compared to nondamaged muscle, and a significant decrease compared to control and OGT inhibited muscle (P < 0.05), indicating a significant impairment in porcine muscle regeneration in vivo. Together, the in vitro and in vivo data suggest that O-GlcNAcylation may serve as a nutrient sensor during SC differentiation by gauging cellular nutrient availability and translating these signals into cellular responses. Given the importance of nutrition availability in lean muscle growth, our findings may have significant implications on how muscle growth is regulated in agriculturally important animals.
Collapse
Affiliation(s)
- Laila T Kirkpatrick
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Morgan R Daughtry
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Samer El-Kadi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim Hao Shi
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
8
|
Li X, Liu L, Jiang W, Liu M, Wang Y, Ma H, Mu N, Wang H. SIRT6 Protects Against Myocardial Ischemia-Reperfusion Injury by Attenuating Aging-Related CHMP2B Accumulation. J Cardiovasc Transl Res 2022; 15:740-753. [PMID: 35235147 DOI: 10.1007/s12265-021-10184-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
Impaired autophagic flux induces aging-related ischemia vulnerability, which is the hallmark pathology in cardiac aging. Our previous work has confirmed that the accumulation of charged multivesicular body protein 2B (CHMP2B), a subunit of the ESCRT-III complex, in the heart can impair autophagy flux. However, whether CHMP2B accumulation contributes to aging-related intolerance to ischemia/reperfusion (I/R) injury and the regulatory mechanism for CHMP2B in aged heart remain elusive. The cardiac CHMP2B level was significantly higher in aged human myocardium than that in young myocardium. Increased CHMP2B were shown to inhibit autophagic flux leading to the deterioration of MI/R injury in aged mice hearts. Interestingly, a negative correlation was observed between SIRT6 and CHMP2B expression in human heart samples. Specific activation of SIRT6 suppressed CHMP2B accumulation and ameliorated autophagy flux in aged hearts. Using myocardial-specific SIRT6 heterozygous knockout mice and recovery experiments confirmed that SIRT6 regulated myocardial CHMP2B levels. Finally, activation of SIRT6 decreased acetylation of FoxO1 to promote its transcriptional function on Atrogin-1, a muscle-specific ubiquitin ligase, which subsequently enhanced the degradation of CHMP2B by Atrogin-1. This is a novel mechanism for SIRT6 against aging-related myocardial ischemia vulnerability, particularly by preventing excessive accumulation of autophagy key factors.
Collapse
Affiliation(s)
- Xiaokang Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi Rd, Xi'an, China
| | - Lin Liu
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi Rd, Xi'an, 710032, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, China.
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, China.
| | - Haiyan Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi Rd, Xi'an, China.
| |
Collapse
|
9
|
Cairns M, Joseph D, Essop MF. The dual role of the hexosamine biosynthetic pathway in cardiac physiology and pathophysiology. Front Endocrinol (Lausanne) 2022; 13:984342. [PMID: 36353238 PMCID: PMC9637655 DOI: 10.3389/fendo.2022.984342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The heart is a highly metabolic organ with extensive energy demands and hence relies on numerous fuel substrates including fatty acids and glucose. However, oxidative stress is a natural by-product of metabolism that, in excess, can contribute towards DNA damage and poly-ADP-ribose polymerase activation. This activation inhibits key glycolytic enzymes, subsequently shunting glycolytic intermediates into non-oxidative glucose pathways such as the hexosamine biosynthetic pathway (HBP). In this review we provide evidence supporting the dual role of the HBP, i.e. playing a unique role in cardiac physiology and pathophysiology where acute upregulation confers cardioprotection while chronic activation contributes to the onset and progression of cardio-metabolic diseases such as diabetes, hypertrophy, ischemic heart disease, and heart failure. Thus although the HBP has emerged as a novel therapeutic target for such conditions, proposed interventions need to be applied in a context- and pathology-specific manner to avoid any potential drawbacks of relatively low cardiac HBP activity.
Collapse
Affiliation(s)
- Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Danzil Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: M. Faadiel Essop,
| |
Collapse
|
10
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Zhao Z, Shen Y, Zhao J, Chen X. microRNA expression profile of fish erythrocytes. AQUACULTURE AND FISHERIES 2021; 6:558-564. [DOI: 10.1016/j.aaf.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Dozio E, Massaccesi L, Corsi Romanelli MM. Glycation and Glycosylation in Cardiovascular Remodeling: Focus on Advanced Glycation End Products and O-Linked Glycosylations as Glucose-Related Pathogenetic Factors and Disease Markers. J Clin Med 2021; 10:jcm10204792. [PMID: 34682915 PMCID: PMC8539574 DOI: 10.3390/jcm10204792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glycation and glycosylation are non-enzymatic and enzymatic reactions, respectively, of glucose, glucose metabolites, and other reducing sugars with different substrates, such as proteins, lipids, and nucleic acids. Increased availability of glucose is a recognized risk factor for the onset and progression of diabetes-mellitus-associated disorders, among which cardiovascular diseases have a great impact on patient mortality. Both advanced glycation end products, the result of non-enzymatic glycation of substrates, and O-linked-N-Acetylglucosaminylation, a glycosylation reaction that is controlled by O-N-AcetylGlucosamine (GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), have been shown to play a role in cardiovascular remodeling. In this review, we aim (1) to summarize the most recent data regarding the role of glycation and O-linked-N-Acetylglucosaminylation as glucose-related pathogenetic factors and disease markers in cardiovascular remodeling, and (2) to discuss potential common mechanisms linking these pathways to the dysregulation and/or loss of function of different biomolecules involved in this field.
Collapse
Affiliation(s)
- Elena Dozio
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-02-50-315-342
| | - Luca Massaccesi
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
| | - Massimiliano Marco Corsi Romanelli
- Laboratory of Clinical Pathology, Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (L.M.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
13
|
Ng YH, Okolo CA, Erickson JR, Baldi JC, Jones PP. Protein O-GlcNAcylation in the heart. Acta Physiol (Oxf) 2021; 233:e13696. [PMID: 34057811 DOI: 10.1111/apha.13696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
O-GlcNAcylation is a ubiquitous post-translational modification that is extremely labile and plays a significant role in physiology, including the heart. Sustained activation of cardiac O-GlcNAcylation is frequently associated with alterations in cellular metabolism, leading to detrimental effects on cardiovascular function. This is particularly true during conditions such as diabetes, hypertension, cardiac remodelling, heart failure and arrhythmogenesis. Paradoxically, transient elevation of cardiac protein O-GlcNAcylation can also exert beneficial effects in the heart. There is compelling evidence to suggest that a complex interaction between O-GlcNAcylation and phosphorylation also exists in the heart. Beyond direct functional consequences on cardiomyocytes, O-GlcNAcylation also acts indirectly by altering the function of transcription factors that affect downstream signalling. This review focuses on the potential cardioprotective role of protein O-GlcNAcylation during ischaemia-reperfusion injury, the deleterious consequences of chronically elevated O-GlcNAc levels, the interplay between O-GlcNAcylation and phosphorylation in the cardiomyocytes and the effects of O-GlcNAcylation on other major non-myocyte cell types in the heart.
