1
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
2
|
Wu J, Yan X, Cheng Z. ABI3BP can inhibit the proliferation, invasion, and epithelial-mesenchymal transition of non-small-cell lung cancer cells. Open Life Sci 2025; 20:20221034. [PMID: 40092729 PMCID: PMC11909574 DOI: 10.1515/biol-2022-1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 03/19/2025] Open
Abstract
Lung cancer, especially non-small-cell lung cancer (NSCLC), has a poor 5-year survival rate below 20%, with factors like smoking, air pollution, and genetic mutations contributing to its development. ABI3BP, an extracellular matrix protein, inhibits NSCLC progression by regulating key signaling pathways; however, its exact mechanisms remain elusive. This study aimed to explore ABI3BP's role in NSCLC and its impact on these pathways. We found that ABI3BP expression was significantly reduced in NSCLC cells compared to normal controls. Overexpression of ABI3BP in NSCLC cells resulted in a substantial reduction in cell growth and motility and induced cell cycle arrest. Furthermore, its overexpression suppressed the epithelial-mesenchymal transition (EMT) process in NSCLC cells. In addition, ABI3BP overexpression inhibited the MAPK/ERK pathway in NSCLC cells. Collectively, ABI3BP functions as a tumor suppressor in NSCLC by targeting the MAPK/ERK axis, thereby regulating cell proliferation, motility, and EMT. These findings suggest that ABI3BP represents a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Jian Wu
- Uroth-thoracic surgery, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39 Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215100, China
| | - Xiaokun Yan
- Uroth-thoracic surgery, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39 Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215100, China
| | - Zewen Cheng
- Uroth-thoracic surgery, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39 Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215100, China
| |
Collapse
|
3
|
Sun H, Wang X, Pratt RE, Dzau VJ, Hodgkinson CP. C166 EVs potentiate miR cardiac reprogramming via miR-148a-3p. J Mol Cell Cardiol 2024; 190:48-61. [PMID: 38582260 DOI: 10.1016/j.yjmcc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
We have demonstrated that directly reprogramming cardiac fibroblasts into new cardiomyocytes via miR combo improves cardiac function in the infarcted heart. However, major challenges exist with delivery and efficacy. During a screening based approach to improve delivery, we discovered that C166-derived EVs were effective delivery agents for miR combo both in vitro and in vivo. In the latter, EV mediated delivery of miR combo induced significant conversion of cardiac fibroblasts into cardiomyocytes (∼20%), reduced fibrosis and improved cardiac function in a myocardial infarction injury model. When compared to lipid-based transfection, C166 EV mediated delivery of miR combo enhanced reprogramming efficacy. Improved reprogramming efficacy was found to result from a miRNA within the exosome: miR-148a-3p. The target of miR-148a-3p was identified as Mdfic. Over-expression and targeted knockdown studies demonstrated that Mdfic was a repressor of cardiomyocyte specific gene expression. In conclusion, we have demonstrated that C166-derived EVs are an effective method for delivering reprogramming factors to cardiac fibroblasts and we have identified a novel miRNA contained within C166-derived EVs which enhances reprogramming efficacy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Hubei Province, China
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America.
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
4
|
Kim HY, Charton C, Shim JH, Lim SY, Kim J, Lee S, Ohn JH, Kim BK, Heo CY. Patient-Derived Organoids Recapitulate Pathological Intrinsic and Phenotypic Features of Fibrous Dysplasia. Cells 2024; 13:729. [PMID: 38727265 PMCID: PMC11083396 DOI: 10.3390/cells13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Clémentine Charton
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
| | - Jung Hee Shim
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - So Young Lim
- Department of Plastic and Reconstructive Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13605, Republic of Korea; (C.C.); (J.K.); (S.L.)
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Baek Kyu Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Chan Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
5
|
Kari D, Mijiti P, Zou S, Zhang P. Study on the correlation between suicidal ideation and ABI3BP gene、DPYSL2 gene methylation in pediatric bipolar disorder with depressive episode. Heliyon 2024; 10:e23680. [PMID: 38226278 PMCID: PMC10788454 DOI: 10.1016/j.heliyon.2023.e23680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Patients with bipolar disorder have a higher risk of suicide than the general population. This study aimed to explore the correlation between suicide and gene methylation, as screened by genome-wide scanning, in children and adolescents with bipolar disorder. A total of 45 children and adolescents with bipolar disorder were divided into a suicidal ideation group (n = 41), a non-suicidal ideation group (n = 4), a low-risk group (n = 12), and a middle-to-high-risk group (n = 33). A pre-experiment was conducted on the suicidal ideation (n = 6) and non-suicidal ideation groups (n = 4). Blood samples were scanned using an Illumina HD 850K microarray, and methylation levels were analysed. Differential methylation sites among the sample groups were screened from the original data, and genes related to suicide were identified. Methylation of the ABI3BP and DPYSL2 genes was detected by pyrophosphate sequencing and statistically analysed. There was a significant difference in age between the low- and middle-risk groups. The results of GO analysis for the suicidal ideation and non-suicidal ideation groups showed that the differential methylation sites were mainly involved in the interferon-γ-mediated signalling pathway, with the main signalling pathways being the inflammatory bowel disease (IBD) pathway and type 1 diabetes mellitus (T1DM) pathway. There were significant differences in the methylation of ABI3BP, HLA-DQB1, HLA-DRB1, AUTS2, SP3, NINJ2, DPYSL2, and other genes between the suicidal and non-suicidal ideation groups. There was also a statistically significant difference in the gene methylation levels between the two groups. However, there was no significant difference in the degree of methylation of the ABI3BP and DPYSL2 genes between the low- and middle-to-high-risk groups. These results suggest that suicidal ideation is correlated with the methylation levels of differentially methylated genes in children with bipolar disorder. However, the severity of suicide risk in paediatric patients with bipolar disorder may not be correlated with the degree of methylation of the ABI3BP and DPYSL2 genes. Therefore, further validation was required.
Collapse
Affiliation(s)
- Dilinazi Kari
- Department of Clinical Psychology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi Xinjiang, 830001, China
| | - Peierdun Mijiti
- Department of Epidemiology and Biostatistics, School of Public Health, Urumqi Xinjiang, 830001, China
| | - Shaohong Zou
- Department of Clinical Psychology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi Xinjiang, 830001, China
| | - Peiwen Zhang
- Medical College, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
6
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
7
|
Li M, Cong R, Wang H, Ma C, Lv Y, Zheng Y, Zhao Y, Fu Q, Li L. What happens to the osteoporotic bone mesenchymal stem cells? Evidence from RNA sequencing. Int J Med Sci 2024; 21:95-106. [PMID: 38164361 PMCID: PMC10750345 DOI: 10.7150/ijms.88146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Evidence presented that osteoporosis is closely related to the dysfunction of bone mesenchymal stem cells (BMSCs). But most studies are insufficient to reveal what actually happens to the osteoporotic BMSCs. In this study, BMSCs were harvested from ovariectomized and sham-operated rats. After checking the characteristics of rat models and stem cells, the BMSCs were carried out for RNA sequencing. Part of the findings were verified that seven mRNAs (Abi3bp, Aifm3, Ccl11, Cdkn1c, Chst10, Id2, Vcam1) were significantly up-regulated in osteoporotic BMSCs while seven mRNAs (Cep63, Fgfr3, Myc, Omd, Pou2f1, Smarcal1, Timm10b) were down-regulated. In addition, potential miRNA-mRNA and lncRNA-mRNA regulatory networks were illustrated. The changes in osteoporotic BMSCs covered a large set of biological processes, including cell viability, differentiation, immunoreaction, bone repairment and estrogen defect. This study enriched the pathophysiological mechanisms of BMSCs and osteporosis, as well as provided dozens of attractive RNA targets for further treatment.