Collapse
Affiliation(s)
- Yann Huey Ng
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Chidinma A. Okolo
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
- Life Sciences Division Diamond Light Source LtdHarwell Science and Innovation Campus Didcot UK
| | - Jeffrey R. Erickson
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| | - James C. Baldi
- Department of Medicine and HeartOtago University of Otago Dunedin New Zealand
| | - Peter P. Jones
- Department of Physiology and HeartOtago University of Otago Dunedin New Zealand
| |
Collapse
|
14
|
Cong R, Sun L, Yang J, Cui H, Ji X, Zhu J, Gu JH, He B. Protein O-GlcNAcylation alleviates small intestinal injury induced by ischemia-reperfusion and oxygen-glucose deprivation. Biomed Pharmacother 2021; 138:111477. [PMID: 33765582 DOI: 10.1016/j.biopha.2021.111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/21/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic post-translational protein modification that regulates fundamental cellular functions in both normal physiology and diseases. The levels of protein O-GlcNAcylation are determined by flux of the hexosamine biosynthetic pathway (HBP), which is a branch of glycolysis, and are directly controlled by a pair of enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). An increase in protein O-GlcNAcylation has been shown to have protective effects on ischemia-related insults in the heart and brain. To determine whether O-GlcNAcylation plays a beneficial role in ischemia-reperfusion (IR)-induced intestinal injury, we used pharmacological manipulation of O-GlcNAc to induce loss- and gain-of-function conditions and evaluated the viability and apoptosis of intestinal epithelioid cells in an in vitro oxygen-glucose deprivation (OGD) model and tissue injury grade in a small intestinal ischemia-reperfusion (SIIR) mouse model. We found that 1) Upregulation of O-GlcNAcylation induced by glucosamine (GlcN, increase in HBP flux) or thiamet G (an OGA inhibitor) enhanced intestinal cell survival in the OGD model. In contrast, downregulation of O-GlcNAcylation induced by DON (due to a reduction in HBP flux) or OMSI-1 (an OGT inhibitor) made the cells more susceptible to hypoxia injury. 2) Reducing the increase in O-GlcNAcylation levels with a combination of either GlcN with DON or thiamet G with OMSI-1 partly canceled its protective effect on OGD-induced cell injury. 3) In the in vivo SIIR mouse model, GlcN augmented intestinal protein O-GlcNAcylation and significantly alleviated intestinal injury by inhibiting cell apoptosis. These results indicate that acute increases in protein O-GlcNAcylation confer protection against intestinal ischemia insults, suggesting that O-GlcNAcylation, as an endogenous stress sensor, could be a universal protective mechanism and could be a potential therapeutic target for intestinal ischemic disease.
Collapse
Affiliation(s)
- Ruochen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Linlin Sun
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jushun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Xin Ji
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jing Zhu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China; Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Bosheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
15
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
16
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
17
|
Hassan R, Rabea AA, Ragae A, Sabry D. The prospective role of mesenchymal stem cells exosomes on circumvallate taste buds in induced Alzheimer's disease of ovariectomized albino rats: (Light and transmission electron microscopic study). Arch Oral Biol 2019; 110:104596. [PMID: 31734542 DOI: 10.1016/j.archoralbio.2019.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the effect of Alzheimer's disease on the structure of circumvallate papilla taste buds and the possible role of exosomes on the taste buds in Alzheimer's disease. DESIGN Forty two ovariectomized female adult albino rats were utilized and divided into: Group I: received vehicle. Group II: received aluminum chloride to induce Alzheimer's disease. Group III: after the induction of Alzheimer's disease, each rat received single dose of exosomes then left for 4 weeks. The circumvallate papillae were prepared for examination by light and transmission electron microscope. STATISTICAL ANALYSIS histomorphometric data were statistically analyzed. RESULTS Histological examination of circumvallate papilla in Group I showed normal histological features. Group II revealed distorted features. Group III illustrated nearly normal histological features of circumvallate. Silver impregnation results showed apparently great number of heavily impregnated glossopharyngeal nerve fibers in both Groups I & III but markedly decreased in Group II. Synaptophysin-immunoreactivity was strong in Group I, mild in Group II and moderate in Group III. The ultra-structural examination of taste bud cells revealed normal features in Group I, distorted features in Group II and almost normal features in Group III. Statistically highest mean of Synaptophysin-immunoreactivity area% was for Group I, followed by Group III, and the least value was for Group II. CONCLUSIONS Alzheimer's disease has degenerative effects. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes have the ability to improve the destructive changes induced by Alzheimer's disease.
Collapse
Affiliation(s)
- Rabab Hassan
- Lecturer of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Amany A Rabea
- Associate Professor of Oral Biology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Alyaa Ragae
- Professor of General Histology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Dina Sabry
- Professor of Medical biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Abstract
Patients with diabetes mellitus have >2× the risk for developing heart failure (HF; HF with reduced ejection fraction and HF with preserved ejection fraction). Cardiovascular outcomes, hospitalization, and prognosis are worse for patients with diabetes mellitus relative to those without. Beyond the structural and functional changes that characterize diabetic cardiomyopathy, a complex underlying, and interrelated pathophysiology exists. Despite the success of many commonly used antihyperglycemic therapies to lower hyperglycemia in type 2 diabetes mellitus the high prevalence of HF persists. This, therefore, raises the possibility that additional factors beyond glycemia might contribute to the increased HF risk in diabetes mellitus. This review summarizes the state of knowledge about the impact of existing antihyperglycemic therapies on HF and discusses potential mechanisms for beneficial or deleterious effects. Second, we review currently approved pharmacological therapies for HF and review evidence that addresses their efficacy in the context of diabetes mellitus. Dysregulation of many cellular mechanisms in multiple models of diabetic cardiomyopathy and in human hearts have been described. These include oxidative stress, inflammation, endoplasmic reticulum stress, aberrant insulin signaling, accumulation of advanced glycated end-products, altered autophagy, changes in myocardial substrate metabolism and mitochondrial bioenergetics, lipotoxicity, and altered signal transduction such as GRK (g-protein receptor kinase) signaling, renin angiotensin aldosterone signaling and β-2 adrenergic receptor signaling. These pathophysiological pathways might be amenable to pharmacological therapy to reduce the risk of HF in the context of type 2 diabetes mellitus. Successful targeting of these pathways could alter the prognosis and risk of HF beyond what is currently achieved using existing antihyperglycemic and HF therapeutics.
Collapse
Affiliation(s)
- Helena C Kenny
- From the Fraternal Order of Eagles Diabetes Research Center, and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - E Dale Abel
- From the Fraternal Order of Eagles Diabetes Research Center, and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| |
Collapse
|
19
|
Kronlage M, Dewenter M, Grosso J, Fleming T, Oehl U, Lehmann LH, Falcão-Pires I, Leite-Moreira AF, Volk N, Gröne HJ, Müller OJ, Sickmann A, Katus HA, Backs J. O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure. Circulation 2019; 140:580-594. [PMID: 31195810 DOI: 10.1161/circulationaha.117.031942] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by β-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.
Collapse
Affiliation(s)
- Mariya Kronlage
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Matthias Dewenter
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Grosso
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Thomas Fleming
- Department of Internal Medicine I (T.F.), Heidelberg University, Germany
| | - Ulrike Oehl
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Lorenz H Lehmann
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Inês Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Adelino F Leite-Moreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany (N.V.)
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg (H.-J.G.).,Institute of Pathology, University of Marburg, Germany (H.-J.G.)
| | - Oliver J Müller
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Albert Sickmann
- Leibniz Institute for Analysical Sciences (ISAS), Dortmund, Germany (A.S.).,Medical Faculty, Medical Proteomics Center, Ruhr-University Bochum, Germany (A.S.).,Department of Chemistry, College of Physical Sciences, University of Aberdeen, United Kingdom (A.S.). Dr Müller is currently at the Department of Internal Medicine III, University of Kiel, Germany
| | - Hugo A Katus
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Backs
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| |
Collapse
|
20
|
Xu YXZ, Bassi G, Mishra S. Prohibitin: a prime candidate for a pleiotropic effector that mediates sex differences in obesity, insulin resistance, and metabolic dysregulation. Biol Sex Differ 2019; 10:25. [PMID: 31118075 PMCID: PMC6530082 DOI: 10.1186/s13293-019-0239-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Adipocytes and macrophages, the two major constituents of adipose tissue, exhibit sex differences and work in synergy in adipose tissue physiology and pathophysiology, including obesity-linked insulin resistance and metabolic dysregulation. Sex steroid hormones play a major role in sex differences in adipose tissue biology. However, our knowledge of the molecules that mediate these effects in adipose tissue remains limited. Consequently, it remains unclear whether these effector molecules in different adipose and immune cell types are distinct or if there are also pleiotropic effectors. Recently, a protein named prohibitin (PHB) with cell compartment- and tissue-specific functions has been found to play a role in sex differences in adipose and immune functions. Transgenic (Tg) mouse models overexpressing PHB (PHB-Tg) and a phospho-mutant PHB (mPHB-Tg) from the fatty acid binding protein-4 (Fabp-4) gene promoter display sex-neutral obesity; however, obesity-related insulin resistance and metabolic dysregulation are male-specific. Intriguingly, with aging, the male PHB-Tg mice developed hepatic steatosis and subsequently liver tumors whereas the male mPHB-Tg mice developed lymph node tumors and splenomegaly. Unlike the male transgenic mice, the female PHB-Tg and mPHB-Tg mice remain protected from obesity-related metabolic dysregulation and tumor development. In conclusion, the sex-dimorphic metabolic and immune phenotypes of PHB-Tg and mPHB-Tg mice have revealed PHB as a pleiotropic effector of sex differences in adipose and immune functions. In this mini-review, we will discuss the pleiotropic attributes of PHB and potential mechanisms that may have contributed to the sex-dimorphic metabolic phenotypes in PHB-Tg and mPHB-Tg mice, which warrant future research. We propose that PHB is a prime candidate for a pleiotropic mediator of sex differences in adipose and immune functions in both physiology and pathophysiology, including obesity, insulin resistance, and metabolic dysregulation.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Geetika Bassi
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm. 843 JBRC/715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada. .,Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
21
|
Liang H, Xu L, Gao A, Shao Y, Yang S, Jiang Z, Ma W, Zhu S, Lin T, Zhang X. Upregulated protein O-GlcNAcylation promoted functional and structural recovery of the contused spinal cord injury in rats by Thiamet-G treatment. Neurol Res 2019; 41:780-790. [PMID: 31092134 DOI: 10.1080/01616412.2019.1611202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives-Elevated protein O-GlcNAcylation could benefit cell survival and promote organ functional recovery. Thiamet-G (O-GlcNAcase inhibitor) could upregulate protein O-GlcNAcylation level to improve dyskinesia in models of neurodegenerative diseases without any obvious detrimental side-effects. Therefore, we conducted this study to investigate the effects of protein O-GlcNAcylation upregulation by Thiamet-G on the spinal cord injury (SCI) in rats. Methods-We randomly assigned 74 rats to three groups: sham-operated group (Sham) with no lesion (n = 22), injured control group (SCI+SS) with saline solution (n = 26), and Thiamet-G treated group (SCI+Thiamet-G) (n = 26). We assessed Locomotor behavior using the Basso, Beattice, and Bresnahan (BBB) scale and evaluated histopathological alterations by morphometry and histochemistry. We also assessed potential inflammatory effects by microglia/macrophages immunohistochemistry, and potential apoptosis effects by caspase-3 western blot. Results-Thiamet-G treatment improved hindlimb motor functional recovery by inducing elevated protein O-GlcNAcylation, and mitigated the severity, reduced the lesion size and promoted the structural recovery of the injured spinal cord. Thiamet-G treatment also inhibited microglia/macrophages infiltration at the injury sites and the caspase-3 mediated apoptosis pathway. Discussion-We conclude that Thiamet-G induced elevated protein O-GlcNAcylation to ameliorate acute SCI, which could provide a potential novel therapeutic approach for SCI treatment.