Collapse
Affiliation(s)
- Mingyang Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Rong Cong
- Senior Department of Obstetrics & Gynecology, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Huadong Wang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Chao Ma
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yongwei Lv
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yang Zheng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, China
| |
Collapse
|
8
|
Sun H, Pratt RE, Dzau VJ, Hodgkinson CP. Neonatal and adult cardiac fibroblasts exhibit inherent differences in cardiac regenerative capacity. J Biol Chem 2023; 299:104694. [PMID: 37044217 DOI: 10.1016/j.jbc.2023.104694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Directly reprogramming fibroblasts into cardiomyocytes improves cardiac function in the infarcted heart. However, the low efficacy of this approach hinders clinical applications. Unlike the adult mammalian heart, the neonatal heart has an intrinsic regenerative capacity. Consequently, we hypothesized that birth imposes fundamental changes on cardiac fibroblasts which limit their regenerative capabilities. In support, we found that reprogramming efficacy in vitro was markedly lower with fibroblasts derived from adult mice versus those derived from neonatal mice. Notably, fibroblasts derived from adult mice expressed significantly higher levels of pro-angiogenic genes. Moreover, under conditions which promote angiogenesis, only fibroblasts derived from adult mice differentiated into tube-like structures. Targeted knockdown screening studies suggested a possible role for the transcription factor Epas1. Epas1 expression was higher in fibroblasts derived from adult mice and Epas1 knockdown improved reprogramming efficacy in cultured adult cardiac fibroblasts. Promoter activity assays indicated that Epas1 functions as both a transcription repressor and activator, inhibiting cardiomyocyte genes while activating angiogenic genes. Finally, the addition of an Epas1 targeting siRNA to the reprogramming cocktail markedly improved reprogramming efficacy in vivo with both the number of reprogramming events as well as cardiac function being markedly improved. Collectively, our results highlight differences between neonatal and adult cardiac fibroblasts and the dual transcriptional activities of Epas1 related to reprogramming efficacy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Hubei Province, China
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710.
| |
Collapse
|
9
|
Guerrero J, Maevskaia E, Ghayor C, Bhattacharya I, Weber FE. Influence of Scaffold Microarchitecture on Angiogenesis and Regulation of Cell Differentiation during the Early Phase of Bone Healing: A Transcriptomics and Histological Analysis. Int J Mol Sci 2023; 24:ijms24066000. [PMID: 36983073 PMCID: PMC10056849 DOI: 10.3390/ijms24066000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The early phase of bone healing is a complex and poorly understood process. With additive manufacturing, we can generate a specific and customizable library of bone substitutes to explore this phase. In this study, we produced tricalcium phosphate-based scaffolds with microarchitectures composed of filaments of 0.50 mm in diameter, named Fil050G, and 1.25 mm named Fil125G, respectively. The implants were removed after only 10 days in vivo followed by RNA sequencing (RNAseq) and histological analysis. RNAseq results revealed upregulation of adaptive immune response, regulation of cell adhesion, and cell migration-related genes in both of our two constructs. However, significant overexpression of genes linked to angiogenesis, regulation of cell differentiation, ossification, and bone development was observed solely in Fil050G scaffolds. Moreover, quantitative immunohistochemistry of structures positive for laminin revealed a significantly higher number of blood vessels in Fil050G samples. Furthermore, µCT detected a higher amount of mineralized tissue in Fil050G samples suggesting a superior osteoconductive potential. Hence, different filament diameters and distances in bone substitutes significantly influence angiogenesis and regulation of cell differentiation involved in the early phase of bone regeneration, which precedes osteoconductivity and bony bridging seen in later phases and as consequence, impacts the overall clinical outcome.
Collapse
Affiliation(s)
- Julien Guerrero
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Ekaterina Maevskaia
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
10
|
Feng Y, Tao F, Qiao H, Tang H. A pan-cancer analysis of ABI3BP: a potential biomarker for prognosis and immunoinfiltration. Front Oncol 2023; 13:1159725. [PMID: 37197424 PMCID: PMC10183607 DOI: 10.3389/fonc.2023.1159725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Objective ABI Family Member 3 Binding Protein (ABI3BP) is an extracellular matrix protein that affects the carcinogenesis of lung and esophageal cancer. However, the relevance of ABI3BP in different forms of cancer is uncertain. Methods ABI3BP expression was interpreted using the Cancer Genome Atlas (TCGA) database, the Genotype Tissue Expression Atlas (GTEx) database, the Human Protein Atlas (HPA) database, the Cancer Cell Line Encyclopedia (CCLE) database, and immunohistochemistry. The R programming language was used to analyze the association between ABI3BP expression and patient prognosis and evaluate the relationship between ABI3BP and the immune characteristics of tumors. Using the GDSC and CTRP databases, a drug sensitivity analysis of ABI3BP was conducted. Results ABI3BP mRNA expression was shown by differential analysis to be down-regulated in 16 tumor types relative to normal tissues, corresponding with its protein expression level as determined by immunohistochemistry. Abnormal expression of ABI3BP accurately predicts the prognosis of patients with renal chromophobe carcinoma (KICH), mesothelioma (MESO), and pancreatic adenocarcinoma (PAAD). Meanwhile, aberrant expression of ABI3BP was associated with immune checkpoints, TMB, MSI, tumor purity, HRD, LOH, and drug sensitivity. A correlation between ABI3BP expression and the amount of infiltration of several immune-related cells in pan-cancer was determined by Immune Score, Stromal Score, and Estimated Score. Conclusion Our results show that ABI3BP might be employed as a molecular biomarker to predict prognosis, treatment susceptibility, and immunological response in patients with pan-cancer.
Collapse
Affiliation(s)
- Yan Feng
- Department of Respiratory Medicine, Qingdao University, Qingdao, China
| | - Fengying Tao
- Department of Oncology Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Han Qiao
- Department of Respiratory Medicine, Qingdao University, Qingdao, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- *Correspondence: Huaping Tang,
| |
Collapse
|
11
|
Epstein-Barr virus-induced gene 3 commits human mesenchymal stem cells to differentiate into chondrocytes via endoplasmic reticulum stress sensor. PLoS One 2022; 17:e0279584. [PMID: 36548354 PMCID: PMC9778607 DOI: 10.1371/journal.pone.0279584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1β inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1β and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1β, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.
Collapse
|
12
|
Xiao L, Zhu J, Liu Z, Wu B, Zhou X, Wei Y, Sun F, Wang Z, Quan S, Li Q, Wang J, Huang L, Ma Y. Different transcriptional profiles of human embryonic stem cells grown in a feeder-free culture system and on human foreskin fibroblast feeder layers. Aging (Albany NY) 2022; 14:7443-7454. [PMID: 36103219 PMCID: PMC9550256 DOI: 10.18632/aging.204282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Feeder cells provide an optimal microenvironment for the propagation of human embryonic stem cells (hESCs) by supplying currently known or unknown factors. However, the hESCs grown on feeder cells are not suitable for the purpose of clinical application because of the risk of contamination. In recent years, the feeder-free culture method has been developed to eliminate contamination, but some studies show that hESCs exhibit poor growth patterns in a feeder-free culture system. Regarding this phenomenon, we speculate that some genes related to hESC propagation were differently expressed in hESCs grown on feeder cells. To test this hypothesis, 3 hESC lines (NF4, NF5 and P096) were efficiently expanded in a feeder-free culture system or on human foreskin fibroblast (HFF) cells. The different gene expression patterns of hESCs in these 2 conditions were analyzed through microarrays. The results revealed that the hESCs cultured in both conditions maintained the expression of stemness markers and the ability to spontaneously differentiate into the 3 germ layers. The analysis of gene expression profiles revealed that 23 lncRNA and 15 genes were significantly differentially expressed in these two culture conditions. Furthermore, GO analyses showed that these genes were involved in such biological processes as growth factor stimuli, cell growth, and stem cell maintenance. To summarize, our study demonstrated that the hESCs grown on the HFF showed different gene expression patterns compared to those grown in a feeder-free culture system, suggesting that these differently expressed lncRNAs and genes played important roles in maintaining hESC propagation.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Juan Zhu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Bangyong Wu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Xiaohua Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| | - Jun Wang
- Center for Molecular Development and Disease, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Reproductive Medical Center, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 570102, Hainan, China
| |
Collapse
|
13
|
Conservation of miR combo based direct cardiac reprogramming. Biochem Biophys Rep 2022; 31:101310. [DOI: 10.1016/j.bbrep.2022.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
|
14
|
Brown KM, Xue A, Smith RC, Samra JS, Gill AJ, Hugh TJ. Cancer-associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases. Cancer Med 2022; 11:492-506. [PMID: 34874125 PMCID: PMC8729056 DOI: 10.1002/cam4.4452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Cancer-associated stroma (CAS) is emerging as a key determinant of metastasis in colorectal cancer (CRC); however, little is known about CAS in colorectal liver metastases (CRLM). This study aimed to validate the prognostic significance of stromal protein biomarkers in primary CRC and CRLM. Secondly, this study aimed to describe the transcriptome of the CAS of CRLM and identify novel targetable pathways of metastasis. METHODS A case-control study design from a prospectively maintained database was adopted. The prognostic value of epithelial and stromal CALD1, IGFBP7, POSTN, FAP, TGF-β and pSMAD2 expression was assessed by immunohistochemistry (IHC) in multivariate models. Pathway enrichment and sparse partial least square-discriminant analysis (sPLS-DA) were performed on a nested cohort after isolating epithelial tumour and CAS by laser capture microdissection. RESULTS 110 CRCs with 124 paired CRLMs, and 110 matched non-metastatic control CRCs were included. Median follow-up was 62 and 45 months for primary and CRLM groups, respectively. Stromal FAP and POSTN were independent predictors for the development of CRLM. After CRLM resection, stromal IGFBP7 and POSTN were predictors of poorer survival. sPLS-DA on the nested cohort identified a number of novel targetable stromal genes and pathways that defined poor prognosis CRC and the CAS of CRLM. CONCLUSIONS This study is the first to describe key differences in stromal gene expression between paired primary CRC and CRLM as well as identifying several targetable biomarkers and transcriptomic pathways whose relevance specifically in the CAS of CRC and CRLM have not been previously described.