Collapse
Affiliation(s)
- Hongsheng Liang
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Lin Xu
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China.,Department of Neurology, First Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Aili Gao
- Department of Neurosurgery, Zibo No.1 Hospital , Zi bo city , Shandong Province , China
| | - Yongxiang Shao
- School of Life Science, The Northeast Agricultural University , Harbin , China
| | - Shanshan Yang
- Department of Neurosurgery, The Second People's Hospital of Yibin , Sichuan , China
| | - Zhenfeng Jiang
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Wei Ma
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Shiyi Zhu
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Tie Lin
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China
| | - Xiangtong Zhang
- Department of Neurosurgery, First Affiliated Hospital, Harbin Medical University , Harbin , China
| |
Collapse
|
22
|
Jensen RV, Andreadou I, Hausenloy DJ, Bøtker HE. The Role of O-GlcNAcylation for Protection against Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20020404. [PMID: 30669312 PMCID: PMC6359045 DOI: 10.3390/ijms20020404] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 01/13/2023] Open
Abstract
Ischemia reperfusion injury (IR injury) associated with ischemic heart disease contributes significantly to morbidity and mortality. O-linked β-N-acetylglucosamine (O-GlcNAc) is a dynamic posttranslational modification that plays an important role in numerous biological processes, both in normal cell functions and disease. O-GlcNAc increases in response to stress. This increase mediates stress tolerance and cell survival, and is protective. Increasing O-GlcNAc is protective against IR injury. Experimental cellular and animal models, and also human studies, have demonstrated that protection against IR injury by ischemic preconditioning, and the more clinically applicable remote ischemic preconditioning, is associated with increases in O-GlcNAc levels. In this review we discuss how the principal mechanisms underlying tissue protection against IR injury and the associated immediate elevation of O-GlcNAc may involve attenuation of calcium overload, attenuation of mitochondrial permeability transition pore opening, reduction of endoplasmic reticulum stress, modification of inflammatory and heat shock responses, and interference with established cardioprotective pathways. O-GlcNAcylation seems to be an inherent adaptive cytoprotective response to IR injury that is activated by mechanical conditioning strategies.
Collapse
Affiliation(s)
- Rebekka Vibjerg Jensen
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Panepistimiopolis, 15771 Zografou, Greece.
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore.
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London W1T 7DN, UK.
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey 64849, Mexico.
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
23
|
O-deGlcNAcylation is required for Entamoeba histolytica-induced HepG2 cell death. Microb Pathog 2018; 123:285-295. [DOI: 10.1016/j.micpath.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
|
24
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|
25
|
Silva-Aguiar RP, Bezerra NCF, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, Takiya CM, Pinheiro AAS, Dias WB, Caruso-Neves C. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem 2018; 293:12749-12758. [PMID: 29954945 DOI: 10.1074/jbc.ra118.001746] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hypertensive individuals are at greater risk for developing chronic kidney disease (CKD). Reducing proteinuria has been suggested as a possible therapeutic approach to treat CKD. However, the mechanisms underlying the development of proteinuria in hypertensive conditions are incompletely understood. Cardiac and vascular dysfunction is associated with changes in the O-GlcNAcylation pathway in hypertensive models. We hypothesized that O-GlcNAcylation is also involved in renal damage, especially development of proteinuria, associated with hypertension. Using the spontaneously hypertensive rat (SHR) model, we observed higher renal cortex O-GlcNAcylation, glutamine-fructose aminotransferase (GFAT), and O-GlcNAc transferase (OGT) protein expression, which positively correlated with proteinuria. Interestingly, this was observed in hypertensive, but not pre-hypertensive, rats. Pharmacological inhibition of GFAT decreased renal cortex O-GlcNAcylation, proteinuria, and albuminuria in SHR. Using a proximal tubule cell line, we observed that increased O-GlcNAcylation reduced megalin surface expression and albumin endocytosis in vitro, and the effects were correlated in vivo Moreover, megalin is O-GlcNAcylated both in vitro and in vivo In conclusion, our results demonstrate a new mechanism involved in hypertension-associated proteinuria.
Collapse
Affiliation(s)
- Rodrigo Pacheco Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Nathália C F Bezerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Miguel C Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Gabriela M Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Roberto T Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa (INCT-Regenera), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
26
|
Satthenapalli VR, Lamberts RR, Katare RG. Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review. Stem Cells 2017; 35:2009-2026. [PMID: 28639375 DOI: 10.1002/stem.2661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022]
Abstract
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026.
Collapse
Affiliation(s)
- Venkata R Satthenapalli
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Rajesh G Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem Soc Trans 2017; 45:237-249. [PMID: 28202678 DOI: 10.1042/bst20160153] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O-GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O-GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O-GlcNAc, the mechanisms by which O-GlcNAc promotes cytoprotection, and the clinical significance of these data.
Collapse
|
28
|
Dassanayaka S, Brainard RE, Watson LJ, Long BW, Brittian KR, DeMartino AM, Aird AL, Gumpert AM, Audam TN, Kilfoil PJ, Muthusamy S, Hamid T, Prabhu SD, Jones SP. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 2017; 112:23. [PMID: 28299467 PMCID: PMC5555162 DOI: 10.1007/s00395-017-0612-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/-) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Robert E Brainard
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Lewis J Watson
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Angelica M DeMartino
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Allison L Aird
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Peter J Kilfoil
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
| | - Tariq Hamid
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA
- Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, 580 South Preston Street, Louisville, KY, 40202, USA.
| |
Collapse
|
29
|
Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res 2017; 10:150-166. [PMID: 28289983 DOI: 10.1007/s12265-017-9741-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Rome, Italy
| | - Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino", IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry, "Umberto I" Hospital, "La Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
30
|
Qin CX, Sleaby R, Davidoff AJ, Bell JR, De Blasio MJ, Delbridge LM, Chatham JC, Ritchie RH. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res 2016; 116:45-56. [PMID: 27988387 DOI: 10.1016/j.phrs.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, β-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia
| | - Rochelle Sleaby
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Amy J Davidoff
- University of New England, Biddeford, ME, 04072, United States
| | - James R Bell
- Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; School of BioSciences, University of Melbourne, VIC 3010, Australia
| | | | - John C Chatham
- University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia; Department of Medicine, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
31
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
32
|
Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 2016; 311:H1189-H1201. [PMID: 27591224 DOI: 10.1152/ajpheart.00904.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/25/2016] [Indexed: 01/23/2023]
Abstract
Despite expansion of resident cardiac stem cells (CSCs; c-kit+Lin-) after myocardial infarction, endogenous repair processes are insufficient to prevent adverse cardiac remodeling and heart failure (HF). This suggests that the microenvironment in post-ischemic and failing hearts compromises CSC regenerative potential. Inflammatory cytokines, such as tumor necrosis factor-α (TNF), are increased after infarction and in HF; whether they modulate CSC function is unknown. As the effects of TNF are specific to its two receptors (TNFRs), we tested the hypothesis that TNF differentially modulates CSC function in a TNFR-specific manner. CSCs were isolated from wild-type (WT), TNFR1-/-, and TNFR2-/- adult mouse hearts, expanded and evaluated for cell competence and differentiation in vitro in the absence and presence of TNF. Our results indicate that TNF signaling in murine CSCs is constitutively related primarily to TNFR1, with TNFR2 inducible after stress. TNFR1 signaling modestly diminished CSC proliferation, but, along with TNFR2, augmented CSC resistance to oxidant stress. Deficiency of either TNFR1 or TNFR2 did not impact CSC telomerase activity. Importantly, TNF, primarily via TNFR1, inhibited cardiomyogenic commitment during CSC differentiation, and instead promoted smooth muscle and endothelial fates. Moreover, TNF, via both TNFR1 and TNFR2, channeled an alternate CSC neuroadrenergic-like fate (capable of catecholamine synthesis) during differentiation. Our results suggest that elevated TNF in the heart restrains cardiomyocyte differentiation of resident CSCs and may enhance adrenergic activation, both effects that would reduce the effectiveness of endogenous cardiac repair and the response to exogenous stem cell therapy, while promoting adverse cardiac remodeling.
Collapse
Affiliation(s)
- Tariq Hamid
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Yuanyuan Xu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Mohamed Ameen Ismahil
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| |
Collapse
|
33
|
Wysoczynski M, Dassanayaka S, Zafir A, Ghafghazi S, Long BW, Noble C, DeMartino AM, Brittian KR, Bolli R, Jones SP. A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells. Front Cell Dev Biol 2016; 4:78. [PMID: 27536657 PMCID: PMC4971111 DOI: 10.3389/fcell.2016.00078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kit(pos) cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Sujith Dassanayaka
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Ayesha Zafir
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Shahab Ghafghazi
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Bethany W Long
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Camille Noble
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Angelica M DeMartino
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Kenneth R Brittian
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| | - Steven P Jones
- Institute of Molecular Cardiology, University of Louisville School of MedicineLouisville, KY, USA; Diabetes and Obesity Center, University of Louisville School of MedicineLouisville, KY, USA
| |
Collapse
|
34
|
Wang X, Feng Z, Wang X, Yang L, Han S, Cao K, Xu J, Zhao L, Zhang Y, Liu J. O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis. Diabetologia 2016; 59:1287-96. [PMID: 26993634 DOI: 10.1007/s00125-016-3919-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS O-GlcNAcylation is implicated in modulating mitochondrial function, which is closely involved in regulating muscle metabolism. The presence of O-GlcNAcase (OGA), the enzyme involved in the removal of O-GlcNAc, in mitochondria was recently confirmed in rats. In the present study, we investigated the regulation of myogenesis and muscle insulin sensitivity to OGA in mice, with a focus on mitochondria. METHODS C57BL/6J mice fed a high-fat diet for 4 months were used to observe mitochondrial density, activity and O-GlcNAcylation in muscle. Small interfering RNA and overexpression vectors were used to modulate protein content in vitro. RESULTS High-fat feeding decreased the OGA level and largely increased mitochondrial O-GlcNAcylation in mouse skeletal muscle that was accompanied by decreased levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), decreased mitochondrial density and disrupted mitochondrial complex activities. Knockdown of OGA in C2C12 myoblasts promoted PGC-1α degradation, resulting in the suppression of mitochondrial biogenesis and myogenesis, whereas neither knockdown of O-GlcNAc transferase nor overexpression of OGA had significant effects on myogenesis. Mitochondrial dysfunction as evidenced by decreased ATP content and increased reactive oxygen species production, and increased lipid and protein oxidation was observed in both myoblasts and myotubes after OGA knockdown. Meanwhile, elevated O-GlcNAcylation through either OGA knockdown or treatment with the OGA inhibitor PUGNAc and the O-GlcNAc transferase substrate D-GlcNAc suppressed myotube insulin signalling transduction and glucose uptake. OGA overexpression had no significant effect on insulin sensitivity but sufficiently improved the insulin resistance induced by D-GlcNAc treatment. CONCLUSIONS/INTERPRETATION These data suggest that OGA can modulate mitochondrial density via PGC-1α and mitochondrial function via protein O-GlcNAcylation. In this manner, OGA appears to play a key role in myogenesis and the development of muscle insulin resistance.
Collapse
Affiliation(s)
- Xun Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xueqiang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Liang Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shujun Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yong Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 300381, People's Republic of China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 300381, People's Republic of China.
| |
Collapse
|
35
|
Salabei JK, Lorkiewicz PK, Mehra P, Gibb AA, Haberzettl P, Hong KU, Wei X, Zhang X, Li Q, Wysoczynski M, Bolli R, Bhatnagar A, Hill BG. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 2016; 291:13634-48. [PMID: 27151219 DOI: 10.1074/jbc.m116.722496] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.
Collapse
Affiliation(s)
- Joshua K Salabei
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | | | - Parul Mehra
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Andrew A Gibb
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Petra Haberzettl
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Kyung U Hong
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Xiaoli Wei
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202
| | - Xiang Zhang
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202 Pharmacology and Toxicology, and
| | | | | | - Roberto Bolli
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Aruni Bhatnagar
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics
| | - Bradford G Hill
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics,
| |
Collapse
|
36
|
Lee HJ, Ryu JM, Jung YH, Lee KH, Kim DI, Han HJ. Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation. Cell Death Dis 2016; 7:e2158. [PMID: 27010859 PMCID: PMC4823928 DOI: 10.1038/cddis.2015.410] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
Abstract
Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation.