Collapse
Affiliation(s)
- Kai M. Brown
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Upper GI Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Ross C. Smith
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Jaswinder S. Samra
- Upper GI Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
- Cancer Diagnosis and Pathology GroupUniversity of SydneyKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Thomas J. Hugh
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Upper GI Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
15
|
Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training. Sci Rep 2021; 11:23930. [PMID: 34907264 PMCID: PMC8671437 DOI: 10.1038/s41598-021-03393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.
Collapse
|
16
|
Liu S, Miyaji M, Hosoya O, Matsuo T. Effect of NK-5962 on Gene Expression Profiling of Retina in a Rat Model of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms222413276. [PMID: 34948073 PMCID: PMC8703378 DOI: 10.3390/ijms222413276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose: NK-5962 is a key component of photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis (OUReP™). Previously, we found that NK-5962 solution could reduce the number of apoptotic photoreceptors in the eyes of the Royal College of Surgeons (RCS) rats by intravitreal injection under a 12 h light/dark cycle. This study aimed to explore possible molecular mechanisms underlying the anti-apoptotic effect of NK-5962 in the retina of RCS rats. Methods: RCS rats received intravitreal injections of NK-5962 solution in the left eye at the age of 3 and 4 weeks, before the age of 5 weeks when the speed in the apoptotic degeneration of photoreceptors reaches its peak. The vehicle-treated right eyes served as controls. All rats were housed under a 12 h light/dark cycle, and the retinas were dissected out at the age of 5 weeks for RNA sequence (RNA-seq) analysis. For the functional annotation of differentially expressed genes (DEGs), the Metascape and DAVID databases were used. Results: In total, 55 up-regulated DEGs, and one down-regulated gene (LYVE1) were found to be common among samples treated with NK-5962. These DEGs were analyzed using Gene Ontology (GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. We focused on the up-regulated DEGs that were enriched in extracellular matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. These terms and pathways may relate to mechanisms to protect photoreceptor cells. Moreover, our analyses suggest that SERPINF1, which encodes pigment epithelium-derived factor (PEDF), is one of the key regulatory genes involved in the anti-apoptotic effect of NK-5962 in RCS rat retinas. Conclusions: Our findings suggest that photoelectric dye NK-5962 may delay apoptotic death of photoreceptor cells in RCS rats by up-regulating genes related to extracellular matrix organization, extracellular exosome, and PI3K–Akt signaling pathways. Overall, our RNA-seq and bioinformatics analyses provide insights in the transcriptome responses in the dystrophic RCS rat retinas that were induced by NK-5962 intravitreal injection and offer potential target genes for developing new therapeutic strategies for patients with retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama City 700-8558, Japan;
| | - Mary Miyaji
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City 700-8558, Japan; (M.M.); (O.H.)
| | - Osamu Hosoya
- Department of Medical Neurobiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City 700-8558, Japan; (M.M.); (O.H.)
| | - Toshihiko Matsuo
- Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama City 700-8558, Japan;
- Correspondence:
| |
Collapse
|
17
|
Transcriptomic Profile of New Gene Markers Encoding Proteins Responsible for Structure of Porcine Ovarian Granulosa Cells. BIOLOGY 2021; 10:biology10111214. [PMID: 34827207 PMCID: PMC8615192 DOI: 10.3390/biology10111214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary The extracellular matrix (ECM) is involved in many physiological processes that occur in the ovary and affect reproduction in animals and humans. The ECM has been shown to significantly affect folliculogenesis, ovulation, and corpus luteum formation. This is mainly due to the involvement of ECM in intercellular signaling. In the present study, we report the gene expression profile of porcine granulosa cells during their primary in vitro culture. The genes presented are related to ECM formation but also to cadherins and integrins that influence intercellular dialogue. During the study, it was shown that most of the genes were upregulated. A detailed understanding of the expression of genes such as POSTN, CHI3L1, CAV-1, IRS1, DCN in in vitro culture of granulosa cells may provide a basis for further studies on the molecular mechanisms occurring within the ovary. Knowledge of ECM-related gene expression within granulosa cells can also be used to study the recently discovered stemness of these cells. Moreover, the presented data may serve for the development of assisted reproduction techniques, which, especially in vitro, are becoming increasingly common. Abstract The extracellular matrix (ECM) in granulosa cells is functionally very important, and it is involved in many processes related to ovarian follicle growth and ovulation. The aim of this study was to describe the expression profile of genes within granulosa cells that are associated with extracellular matrix formation, intercellular signaling, and cell–cell fusion. The material for this study was ovaries of sexually mature pigs obtained from a commercial slaughterhouse. Laboratory-derived granulosa cells (GCs) from ovarian follicles were cultured in a primary in vitro culture model. The extracted genetic material (0, 48, 96, and 144 h) were subjected to microarray expression analysis. Among 81 genes, 66 showed increased expression and only 15 showed decreased expression were assigned to 7 gene ontology groups “extracellular matrix binding”, “extracellular matrix structural constituent”, “binding, bridging”, “cadherin binding”, “cell adhesion molecule binding”, “collagen binding” and “cadherin binding involved in cell-cell adhesion”. The 10 genes with the highest expression (POSTN, ITGA2, FN1, LAMB1, ITGB3, CHI3L1, PCOLCE2, CAV1, DCN, COL14A1) and 10 of the most down-regulated (SPP1, IRS1, CNTLN, TMPO, PAICS, ANK2, ADAM23, ABI3BP, DNAJB1, IGF1) were selected for further analysis. The results were validated by RT-qPCR. The current results may serve as preliminary data for further analyses using in vitro granulosa cell cultures in assisted reproduction technologies, studies of pathological processes in the ovary as well as in the use of the stemness potential of GCs.
Collapse
|
18
|
Xiong Y, Xi S, Gara SK, Shan J, Gao J, Zhang M, Shukla V, Wang R, Hoang CD, Chen H, Schrump DS. Hookah Smoke Mediates Cancer-Associated Epigenomic and Transcriptomic Signatures in Human Respiratory Epithelial Cells. JTO Clin Res Rep 2021; 2:100181. [PMID: 34790904 PMCID: PMC8479631 DOI: 10.1016/j.jtocrr.2021.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Although communal smoking of hookah by means of water pipes is perceived to be a safe alternative to cigarette smoking, the effects of hookah smoke in respiratory epithelia have not been well characterized. This study evaluated epigenomic and transcriptomic effects of hookah smoke relative to cigarette smoke in human respiratory epithelial cells. Methods Primary normal human small airway epithelial cells from three donors and cdk4 and hTERT-immortalized small airway epithelial cells and human bronchial epithelial cells were cultured for 5 days in normal media with or without cigarette smoke condensates (CSCs) or water pipe condensates (WPCs). Cell count, immunoblot, RNA sequencing, quantitative real-time reverse-transcriptase polymerase chain reaction, methylation-specific polymerase chain reaction, and quantitative chromatin immunoprecipitation techniques were used to compare effects of hookah and cigarette smoke on cell proliferation, global histone marks, gene expression, and promoter-related chromatin structure. Results CSC and WPC decreased global H4K16ac and H4K20me3 histone marks and mediated distinct and overlapping cancer-associated transcriptome signatures and pathway modulations that were cell line dependent and stratified across lung cancer cells in a histology-specific manner. Epiregulin encoding a master regulator of EGFR signaling that is overexpressed in lung cancers was up-regulated, whereas FILIP1L and ABI3BP encoding mediators of senescence that are repressed in lung cancers were down-regulated by CSC and WPC. Induction of epiregulin and repression of FILIP1L and ABI3BP by these condensates coincided with unique epigenetic alterations within the respective promoters. Conclusions These findings support translational studies to ascertain if hookah-mediated epigenomic and transcriptomic alterations in cultured respiratory epithelia are detectable and clinically relevant in hookah smokers.
Collapse
Affiliation(s)
- Yin Xiong
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sudheer Kumar Gara
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jigui Shan
- The Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James Gao
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ruihong Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
19
|
Mok CH, MacLeod JN. Kinetics of Gene Expression Changes in Equine Fetal Interzone and Anlagen Cells Over 14 Days of Induced Chondrogenesis. Front Vet Sci 2021; 8:722324. [PMID: 34434986 PMCID: PMC8380811 DOI: 10.3389/fvets.2021.722324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Within developing synovial joints, interzone and anlagen cells progress through divergent chondrogenic pathways to generate stable articular cartilage and transient hypertrophic anlagen cartilage, respectively. Understanding the comparative cell biology between interzone and anlagen cells may provide novel insights into emergent cell-based therapies to support articular cartilage regeneration. The aim of this study was to assess the kinetics of gene expression profiles in these skeletal cell lines after inducing chondrogenesis in culture. Interzone and anlagen cells from seven equine fetuses were isolated and grown in a TGF-β1 chondrogenic inductive medium. Total RNA was isolated at ten time points (0, 1.5, 3, 6, 12, 24, 48, 96, 168, and 336 h), and gene expression for 93 targeted gene loci was measured in a microfluidic RT-qPCR system. Differential transcriptional responses were observed as early as 1.5 h after the initiation of chondrogenesis. Genes with functional annotations that include transcription regulation responded to the chondrogenic stimulation earlier (1.5–96 h) than genes involved in signal transduction (1.5–336 h) and the extracellular matrix biology (3–336 h). Between interzone and anlagen cell cultures, expression levels of 73 out of the 93 targeted genes were not initially different at 0 h, but 47 out of the 73 genes became differentially expressed under the chondrogenic stimulation. While interzone and anlagen cells are both chondrogenic, they display clear differences in response to the same TGF-β1 chondrogenic stimulation. This study provides new molecular insight into a timed sequence of the divergent developmental fates of interzone and anlagen cells in culture over 14 days.
Collapse
Affiliation(s)
- Chan Hee Mok
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Thomson J, Bewicke-Copley F, Anene CA, Gulati A, Nagano A, Purdie K, Inman GJ, Proby CM, Leigh IM, Harwood CA, Wang J. The Genomic Landscape of Actinic Keratosis. J Invest Dermatol 2021; 141:1664-1674.e7. [PMID: 33482222 PMCID: PMC8221374 DOI: 10.1016/j.jid.2020.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Actinic keratoses (AKs) are lesions of epidermal keratinocyte dysplasia and are precursors for invasive cutaneous squamous cell carcinoma (cSCC). Identifying the specific genomic alterations driving the progression from normal skin to skin with AK to skin with invasive cSCC is challenging because of the massive UVR-induced mutational burden characteristic at all stages of this progression. In this study, we report the largest AK whole-exome sequencing study to date and perform a mutational signature and candidate driver gene analysis on these lesions. We demonstrate in 37 AKs from both immunosuppressed and immunocompetent patients that there are significant similarities between AKs and cSCC in terms of mutational burden, copy number alterations, mutational signatures, and patterns of driver gene mutations. We identify 44 significantly mutated AK driver genes and confirm that these genes are similarly altered in cSCC. We identify azathioprine mutational signature in all AKs from patients exposed to the drug, providing further evidence for its role in keratinocyte carcinogenesis. cSCCs differ from AKs in having higher levels of intrasample heterogeneity. Alterations in signaling pathways also differ, with immune-related signaling and TGFβ signaling significantly more mutated in cSCC. Integrating our findings with independent gene expression datasets confirms that dysregulated TGFβ signaling may represent an important event in AK‒cSCC progression.
Collapse
Affiliation(s)
- Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chinedu Anthony Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Abha Gulati
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ai Nagano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karin Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Department of Dermatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
21
|
Niada S, Giannasi C, Magagnotti C, Andolfo A, Brini AT. Proteomic analysis of extracellular vesicles and conditioned medium from human adipose-derived stem/stromal cells and dermal fibroblasts. J Proteomics 2020; 232:104069. [PMID: 33309826 DOI: 10.1016/j.jprot.2020.104069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.
Collapse
Affiliation(s)
| | | | - Cinzia Magagnotti
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Teresa Brini
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
22
|
Sun H, Pratt RE, Hodgkinson CP, Dzau VJ. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy. Am J Physiol Cell Physiol 2020; 319:C1141-C1150. [PMID: 33026832 DOI: 10.1152/ajpcell.00516.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell injections are an attractive therapeutic tool. It has been demonstrated that injected stem cells promote tissue repair and regeneration via paracrine mechanisms. However, the effects of injected stem cells continue for far longer than they are present. We hypothesized that the effects of injected stem cells are prolonged because of a sequential paracrine relay mechanism. Conditioned media was collected from mesenchymal stem cells (MSCs) after 24 h. This media was then added to RAW264.7. Media was collected from the macrophages after 24 h and was then added to endothelial cells (ECs). This conditioned macrophage media, but not control media, promoted wound healing and induced EC differentiation. Similar results were observed with primary macrophages. To identify the active paracrine factors released by macrophages in response to stimulation by MSC conditioned media we used an antibody array, identifying increased expression of the angiogenesis-related proteins stromal cell-derived factor 1 (SDF1) and plasminogen activator inhibitor-1 (PAI-1). Knockdown of either protein inhibited the ability of conditioned media derived from MSC paracrine factor-stimulated macrophages to induce EC differentiation both in vitro and in vivo. Conditioned media derived from postnatal day 7 (P7) mouse macrophages induced EC differentiation. Moreover, SDF1 and PAI-1 levels were >120 higher in P7 macrophages compared with adult macrophages, suggesting that MSC paracrine factors promote adult macrophages to adopt a juvenile phenotype. These results indicate that MSC paracrine factors induce macrophages to secrete SDF1 and PAI-1, in-turn inducing endothelial cells to differentiate. Identification of a sequential paracrine mechanism opens new therapeutic avenues for stem cell therapy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Hu C, He Y, Fang S, Tian N, Gong M, Xu X, Zhao L, Wang Y, He T, Zhang Y, Bi Y. Urine-derived stem cells accelerate the recovery of injured mouse hepatic tissue. Am J Transl Res 2020; 12:5131-5150. [PMID: 33042410 PMCID: PMC7540109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells that exhibit self-renewal ability and multi-lineage differentiation potential. These characteristics make USCs an ideal cell source for hepatocellular transplantation. Here, we investigated the biological characteristics of USCs and their potential use for the treatment of chronic liver injury. We characterized the cell-surface marker profile of USCs by flow cytometry and determined the osteogenic, adipogenic, and hepatic differentiation capacities of USCs using histology. We established a chronic liver-injury model by intraperitoneally injecting carbon tetrachloride into nude mice. USCs were then transplanted via tail vein injection. To determine liver function and histopathology following chronic liver injury, we calculated the liver index, measured serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and performed histological staining. USCs were small, adherent cells expressing mesenchymal but not hematopoietic stem-cell markers. Some induced USCs underwent osteogenic and adipogenic differentiation. When co-cultured with hepatic progenitor cells, about 10% of USCs underwent hepatic differentiation. The ALT and AST levels of the USC-transplanted group were lower than that of the chronic liver-injury model group, and there were no significant differences between the two USC-transplanted groups. However, hepatocyte degeneration and liver fibrosis substantially improved in the hypoxia-pretreated USC-transplanted group compared with the normoxia USC-transplanted group. Taken together, USCs display desirable proliferation and differentiation characteristics, and USC transplantation partially improves abnormal liver function and pathology associated with chronic liver injury. Furthermore, hypoxia pretreatment promotes cell proliferation, migration, and colony formation by inducing autophagy, leading to USC-elicited liver tissue recovery following injury in vivo.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Shuyu Fang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Na Tian
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Xiaohui Xu
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, Illinois, USA
| | - Yuanyuan Zhang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Wake Forest Institute for Regenerative Medicine, Wake Forest UniversityWinston-Salem, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| |
Collapse
|
24
|
Zhu B, Xue F, Li G, Zhang C. CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling. Cell Prolif 2019; 53:e12709. [PMID: 31638302 PMCID: PMC6985673 DOI: 10.1111/cpr.12709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives The osteogenesis differentiation of human bone marrow stem cells (BMSCs) is essential for bone formation and bone homeostasis. In this study, we aim to elucidate novel molecular targets for bone metabolism diseases. Materials and methods The dataset GSE80614 which includes mRNA expression profile during BMSCs osteogenic differentiation was obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The osteogenic differentiation of BMSCs was measured by ALP staining, AR staining and expression of osteogenic markers in vitro. For in vivo assay, we seeded BMSCs onto beta‐tricalcium phosphate (β‐TCP) and transplanted them into muscle pockets of nude mice. Luciferase assay, co‐immunoprecipitation assay and in vitro ubiquitination assay were carried out to investigate the molecular mechanism. Results We found that α‐B‐crystallin (CRYAB) expression was elevated during the process of BMSCs osteogenic differentiation. Further studies showed that upregulation of CRYAB significantly enhanced the osteogenic differentiation, while downregulation of CRYAB suppressed it. CRYAB regulated BMSCs osteogenic differentiation mainly through the canonical Wnt/β‐catenin signalling. In addition, we found that CRYAB could physically interact with β‐catenin and protect it from ubiquitination and degradation, which stabilized β‐catenin and promoted the Wnt signalling. Conclusions The present study provides evidences that CRYAB is an important regulator of BMSCs osteogenic differentiation by protecting β‐catenin from ubiquitination and degradation and promoting the Wnt signalling. It may serve as a potential therapeutic target for diseases related to bone metabolism.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Betaglycan drives the mesenchymal stromal cell osteogenic program and prostate cancer-induced osteogenesis. Oncogene 2019; 38:6959-6969. [PMID: 31409900 DOI: 10.1038/s41388-019-0913-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Bone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models. These analyses revealed a cast of shared differentially induced genes in MSC, including betaglycan, a co-receptor for TGFβ. Betaglycan has not been studied in the context of bone metastatic disease previously. Here we report that loss of betaglycan in MSC is sufficient to augment TGFβ signaling, proliferation and migration, and completely blocks the MSC-osteoblast differentiation program. Further, betaglycan was revealed as necessary for prostate cancer-induced osteogenesis in vivo. Mechanistically, gene expression analysis revealed betaglycan controls the expression of a large repertoire of genes in MSCs, and that betaglycan loss provokes >60-fold increase in the expression of Wnt5a that plays important roles in stemness. In accord with the increased Wnt5a levels, there was a marked induction of canonical Wnt signaling in betaglycan ablated MSCs, and the addition of recombinant Wnt5a to MSCs was sufficient to impair osteogenic differentiation. Finally, the addition of Wnt5a neutralizing antibody was sufficient to induce the expression of osteogenic genes in betaglycan-ablated MSCs. Collectively, these findings suggest a betaglycan-Wnt5a circuit represents an attractive vulnerability to ameliorate prostate cancer-induced osteogenesis.