Collapse
Affiliation(s)
- H J Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 Creative Veterinary Research Center, Seoul National University, Seoul, Korea
| | - J M Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Y H Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 Creative Veterinary Research Center, Seoul National University, Seoul, Korea
| | - K H Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 Creative Veterinary Research Center, Seoul National University, Seoul, Korea
| | - D I Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 Creative Veterinary Research Center, Seoul National University, Seoul, Korea
| | - H J Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 Creative Veterinary Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Res Cardiol 2016; 111:13. [PMID: 26786260 DOI: 10.1007/s00395-016-0531-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/08/2016] [Indexed: 02/05/2023]
Abstract
SIRT6, a member of the NAD(+)-dependent class III deacetylase sirtuin family, has been revealed to play important roles in promoting cellular resistance against oxidative stress. The formation of reactive oxygen species (ROS) and oxidative stress are the crucial mechanisms underlying cellular damage and dysfunction in cardiac ischemia/reperfusion (I/R) injury, but the role of SIRT6 in I/R-induced ROS and oxidative stress is poorly understood. In this study, by using heterozygous SIRT6 knockout (SIRT6(+/-)) mice and cultured neonatal cardiomyocyte models, we investigated how SIRT6 mediates oxidative stress and myocardial injury during I/R. Partial knockout (KO) of SIRT6 aggravated myocardial damage, ventricular remodeling, and oxidative stress in mice subjected to myocardial I/R, whereas restoration of SIRT6 expression by direct cardiac injection of adenoviral constructs encoding SIRT6 reversed these deleterious effects of SIRT6 KO in the ischemic heart. In addition, partial deletion of the SIRT6 gene decreased myocardial functional recovery following I/R in a Langendorff perfusion model. Similarly, the protective effects of SIRT6 were also observed in cultured cardiomyocytes following hypoxia/reoxygenation. Intriguingly, SIRT6 was noticed to up-regulate AMP/ATP and then activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)-forkhead box O3α (FoxO3α) axis and further initiated the downstream antioxidant-encoding gene expression (manganese superoxide dismutase and catalase), thereby decreasing cellular levels of oxidative stress and mediating cardioprotection in the ischemic heart. These results suggest that SIRT6 protects the heart from I/R injury through FoxO3α activation in the ischemic heart in an AMP/ATP-induced AMPK-dependent way, thus upregulating antioxidants and suppressing oxidative stress.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu-Lei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Ming-ming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lu Gan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huali Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-si Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jia-Xiang Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Heng-yu Zhang
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan-xin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Jin-han He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
38
|
Zafir A, Bradley JA, Long BW, Muthusamy S, Li Q, Hill BG, Wysoczynski M, Prabhu SD, Bhatnagar A, Bolli R, Jones SP. O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells. PLoS One 2015; 10:e0142939. [PMID: 26565625 PMCID: PMC4643874 DOI: 10.1371/journal.pone.0142939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022] Open
Abstract
In both preclinical and clinical studies, cell transplantation of several cell types is used to promote repair of damaged organs and tissues. Nevertheless, despite the widespread use of such strategies, there remains little understanding of how the efficacy of cell therapy is regulated. We showed previously that augmentation of a unique, metabolically derived stress signal (i.e., O-GlcNAc) improves survival of cardiac mesenchymal stromal cells; however, it is not known whether enhancing O-GlcNAcylation affects lineage commitment or other aspects of cell competency. In this study, we assessed the role of O-GlcNAc in differentiation of cardiac mesenchymal stromal cells. Exposure of these cells to routine differentiation protocols in culture increased markers of the cardiomyogenic lineage such as Nkx2.5 and connexin 40, and augmented the abundance of transcripts associated with endothelial and fibroblast cell fates. Differentiation significantly decreased the abundance of O-GlcNAcylated proteins. To determine if O-GlcNAc is involved in stromal cell differentiation, O-GlcNAcylation was increased pharmacologically during the differentiation protocol. Although elevated O-GlcNAc levels did not significantly affect fibroblast and endothelial marker expression, acquisition of cardiomyocyte markers was limited. In addition, increasing O-GlcNAcylation further elevated smooth muscle actin expression. In addition to lineage commitment, we also evaluated proliferation and migration, and found that increasing O-GlcNAcylation did not significantly affect either; however, we found that O-GlcNAc transferase--the protein responsible for adding O-GlcNAc to proteins--is at least partially required for maintaining cellular proliferative and migratory capacities. We conclude that O-GlcNAcylation contributes significantly to cardiac mesenchymal stromal cell lineage and function. O-GlcNAcylation and pathological conditions that may affect O-GlcNAc levels (such as diabetes) should be considered carefully in the context of cardiac cell therapy.
Collapse
Affiliation(s)
- Ayesha Zafir
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - James A. Bradley
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Bethany W. Long
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Senthilkumar Muthusamy
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Qianhong Li
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradford G. Hill
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Sumanth D. Prabhu
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Aruni Bhatnagar
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Roberto Bolli
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Steven P. Jones
- Institute of Molecular Cardiology; Diabetes and Obesity Center, Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
39
|
Muthusamy S, Hong KU, Dassanayaka S, Hamid T, Jones SP. E2F1 Transcription Factor Regulates O-linked N-acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Expression. J Biol Chem 2015; 290:31013-24. [PMID: 26527687 DOI: 10.1074/jbc.m115.677534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Protein O-GlcNAcylation, which is controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), has emerged as an important posttranslational modification that may factor in multiple diseases. Until recently, it was assumed that OGT/OGA protein expression was relatively constant. Several groups, including ours, have shown that OGT and/or OGA expression changes in several pathologic contexts, yet the cis and trans elements that regulate the expression of these enzymes remain essentially unexplored. Here, we used a reporter-based assay to analyze minimal promoters and leveraged in silico modeling to nominate several candidate transcription factor binding sites in both Ogt (i.e. the gene for OGT protein) and Mgea5 (i.e. the gene for OGA protein). We noted multiple E2F binding site consensus sequences in both promoters. We performed chromatin immunoprecipitation in both human and mouse cells and found that E2F1 bound to candidate E2F binding sites in both promoters. In HEK293 cells, we overexpressed E2F1, which significantly reduced OGT and MGEA5 expression. Conversely, E2F1-deficient mouse fibroblasts had increased Ogt and Mgea5 expression. Of the known binding partners for E2F1, we queried whether retinoblastoma 1 (Rb1) might be involved. Rb1-deficient mouse embryonic fibroblasts showed increased levels of Ogt and Mgea5 expression, yet overexpression of E2F1 in the Rb1-deficient cells did not alter Ogt and Mgea5 expression, suggesting that Rb1 is required for E2F1-mediated suppression. In conclusion, this work identifies and validates some of the promoter elements for mouse Ogt and Mgea5 genes. Specifically, E2F1 negatively regulates both Ogt and Mgea5 expression in an Rb1 protein-dependent manner.