Collapse
|
26
|
Lee HJ, Choi B, Kim Y, Lee SE, Jin HJ, Lee HS, Chang EJ, Kim SW. The Upregulation of Toll-Like Receptor 3 via Autocrine IFN-β Signaling Drives the Senescence of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Through JAK1. Front Immunol 2019; 10:1659. [PMID: 31396213 PMCID: PMC6665952 DOI: 10.3389/fimmu.2019.01659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Although mesenchymal stromal cells (MSCs) are among the most promising cell sources for cell-based therapies and regenerative medicine, the decline in their function with age due to cellular senescence limits their therapeutic applications. Unveiling the underlying mechanism of MSC senescence is therefore of substantial interest with regard to advancing MSC-based cell therapies. We here show that the induction of human umbilical cord blood-derived MSC (UCB-MSC) senescence causes the predominant upregulation of Toll-like receptor 3 (TLR3). Subsequent TLR3 activation by polyinosinic-polycytidylic acid triggers the prominent features of senescence. Using a clustered regularly interspaced short palindromic repeats/Cas9 library screening system, we identified Janus kinase 1 (JAK1) as the candidate regulatory factor for TLR3-mediated MSC senescence. A JAK1 deficiency blocked the MSC senescence phenotype upon TLR3 activation and TLR3 induction. Targeting the JAK1 pathway using chemical JAK1 inhibitors also significantly suppressed TLR3-mediated MSC senescence. Importantly, we further observed that UCB-MSC senescence is driven by a senescence-associated secretory phenotype (SASP) and that interferon-β (IFN-β) is a component of TLR3-dependent SASP, whereby its autocrine actions upregulate TLR3 and suppress cell proliferation. A JAK1 depletion significantly interrupted these effects of IFN-β, indicating that JAK1 is a signaling mediator linking IFN-β activity to TLR3 expression and the process of MSC senescence. Collectively, our findings provide new mechanistic insights into UCB-MSC senescence by revealing the role of an autocrine regulatory loop of SASP evoked by TLR3 activation.
Collapse
Affiliation(s)
- Hyang Ju Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bongkun Choi
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yongsub Kim
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Eun Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam-si, South Korea
| | - Hee-Seop Lee
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Liu R, Wang Y, Li B, Wang H, Guan F, Tan Z, Li X. Screening differentially expressed proteins from co-cultured hematopoietic cells and bone marrow-derived stromal cells by quantitative proteomics (SILAC) method. Clin Proteomics 2019; 16:32. [PMID: 31360146 PMCID: PMC6637644 DOI: 10.1186/s12014-019-9249-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Bone marrow stromal cells protect hematopoietic cells and provide drug resistance by delivering bunch of variable proteins. Thus, alterations of protein expression are typically associated with cell–cell signal transduction and regulation of cellular functions. Methods Co-culture models of bone marrow stromal cells and hematopoietic cells are often used in studies of their crosstalk. Studies of altered protein expression initiated by stromal cell/hematopoietic cell interactions are an important new trend in microenvironmental research. There has been no report to date of global quantitative proteomics analysis of crosstalk between hematopoietic cells and stromal cells. In this study, we analyzed quantitative proteomes in a co-culture system of stromal HS5 cells and hematopoietic KG1a cells, and simultaneously tracked differentially expressed proteins in two types of cells before and after co-culture by stable isotope labeling by amino acids in cell culture (SILAC) method. Results We have shown that in co-cultured KG1a, 40 proteins (including CKAP4, LMNA, and SERPINB2) were upregulated and 64 proteins (including CD44, CD99, and NCAM1) were downregulated relative to KG1a alone. We utilized IPA analysis to discover that the NOD-like receptor signaling pathway was upregulated, whereas platelet activation was downregulated in co-cultured KG1a cells. Furthermore, 95 proteins (including LCP1, ARHGAP4, and UNCX) were upregulated and 209 proteins (including CAPG, FLNC, and MAP4) were downregulated in co-cultured HS5 relative to HS5 alone. The tight junction pathway was downregulated and glycolysis/gluconeogenesis pathway was dysfunctional in co-cultured HS5. Most importantly, the significantly differentially expressed proteins can also be confirmed using different co-cultured cell lines. Conclusion Altogether, we recommend such quantitative proteomics approach for the studies of the hematopoietic–stroma cross-talk, differentially expressed proteins and related signaling pathways identification. The differentially expressed proteins identified from this current SILAC method will provide a useful basis for ongoing studies of crosstalk between stromal cells and hematopoietic cells in co-culture systems. All these result suggested our ongoing studies can focus on the mechanisms underlying CKAP4 increase and CD44 decrease in co-cultured hematopoietic cells, and the increase of LCP1 and decrease of CAPG in co-cultured stromal cell. The proteomic profiles from the KG1a/stromal cell co-culture system give new molecular insights into the roles of these cells in MDS pathophysiology and related bone disease. Electronic supplementary material The online version of this article (10.1186/s12014-019-9249-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Liu
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi China
| | - Bingxin Li
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Hui Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi China
| | - Feng Guan
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Zengqi Tan
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Xiang Li
- 1Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069 Shaanxi China.,3Wuxi School of Medicine, Jiangnan University, Wu'xi, China
| |
Collapse
|
28
|
Delfín DA, DeAguero JL, McKown EN. The Extracellular Matrix Protein ABI3BP in Cardiovascular Health and Disease. Front Cardiovasc Med 2019; 6:23. [PMID: 30923710 PMCID: PMC6426741 DOI: 10.3389/fcvm.2019.00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/20/2019] [Indexed: 01/31/2023] Open
Abstract
ABI3BP is a relatively newly identified protein whose general biological functions are not yet fully defined. It is implicated in promoting cellular senescence and cell-extracellular matrix interactions, both of which are of vital importance in the cardiovascular system. ABI3BP has been shown in multiple studies to be expressed in the heart and vasculature, and to have a role in normal cardiovascular function and disease. However, its precise role in the cardiovascular system is not known. Because ABI3BP is present in the cardiovascular system and is altered in cardiovascular disease states, further investigation into ABI3BP's biological and biochemical importance in cardiovascular health and disease is warranted.
Collapse
Affiliation(s)
- Dawn A. Delfín
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | | | | |
Collapse
|
29
|
Willis-Owen SAG, Thompson A, Kemp PR, Polkey MI, Cookson WOCM, Moffatt MF, Natanek SA. COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Sci Rep 2018; 8:12165. [PMID: 30111857 PMCID: PMC6093887 DOI: 10.1038/s41598-018-29789-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/16/2018] [Indexed: 12/04/2022] Open
Abstract
Skeletal muscle dysfunction is a frequent extra-pulmonary manifestation of Chronic Obstructive Pulmonary Disease (COPD) with implications for both quality of life and survival. The underlying biology nevertheless remains poorly understood. We measured global gene transcription in the quadriceps using Affymetrix HuGene1.1ST arrays in an unselected cohort of 79 stable COPD patients in secondary care and 16 healthy age- and gender-matched controls. We detected 1,826 transcripts showing COPD-related variation. Eighteen exhibited ≥2fold changes (SLC22A3, FAM184B, CDKN1A, FST, LINC01405, MUSK, PANX1, ANKRD1, C12orf75, MYH1, POSTN, FRZB, TNC, ACTC1, LINC00310, MYH3, MYBPH and AREG). Thirty-one transcripts possessed previous reported evidence of involvement in COPD through genome-wide association, including FAM13A. Network analysis revealed a substructure comprising 6 modules of co-expressed genes. We identified modules with mitochondrial and extracellular matrix features, of which IDH2, a central component of the mitochondrial antioxidant pathway, and ABI3BP, a proposed switch between proliferation and differentiation, represent hubs respectively. COPD is accompanied by coordinated patterns of transcription in the quadriceps involving the mitochondria and extracellular matrix and including genes previously implicated in primary disease processes.
Collapse
Affiliation(s)
- Saffron A G Willis-Owen
- Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, SW3 6LY, London, United Kingdom.
| | - Anna Thompson
- Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, SW3 6LY, London, United Kingdom
| | - Paul R Kemp
- Respiratory Sciences, National Heart and Lung Institute, Imperial College London, SW3 6NP, London, United Kingdom
| | - Michael I Polkey
- Respiratory Sciences, National Heart and Lung Institute, Imperial College London, SW3 6NP, London, United Kingdom
| | - William O C M Cookson
- Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, SW3 6LY, London, United Kingdom
| | - Miriam F Moffatt
- Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, SW3 6LY, London, United Kingdom
| | - Samantha A Natanek
- Respiratory Sciences, National Heart and Lung Institute, Imperial College London, SW3 6NP, London, United Kingdom.
| |
Collapse
|
30
|
Hodgkinson CP, Pratt RE, Kirste I, Dal-Pra S, Cooke JP, Dzau VJ. Cardiomyocyte Maturation Requires TLR3 Activated Nuclear Factor Kappa B. Stem Cells 2018; 36:1198-1209. [PMID: 29676038 DOI: 10.1002/stem.2833] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
The process by which committed precursors mature into cardiomyocytes is poorly understood. We found that TLR3 inhibition blocked cardiomyocyte maturation; precursor cells committed to the cardiomyocyte lineage failed to express maturation genes and sarcomeres did not develop. Using various approaches, we found that the effects of TLR3 upon cardiomyocyte maturation were dependent upon the RelA subunit of nuclear factor kappa B (NFκB). Importantly, under conditions that promote the development of mature cardiomyocytes NFκB became significantly enriched at the promoters of cardiomyocyte maturation genes. Furthermore, activation of the TLR3-NFκB pathway enhanced cardiomyocyte maturation. This study, therefore, demonstrates that the TLR3-NFκB pathway is necessary for the maturation of committed precursors into mature cardiomyocytes. Stem Cells 2018;36:1198-1209.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Richard E Pratt
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Imke Kirste
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - Sophie Dal-Pra
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, Texas, USA
| | - Victor J Dzau
- Department of Medicine, Division of Cardiology, Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North California, USA
| |
Collapse
|
31
|
Bareja A, Patel S, Hodgkinson CP, Payne A, Dzau VJ. Understanding the mechanism of bias signaling of the insulin-like growth factor 1 receptor: Effects of LL37 and HASF. Cell Signal 2018; 46:113-119. [PMID: 29499305 DOI: 10.1016/j.cellsig.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
The development of biased agonist drugs is widely recognized to be important for the treatment of many diseases, including cardiovascular disease. While GPCR biased agonism has been heavily characterized there is a distinct lack of information with respect to RTK biased agonism both in the identification of biased agonists as well as their attendant mechanisms. One such RTK, the Insulin-like Growth Factor 1 Receptor (IGF1R) plays an important role in a range of biological and disease processes. The micropeptide LL37 has been described as a biased agonist of the IGF1R. We were interested to further understand the mechanism by which LL37 promotes biased signaling through the IGF1R. We found that LL37 biased agonism is dependent on β-arrestin 2. Moreover, BRET assays indicated that LL37 biased agonism is explained by the inability of LL37 to promote the recruitment of IRS1 to the IGF1R compared to IGF1. LL37 promotes an altered association of IGF1R with GRK6, which could also serve as an explanation for bias. We also demonstrated a functional consequence of this bias by showing that while LL37 can promote cell proliferation, it does not induce protein synthesis, unlike IGF1, which does both. We have recently identified HASF, a natural protein released by mesenchymal stem cells, as a novel ligand of the IGF1R. HASF is a paracrine factor with potent cardioprotective and cardio-regenerative properties which also acts via IGF1R biased signaling, preferentially activated ERK over Akt.
Collapse
Affiliation(s)
- Akshay Bareja
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Shubham Patel
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Conrad P Hodgkinson
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Alan Payne
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Victor J Dzau
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA.
| |
Collapse
|
32
|
Cha KJ, Kong SY, Lee JS, Kim HW, Shin JY, La M, Han BW, Kim DS, Kim HJ. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface. Sci Rep 2017; 7:13077. [PMID: 29026125 PMCID: PMC5638797 DOI: 10.1038/s41598-017-13372-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.
Collapse
Affiliation(s)
- Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.,Ultimate Fabrication Technology Group, Korea Institute of Industrial Technology (KITECH), Techno sunhwan-ro Yuga-myeon Dalseong-gun, Deagu, 711-880, South Korea
| | - Sun-Young Kong
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Ji Soo Lee
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea
| | - Jae-Yeon Shin
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea
| | - Moonwoo La
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.,Molds & Dies R&D Group, Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, South Korea
| | - Byung Woo Han
- Department of Biochemistry, College of pharmacy, Seoul National University, San 56-1 Sillim-dong Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong Nam-gu, Pohang, 790-784, South Korea.
| | - Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong Dongjak-gu, Seoul, 156-756, South Korea.
| |
Collapse
|
33
|
Radder JE, Gregory AD, Leme AS, Cho MH, Chu Y, Kelly NJ, Bakke P, Gulsvik A, Litonjua AA, Sparrow D, Beaty TH, Crapo JD, Silverman EK, Zhang Y, Berndt A, Shapiro SD. Variable Susceptibility to Cigarette Smoke-Induced Emphysema in 34 Inbred Strains of Mice Implicates Abi3bp in Emphysema Susceptibility. Am J Respir Cell Mol Biol 2017; 57:367-375. [PMID: 28441029 DOI: 10.1165/rcmb.2016-0220oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by a complex interaction of environmental exposures, most commonly cigarette smoke, and genetic factors. Chronic cigarette smoke exposure in the mouse is a commonly used animal model of COPD. We aimed to expand our knowledge about the variable susceptibility of inbred strains to this model and test for genetic variants associated with this trait. To that end, we sought to measure differential susceptibility to cigarette smoke-induced emphysema in the mouse, identify genetic loci associated with this quantitative trait, and find homologous human genes associated with COPD. Alveolar chord length (CL) in 34 inbred strains of mice was measured after 6 months of exposure to cigarette smoke. After testing for association, we connected a murine candidate locus to a published meta-analysis of moderate-to-severe COPD. We identified deleterious mutations in a candidate gene in silico and measured gene expression in extreme strains. A/J was the most susceptible strain in our survey (Δ CL 7.0 ± 2.2 μm) and CBA/J was the least susceptible (Δ CL -0.3 ± 1.2 μm). By integrating mouse and human genome-wide scans, we identified the candidate gene Abi3bp. CBA/J mice harbor predicted deleterious variants in Abi3bp, and expression of the gene differs significantly between CBA/J and A/J mice. This is the first report of susceptibility to cigarette smoke-induced emphysema in 34 inbred strains of mice, and Abi3bp is identified as a potential contributor to this phenotype.
Collapse
Affiliation(s)
- Josiah E Radder
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alyssa D Gregory
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adriana S Leme
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael H Cho
- 2 Channing Division of Network Medicine, and.,3 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Yanxia Chu
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neil J Kelly
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Per Bakke
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Augusto A Litonjua
- 2 Channing Division of Network Medicine, and.,3 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - David Sparrow
- 5 School of Public Health and.,6 School of Medicine, Boston University, Boston, Massachusetts.,7 Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Terri H Beaty
- 8 Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | - James D Crapo
- 9 Department of Radiology, National Jewish Health, Denver, Colorado
| | - Edwin K Silverman
- 2 Channing Division of Network Medicine, and.,3 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Yingze Zhang
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Annerose Berndt
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D Shapiro
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
HASF (C3orf58) is a novel ligand of the insulin-like growth factor 1 receptor. Biochem J 2017; 474:771-780. [PMID: 28096202 DOI: 10.1042/bcj20160976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 11/17/2022]
Abstract
We have recently shown that hypoxia and Akt-induced stem cell factor (HASF) protects the heart from ischemia-induced damage and promotes cardiomyocyte proliferation. While we have identified certain signaling pathways responsible for these protective effects, the receptor mediating these effects was unknown. Here, we undertook studies to identify the HASF receptor. A yeast two-hybrid screen identified a partial fragment of insulin-like growth factor 1 receptor (IGF1R) as a binding partner of HASF. Subsequent co-immunoprecipitation experiments showed that HASF bound to full-length IGF1R. Binding assays revealed a high affinity of HASF for IGF1R. The treatment of neonatal ventricular cardiomyocytes with HASF resulted in the phosphorylation of IGF1R and other proteins known to be involved in IGF1R-mediated signaling pathways. HASF-mediated ERK activation was abrogated by IGF1R pharmacological inhibitors and siRNAs that targeted IGF1R. However, siRNA-mediated knockdown of either IGF2R or the insulin receptor had no effect on HASF-induced cell signaling. Additionally, pharmacologic inhibition of IGF1R impeded HASF's ability to induce cardiomyocyte proliferation. Finally, we documented that in vivo deletion of the IGF1R completely abolished the ability of HASF to promote cardiomyocyte proliferation in an overexpression mouse model providing further evidence in vivo that the IGF1R is the functional receptor for HASF.