Collapse
Affiliation(s)
- Senthilkumar Muthusamy
- From the Institute of Molecular Cardiology and the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Kyung U Hong
- From the Institute of Molecular Cardiology and the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Sujith Dassanayaka
- From the Institute of Molecular Cardiology and the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Tariq Hamid
- From the Institute of Molecular Cardiology and the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| | - Steven P Jones
- From the Institute of Molecular Cardiology and the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
40
|
Affiliation(s)
- Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
41
|
Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2015; 10:25-38. [PMID: 26140508 PMCID: PMC4698356 DOI: 10.1002/prca.201500052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Cardiovascular complications are the leading cause of death in diabetic patients. Decades of research has focused on altered gene expression, altered cellular signaling, and altered metabolism. This work has led to better understanding of disease progression and treatments aimed at reversing or stopping this deadly process. However, one of the pieces needed to complete the puzzle and bridge the gap between altered gene expression and changes in signaling/metabolism is the proteome and its host of modifications. Defining the mechanisms of regulation includes examining protein levels, localization, and activity of the functional component of cellular machinery. Excess or misutilization of nutrients in obesity and diabetes may lead to PTMs contributing to cardiovascular disease progression. PTMs link regulation of metabolic changes in the healthy and diseased heart with regulation of gene expression itself (e.g. epigenetics), protein enzymatic activity (e.g. mitochondrial oxidative capacity), and function (e.g. contractile machinery). Although a number of PTMs are involved in each of these pathways, we will highlight the role of the serine and threonine O‐linked addition of β‐N‐acetyl‐glucosamine or O‐GlcNAcylation. This nexus of nutrient supply, utilization, and storage allows for the modification and translation of mitochondrial function to many other aspects of the cell.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
42
|
Medford HM, Marsh SA. The role of O-GlcNAc transferase in regulating the gene transcription of developing and failing hearts. Future Cardiol 2015; 10:801-12. [PMID: 25495821 DOI: 10.2217/fca.14.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heart failure treatment currently centers on symptom management, primarily through reductions in systemic blood pressure and fluid retention. The O-linked attachment of β-N-acetylglucosamine to cardiac proteins is increased in cardiovascular disease and heart failure, and O-GlcNAc transferase (OGT) is the enzyme that catalyzes this addition. Deletion of OGT is embryonically lethal, and cardiomyocyte-specific OGT knockdown causes the exacerbation of heart failure. Stem cell therapy is currently a major focus of heart failure research, and it was recently discovered that OGT is intricately involved with stem cell differentiation. This article focuses on the relationship of OGT with epigenetics and pluripotency, and integrates OGT with several emerging areas of heart failure research, including calcium signaling.
Collapse
Affiliation(s)
- Heidi M Medford
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | | |
Collapse
|
43
|
Liu GD, Xu C, Feng L, Wang F. The augmentation of O-GlcNAcylation reduces glyoxal-induced cell injury by attenuating oxidative stress in human retinal microvascular endothelial cells. Int J Mol Med 2015; 36:1019-27. [PMID: 26311324 PMCID: PMC4564096 DOI: 10.3892/ijmm.2015.2319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
It has recently been reported that O-linked β-N-acetyl glucosamine (O-GlcNAc) modification (a simple intracellular serine (Ser)/threonine (Thr)-linked monosaccharide) in human retinal microvascular endothelial cells (HRECs) is related to diabetic retinopathy (DR). During O-GlcNAcylation, O-GlcNAc is added to Ser and Thr residues. As the generation of reactive oxygen species (ROS) is one of the characteristics of advanced glycation end product (AGE) injury, and the most important key pathogenic factor of DR, in the present study, we aimed to investigate the association between O-GlcNAcylation and ROS generation in order to ascertain whether O-GlcNAcylation mitigates cellular injury through the generation of ROS. For this purpose, HRECs were divided into 4 groups as follows: HRECs treated with normal glucose (5 mM), HRECs treated with glyoxal (500 µM), glyoxal-treated HRECs also treated with 200 µM PUGNAc, and glyoxal-treated HRECs infected with O-GlcNAc transferase (OGT) siRNA. We detected increased O-GlcNAc levels and increased ROS production in the glyoxal-treated HRECs. The cellular redox status was determined by cellular ROS staining and by measuring the expression levels of the antioxidant genes, superoxide dismutase (SOD) and glutathione peroxidase (GPX). While the augmentation of O-GlcNAcylation following treatment with PUGNAc significantly attenuated the production of ROS (p<0.01) and increased the expression levels of SOD and GPX, the reduction of O-GlcNAcylation following infection with OGT siRNA, exacerbated the production of ROS (p<0.01) and decreased the expression of antioxidant genes. The effects of O-GlcNAcylation on the viability of HRECs were significant (p<0.01), particularly in the hydrogen peroxide (H2O2)-treated HRECs. Treatment with PUGNAc reduced glyoxal-induced cell apoptosis and transfection with OGT siRNA increased HREC apoptosis; these results were confirmed by flow cytometry and by the assessment of mitochondrial membrane potential. The augmentation of O-GlcNAcylation exerted cytoprotective effects on the HRECs by reducing the generation of ROS, increasing the expression of antioxidant genes, preventing the dissipation of mitochondrial membrane potential and preventing HREC apoptosis. Therefore, it can be concluded that O-GlcNAcylation plays a role in the early developmental process of DR.
Collapse
Affiliation(s)
- Guo Dong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Le Feng
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
44
|
High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation. Biochem J 2015; 467:115-26. [PMID: 25627821 DOI: 10.1042/bj20141018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is characterized by hyperglycaemia and perturbations in intermediary metabolism. In particular, diabetes can augment flux through accessory pathways of glucose metabolism, such as the hexosamine biosynthetic pathway (HBP), which produces the sugar donor for the β-O-linked-N-acetylglucosamine (O-GlcNAc) post-translational modification of proteins. Diabetes also promotes mitochondrial dysfunction. Nevertheless, the relationships among diabetes, hyperglycaemia, mitochondrial dysfunction and O-GlcNAc modifications remain unclear. In the present study, we tested whether high-glucose-induced increases in O-GlcNAc modifications directly regulate mitochondrial function in isolated cardiomyocytes. Augmentation of O-GlcNAcylation with high glucose (33 mM) was associated with diminished basal and maximal cardiomyocyte respiration, a decreased mitochondrial reserve capacity and lower Complex II-dependent respiration (P<0.05); however, pharmacological or genetic modulation of O-GlcNAc modifications under normal or high glucose conditions showed few significant effects on mitochondrial respiration, suggesting that O-GlcNAc does not play a major role in regulating cardiomyocyte mitochondrial function. Furthermore, an osmotic control recapitulated high-glucose-induced changes to mitochondrial metabolism (P<0.05) without increasing O-GlcNAcylation. Thus, increased O-GlcNAcylation is neither sufficient nor necessary for high-glucose-induced suppression of mitochondrial metabolism in isolated cardiomyocytes.