Collapse
|
35
|
Jenkins DE, Sreenivasan D, Carman F, Samal B, Eiden LE, Bunn SJ. Interleukin-6-mediated signaling in adrenal medullary chromaffin cells. J Neurochem 2016; 139:1138-1150. [PMID: 27770433 DOI: 10.1111/jnc.13870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The pro-inflammatory cytokines, tumor necrosis factor-α, and interleukin-1β/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Consistent with ERK1/2 activation, IL6 rapidly increased tyrosine hydroxylase phosphorylation (serine-31) and activity, as well as up-regulated genes, encoding secreted proteins including galanin, vasoactive intestinal peptide, gastrin-releasing peptide, and parathyroid hormone-like hormone. The effects of IL6 on the entire bovine chromaffin cell transcriptome were compared to those generated by G-protein-coupled receptor (GPCR) agonists (histamine and pituitary adenylate cyclase-activating polypeptide) and the cytokine receptor agonists (interferon-α and tumor necrosis factor-α). Of 90 genes up-regulated by IL6, only 16 are known targets of IL6 in the immune system. Those remaining likely represent a combination of novel IL6/STAT3 targets, ERK1/2 targets and, potentially, IL6-dependent genes activated by IL6-induced transcription factors, such as hypoxia-inducible factor 1α. Notably, genes induced by IL6 include both neuroendocrine-specific genes activated by GPCR agonists, and transcripts also activated by the cytokines. These results suggest an integrative role for IL6 in the fine-tuning of the chromaffin cell response to a wide range of physiological and paraphysiological stressors, particularly when immune and endocrine stimuli converge.
Collapse
Affiliation(s)
- Danielle E Jenkins
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Fiona Carman
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Babru Samal
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Stephen J Bunn
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Nieuwenhuis MA, Siedlinski M, van den Berge M, Granell R, Li X, Niens M, van der Vlies P, Altmüller J, Nürnberg P, Kerkhof M, van Schayck OC, Riemersma RA, van der Molen T, de Monchy JG, Bossé Y, Sandford A, Bruijnzeel-Koomen CA, Gerth van Wijk R, ten Hacken NH, Timens W, Boezen HM, Henderson J, Kabesch M, Vonk JM, Postma DS, Koppelman GH. Combining genomewide association study and lung eQTL analysis provides evidence for novel genes associated with asthma. Allergy 2016; 71:1712-1720. [PMID: 27439200 DOI: 10.1111/all.12990] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genomewide association studies (GWASs) of asthma have identified single-nucleotide polymorphisms (SNPs) that modestly increase the risk for asthma. This could be due to phenotypic heterogeneity of asthma. Bronchial hyperresponsiveness (BHR) is a phenotypic hallmark of asthma. We aim to identify susceptibility genes for asthma combined with BHR and analyse the presence of cis-eQTLs among replicated SNPs. Secondly, we compare the genetic association of SNPs previously associated with (doctor's diagnosed) asthma to our GWAS of asthma with BHR. METHODS A GWAS was performed in 920 asthmatics with BHR and 980 controls. Top SNPs of our GWAS were analysed in four replication cohorts, and lung cis-eQTL analysis was performed on replicated SNPs. We investigated association of SNPs previously associated with asthma in our data. RESULTS A total of 368 SNPs were followed up for replication. Six SNPs in genes encoding ABI3BP, NAF1, MICA and the 17q21 locus replicated in one or more cohorts, with one locus (17q21) achieving genomewide significance after meta-analysis. Five of 6 replicated SNPs regulated 35 gene transcripts in whole lung. Eight of 20 asthma-associated SNPs from previous GWAS were significantly associated with asthma and BHR. Three SNPs, in IL-33 and GSDMB, showed larger effect sizes in our data compared to published literature. CONCLUSIONS Combining GWAS with subsequent lung eQTL analysis revealed disease-associated SNPs regulating lung mRNA expression levels of potential new asthma genes. Adding BHR to the asthma definition does not lead to an overall larger genetic effect size than analysing (doctor's diagnosed) asthma.
Collapse
|
37
|
Kusakabe M, Ishikawa A, Ravinet M, Yoshida K, Makino T, Toyoda A, Fujiyama A, Kitano J. Genetic basis for variation in salinity tolerance between stickleback ecotypes. Mol Ecol 2016; 26:304-319. [DOI: 10.1111/mec.13875] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Makoto Kusakabe
- Atmosphere and Ocean Research Institute; The University of Tokyo; Kashiwanoha 5-1-5 Kashiwa Chiba 277-8564 Japan
- Department of Biological Science; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Mark Ravinet
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box 1066 Blindern Oslo NO-0316 Oslo Norway
| | - Kohta Yoshida
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| |
Collapse
|
38
|
Yang H, Chen W, Shi J, Huang D, Li J, Hu B, Zhang M, Wang Z, Fei J. Knockout of Abi3bp in mice does not affect their olfactory function, mental state and NNK-induced lung tumorigenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:820-6. [PMID: 27521794 DOI: 10.1093/abbs/gmw071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Abi3bp was originally discovered as Abi3-Src homology 3 (SH3) binding protein and has been proved to have a broad expression profile in adult tissues. Although previous studies have indicated that Abi3bp may be associated with cancer suppression, cell senescence, dendritic refinement and mental disorder, most conclusions achieved were based on in vitro model or genome-wide association study. In this work, we constructed an Abi3bp-deficient mouse model and observed phenotypic changes. The generated Abi3bp-knockout mice are viable and fertile, develop normally and exhibit no significant differences in anxiety or depression-like behaviors, olfactory function and tumor incidence. These data suggest that the function of Abi3bp in in vitro models does not translate to a similar role in the intact animal. Its depletion may be compensated by other genes, which needs to be addressed in future studies.
Collapse
Affiliation(s)
- Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Weidong Chen
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Huang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jun Li
- Shanghai Engineering Research Center of Model Organisms/Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Binyang Hu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center of Model Organisms/Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China Shanghai Engineering Research Center of Model Organisms/Shanghai Research Center for Model Organisms, Shanghai 201203, China
| |
Collapse
|
39
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
40
|
Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 2016; 118:95-107. [PMID: 26837742 DOI: 10.1161/circresaha.115.305373] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the past decade, substantial evidence supports the paradigm that stem cells exert their reparative and regenerative effects, in large part, through the release of biologically active molecules acting in a paracrine fashion on resident cells. The data suggest the existence of a tissue microenvironment where stem cell factors influence cell survival, inflammation, angiogenesis, repair, and regeneration in a temporal and spatial manner.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Akshay Bareja
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - José A Gomez
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC.
| |
Collapse
|
41
|
Lee BC, Kim HS, Shin TH, Kang I, Lee JY, Kim JJ, Kang HK, Seo Y, Lee S, Yu KR, Choi SW, Kang KS. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Sci Rep 2016; 6:26298. [PMID: 27230257 PMCID: PMC4882486 DOI: 10.1038/srep26298] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Pusan National University School of Medicine, Busan 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan 49241, South Korea
| | - Tae-Hoon Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Hyun Kyoung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Seunghee Lee
- Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Rok Yu
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
42
|
Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson K, Khosrotehrani K, Fisk NM, Lê Cao KA, Wells CA. A molecular classification of human mesenchymal stromal cells. PeerJ 2016; 4:e1845. [PMID: 27042394 PMCID: PMC4811172 DOI: 10.7717/peerj.1845] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are widely used for the study of mesenchymal tissue repair, and increasingly adopted for cell therapy, despite the lack of consensus on the identity of these cells. In part this is due to the lack of specificity of MSC markers. Distinguishing MSC from other stromal cells such as fibroblasts is particularly difficult using standard analysis of surface proteins, and there is an urgent need for improved classification approaches. Transcriptome profiling is commonly used to describe and compare different cell types; however, efforts to identify specific markers of rare cellular subsets may be confounded by the small sample sizes of most studies. Consequently, it is difficult to derive reproducible, and therefore useful markers. We addressed the question of MSC classification with a large integrative analysis of many public MSC datasets. We derived a sparse classifier (The Rohart MSC test) that accurately distinguished MSC from non-MSC samples with >97% accuracy on an internal training set of 635 samples from 41 studies derived on 10 different microarray platforms. The classifier was validated on an external test set of 1,291 samples from 65 studies derived on 15 different platforms, with >95% accuracy. The genes that contribute to the MSC classifier formed a protein-interaction network that included known MSC markers. Further evidence of the relevance of this new MSC panel came from the high number of Mendelian disorders associated with mutations in more than 65% of the network. These result in mesenchymal defects, particularly impacting on skeletal growth and function. The Rohart MSC test is a simple in silico test that accurately discriminates MSC from fibroblasts, other adult stem/progenitor cell types or differentiated stromal cells. It has been implemented in the www.stemformatics.org resource, to assist researchers wishing to benchmark their own MSC datasets or data from the public domain. The code is available from the CRAN repository and all data used to generate the MSC test is available to download via the Gene Expression Omnibus or the Stemformatics resource.