Collapse
|
45
|
Salabei JK, Lorkiewicz PK, Holden CR, Li Q, Hong KU, Bolli R, Bhatnagar A, Hill BG. Glutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation. Stem Cells 2015; 33:2613-27. [PMID: 25917428 DOI: 10.1002/stem.2047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/08/2015] [Accepted: 03/29/2015] [Indexed: 12/27/2022]
Abstract
Autologous transplantation of cardiac progenitor cells (CPCs) alleviates myocardial dysfunction in the damaged heart; however, the mechanisms that contribute to their reparative qualities remain poorly understood. In this study, we examined CPC metabolism to elucidate the metabolic pathways that regulate their proliferative capacity. In complete growth medium, undifferentiated CPCs isolated from adult mouse heart proliferated rapidly (Td = 13.8 hours). CPCs expressed the Glut1 transporter and their glycolytic rate was increased by high extracellular glucose (Glc) concentration, in the absence of insulin. Although high Glc concentrations did not stimulate proliferation, glutamine (Gln) increased CPC doubling time and promoted survival under conditions of oxidative stress. In comparison with Glc, pyruvate (Pyr) or BSA-palmitate, Gln, when provided as the sole metabolic substrate, increased ATP-linked and uncoupled respiration. Although fatty acids were not used as respiratory substrates when present as a sole carbon source, Gln-induced respiration was doubled in the presence of BSA-palmitate, suggesting that Gln stimulates fatty acid oxidation. Additionally, Gln promoted rapid phosphorylation of the mTORC1 substrate, p70S6k, as well as retinoblastoma protein, followed by induction of cyclin D1 and cdk4. Inhibition of either mTORC1 or glutaminolysis was sufficient to diminish CPC proliferation, and provision of cell permeable α-ketoglutarate in the absence of Gln increased both respiration and cell proliferation, indicating a key role of Gln anaplerosis in cell growth. These findings suggest that Gln, by enhancing mitochondrial function and stimulating mTORC1, increases CPC proliferation, and that interventions to increase Gln uptake or oxidation may improve CPC therapy.
Collapse
Affiliation(s)
- Joshua K Salabei
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | - Pawel K Lorkiewicz
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA
| | - Candice R Holden
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Qianhong Li
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Aruni Bhatnagar
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.,Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Bradford G Hill
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky, USA.,Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.,Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
46
|
García AN, Sanz-Ruiz R, Santos MEF, Fernández-Avilés F. “Second-generation” stem cells for cardiac repair. World J Stem Cells 2015; 7:352-367. [PMID: 25815120 PMCID: PMC4369492 DOI: 10.4252/wjsc.v7.i2.352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Over the last years, stem cell therapy has emerged as an inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a “second generation” of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.
Collapse
|
47
|
Taghavi S, Sharp TE, Duran JM, Makarewich CA, Berretta RM, Starosta T, Kubo H, Barbe M, Houser SR. Autologous c-Kit+ Mesenchymal Stem Cell Injections Provide Superior Therapeutic Benefit as Compared to c-Kit+ Cardiac-Derived Stem Cells in a Feline Model of Isoproterenol-Induced Cardiomyopathy. Clin Transl Sci 2015; 8:425-31. [PMID: 25684108 DOI: 10.1111/cts.12251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cardiac- (CSC) and mesenchymal-derived (MSC) CD117+ isolated stem cells improve cardiac function after injury. However, no study has compared the therapeutic benefit of these cells when used autologously. METHODS MSCs and CSCs were isolated on day 0. Cardiomyopathy was induced (day 28) by infusion of L-isoproterenol (1,100 ug/kg/hour) from Alzet minipumps for 10 days. Bromodeoxyuridine (BrdU) was infused via minipumps (50 mg/mL) to identify proliferative cells during the injury phase. Following injury (day 38), autologous CSC (n = 7) and MSC (n = 4) were delivered by intracoronary injection. These animals were compared to those receiving sham injections by echocardiography, invasive hemodynamics, and immunohistochemistry. RESULTS Fractional shortening improved with CSC (26.9 ± 1.1% vs. 16.1 ± 0.2%, p = 0.01) and MSC (25.1 ± 0.2% vs. 12.1 ± 0.5%, p = 0.01) as compared to shams. MSC were superior to CSC in improving left ventricle end-diastolic (LVED) volume (37.7 ± 3.1% vs. 19.9 ± 9.4%, p = 0.03) and ejection fraction (27.7 ± 0.1% vs. 19.9 ± 0.4%, p = 0.02). LVED pressure was less in MSC (6.3 ± 1.3 mmHg) as compared to CSC (9.3 ± 0.7 mmHg) and sham (13.3 ± 0.7); p = 0.01. LV BrdU+ myocytes were higher in MSC (0.17 ± 0.03%) than CSC (0.09 ± 0.01%) and sham (0.06 ± 01%); p < 0.001. CONCLUSIONS Both CD117+ isolated CSC and MSC therapy improve cardiac function and attenuate pathological remodeling. However, MSC appear to confer additional benefit.
Collapse
Affiliation(s)
- Sharven Taghavi
- Temple University Hospital, Department of Surgery, Philadelphia, Pennsylvania, USA.,Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Thomas E Sharp
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Jason M Duran
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Catherine A Makarewich
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Remus M Berretta
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Tim Starosta
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Hajime Kubo
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| | - Mary Barbe
- Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven R Houser
- Temple University School of Medicine, Cardiovascular Research Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Schaffer SW, Ramila KC, Jong CJ, Shetewy A, Shimada K, Ito T, Azuma J, Cioffi E. Does taurine prolong lifespan by improving heart function? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:555-70. [PMID: 25833527 DOI: 10.1007/978-3-319-15126-7_45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stephen W Schaffer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nagel AK, Ball LE. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 2015; 126:137-66. [PMID: 25727147 DOI: 10.1016/bs.acr.2014.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.
Collapse
|
50
|
Peternelj TT, Marsh SA, Morais C, Small DM, Dalbo VJ, Tucker PS, Coombes JS. O-GlcNAc protein modification in C2C12 myoblasts exposed to oxidative stress indicates parallels with endogenous antioxidant defense. Biochem Cell Biol 2014; 93:63-73. [PMID: 25453190 DOI: 10.1139/bcb-2014-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A growing body of evidence demonstrates the involvement of protein modification with O-linked β-N-acetylglucosamine (O-GlcNAc) in the stress response and its beneficial effects on cell survival. Here we investigated protein O-GlcNAcylation in skeletal muscle cells exposed to oxidative stress and the crosstalk with endogenous antioxidant system. The study focused on antioxidant enzymes superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPX1), and transcriptional regulators proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and forkhead box protein O1 (FOXO1), which play important roles in oxidative stress response and are known to be O-GlcNAc-modified. C2C12 myoblasts were subjected to 24 h incubation with different reagents, including hydrogen peroxide, diethyl maleate, high glucose, and glucosamine, and the inhibitors of O-GlcNAc cycling enzymes. Surprisingly, O-GlcNAc levels were significantly increased only with glucosamine, whilst other treatments showed no effect. Significant changes at the mRNA level were observed with concomitant upregulation of the genes for O-GlcNAc enzymes and stress-related proteins with oxidizing agents and downregulation of these genes with agents promoting O-GlcNAcylation. Our findings suggest a role of O-GlcNAc in the stress response and indicate an inhibitory mechanism controlling O-GlcNAc levels in the muscle cells. This could represent an important homeostatic regulation of the cellular defense system.
Collapse
Affiliation(s)
- Tina Tinkara Peternelj
- a Antioxidant Research Group, School of Human Movement Studies, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|