Collapse
Affiliation(s)
- Florian Rohart
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth A. Mason
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Matigian
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rowland Mosbergen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Tyrone Chen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Suzanne Butcher
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jatin Patel
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Kerry Atkinson
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane & Women’s Hospital, Brisbane, Queensland, Australia
| | - Nicholas M. Fisk
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane & Women’s Hospital, Brisbane, Queensland, Australia
| | - Kim-Anh Lê Cao
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Christine A. Wells
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Jin HJ, Lee HJ, Heo J, Lim J, Kim M, Kim MK, Nam HY, Hong GH, Cho YS, Choi SJ, Kim IG, Shin DM, Kim SW. Senescence-Associated MCP-1 Secretion Is Dependent on a Decline in BMI1 in Human Mesenchymal Stromal Cells. Antioxid Redox Signal 2016; 24:471-85. [PMID: 26573462 PMCID: PMC4800271 DOI: 10.1089/ars.2015.6359] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Cellular senescence and its secretory phenotype (senescence-associated secretory phenotype [SASP]) develop after long-term expansion of mesenchymal stromal cells (MSCs). Further investigation of this phenotype is required to improve the therapeutic efficacy of MSC-based cell therapies. In this study, we show that positive feedback between SASP and inherent senescence processes plays a crucial role in the senescence of umbilical cord blood-derived MSCs (UCB-MSCs). RESULTS We found that monocyte chemoattractant protein-1 (MCP-1) was secreted as a dominant component of the SASP during expansion of UCB-MSCs and reinforced senescence via its cognate receptor chemokine (c-c motif) receptor 2 (CCR2) by activating the ROS-p38-MAPK-p53/p21 signaling cascade in both an autocrine and paracrine manner. The activated p53 in turn increased MCP-1 secretion, completing a feed-forward loop that triggered the senescence program in UCB-MSCs. Accordingly, knockdown of CCR2 in UCB-MSCs significantly improved their therapeutic ability to alleviate airway inflammation in an experimental allergic asthma model. Moreover, BMI1, a polycomb protein, repressed the expression of MCP-1 by binding to its regulatory elements. The reduction in BMI1 levels during UCB-MSC senescence altered the epigenetic status of MCP-1, including the loss of H2AK119Ub, and resulted in derepression of MCP-1. INNOVATION Our results provide the first evidence supporting the existence of the SASP as a causative contributor to UCB-MSC senescence and reveal a so far unappreciated link between epigenetic regulation and SASP for maintaining a stable senescent phenotype. CONCLUSION Senescence of UCB-MSCs is orchestrated by MCP-1, which is secreted as a major component of the SASP and is epigenetically regulated by BMI1.
Collapse
Affiliation(s)
- Hye Jin Jin
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Biomedical Research Institute , MEDIPOST Co., Ltd., Seongnam, Korea
| | - Hyang Ju Lee
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jinbeom Heo
- 3 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jisun Lim
- 3 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,5 Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine , Seoul, Korea
| | - Miyeon Kim
- 2 Biomedical Research Institute , MEDIPOST Co., Ltd., Seongnam, Korea
| | - Min Kyung Kim
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Hae Yun Nam
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Gyong Hwa Hong
- 6 Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology , Daejeon, Korea
| | - You Sook Cho
- 7 Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Soo Jin Choi
- 2 Biomedical Research Institute , MEDIPOST Co., Ltd., Seongnam, Korea
| | - In-Gyu Kim
- 5 Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine , Seoul, Korea
| | - Dong-Myung Shin
- 3 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Seong Who Kim
- 1 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
44
|
Wang X, Hodgkinson CP, Lu K, Payne AJ, Pratt RE, Dzau VJ. Selenium Augments microRNA Directed Reprogramming of Fibroblasts to Cardiomyocytes via Nanog. Sci Rep 2016; 6:23017. [PMID: 26975336 PMCID: PMC4792153 DOI: 10.1038/srep23017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/26/2016] [Indexed: 01/14/2023] Open
Abstract
We have recently shown that a combination of microRNAs, miR combo, can directly reprogram cardiac fibroblasts into functional cardiomyocytes in vitro and in vivo. However, direct reprogramming strategies are inefficient and slow. Moving towards the eventual goal of clinical application it is necessary to develop new methodologies to overcome these limitations. Here, we report the identification of a specific media composition, reprogramming media (RM), which augmented the effect of miR combo by 5–15-fold depending upon the cardiac marker tested. RM alone was sufficient to strongly induce cardiac gene and protein expression in neonatal tail-tip as well as cardiac fibroblasts. Expression of pluripotency markers Nanog, Oct4, Sox2, and Klf4 was significantly enhanced by RM, with miR combo augmenting the effect further. Knockdown of Nanog by siRNA inhibited the effect of RM on cardiac gene expression. Removal of insulin-transferrin-selenium completely inhibited the effect of reprogramming media upon cardiac gene expression and the addition of selenium to standard culture media recapitulated the effects of RM. Moreover, selenium enhanced the reprogramming efficiency of miR combo.
Collapse
Affiliation(s)
- Xiaowen Wang
- Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad P Hodgkinson
- Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kefeng Lu
- Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong 250001, China
| | - Alan J Payne
- Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard E Pratt
- Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Victor J Dzau
- Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
45
|
Dzau V, Ince S. Victor Dzau: cardiovascular physician scientist takes helm at IOM. Circ Res 2015; 117:13-6. [PMID: 26089363 DOI: 10.1161/circresaha.115.306893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Hodgkinson CP, Gomez JA, Payne AJ, Zhang L, Wang X, Dal-Pra S, Pratt RE, Dzau VJ. Abi3bp regulates cardiac progenitor cell proliferation and differentiation. Circ Res 2014; 115:1007-16. [PMID: 25296984 PMCID: PMC4258122 DOI: 10.1161/circresaha.115.304216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/10/2014] [Indexed: 01/31/2023]
Abstract
RATIONALE Cardiac progenitor cells (CPCs) are thought to differentiate into the major cell types of the heart: cardiomyocytes, smooth muscle cells, and endothelial cells. We have recently identified ABI family, member 3 (NESH) binding protein (Abi3bp) as a protein important for mesenchymal stem cell biology. Because CPCs share several characteristics with mesenchymal stem cells, we hypothesized that Abi3bp would similarly affect CPC differentiation and proliferation. OBJECTIVE To determine whether Abi3bp regulates CPC proliferation and differentiation. METHODS AND RESULTS In vivo, genetic ablation of the Abi3bp gene inhibited CPC differentiation, whereas CPC number and proliferative capacity were increased. This correlated with adverse recovery after myocardial infarction. In vitro, CPCs, either isolated from Abi3bp knockout mice or expressing an Abi3bp shRNA construct, displayed a higher proliferative capacity and, under differentiating conditions, reduced expression of both early and late cardiomyocyte markers. Abi3bp controlled CPC differentiation via integrin-β1, protein kinase C-ζ, and v-akt murine thymoma viral oncogene homolog. CONCLUSIONS We have identified Abi3bp as a protein important for CPC differentiation and proliferation.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Jose A Gomez
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Alan J Payne
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Lunan Zhang
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Xiaowen Wang
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Richard E Pratt
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
47
|
Heggebö J, Haasters F, Polzer H, Schwarz C, Saller MM, Mutschler W, Schieker M, Prall WC. Aged human mesenchymal stem cells: the duration of bone morphogenetic protein-2 stimulation determines induction or inhibition of osteogenic differentiation. Orthop Rev (Pavia) 2014; 6:5242. [PMID: 25002931 PMCID: PMC4083304 DOI: 10.4081/or.2014.5242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive cytokine and a growing number of in vitro studies analyze its effects on human mesenchymal stem cells (hMSC) derived from aged or osteoporotic donors. In these studies the exact quantification of osteogenic differentiation capacity is of fundamental interest. Nevertheless, the experimental conditions for osteogenic differentiation of aged hMSC have not been evaluated systematically and vary to a considerable extend. Aim of the study was to assess the influence of cell density, osteogenic differentiation media (ODM) change intervals and duration of BMP-2 stimulation on osteoinduction. Furthermore, time series were carried out for osteogenic differentiation and BMP-2 concentration in ODM/BMP-2 cell culture supernatants. The experiments were performed using hMSC isolated from femoral heads of aged patients undergoing hip joint replacement. ODM change intervals of 96 hours resulted in significantly higher calcium deposition compared to shorter intervals. A cell density of 80% prior to stimulation led to stronger osteoinduction compared to higher cell densities. In ODM, aged hMSC showed a significant induction of calcium deposition after 9 days. Added to ODM, BMP-2 showed a stable concentration in the cell culture supernatants for at least 96 hours. Addition of BMP-2 to ODM for the initial 4 days led to a significantly higher induction of osteogenic differentiation compared to ODM alone. On the other hand, addition of BMP-2 for 21 days almost abrogated the osteoinductive effect of ODM. We could demonstrate that the factors investigated have a substantial impact on the extent of osteogenic differentiation of aged hMSC. Consequently, it is of upmost importance to standardize the experimental conditions in order to enable comparability between different studies. We here define standard conditions for osteogenic differentiation in regard to the specific features of aged hMSC. The finding that BMP-2 induces or inhibits osteogenic differentiation in a time dependent manner indicates an age related alteration in signal transduction of hMSC and requires further investigation.
Collapse
Affiliation(s)
- Jostein Heggebö
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Florian Haasters
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Hans Polzer
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Christina Schwarz
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Maximilian Michael Saller
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Wolf Mutschler
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Matthias Schieker
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| | - Wolf Christian Prall
- Department of Surgery, Experimental Surgery and Regenerative Medicine, University of Munich , Germany
| |
Collapse
|