1
|
Bessot A, Gunter J, McGovern J, Bock N. Bone marrow adipocytes in cancer: Mechanisms, models, and therapeutic implications. Biomaterials 2025; 322:123341. [PMID: 40315628 DOI: 10.1016/j.biomaterials.2025.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/04/2025]
Abstract
Adipose tissue is the primary site of energy storage in the body and a key regulator of metabolism. However, different adipose depots exhibit distinct molecular and phenotypic characteristics that have yet to be fully unraveled. While initially considered inert, bone marrow adipocytes (BMAs) have been recognized as key regulators of bone homeostasis, and more recently bone pathologies, although many unknowns remain. In this review, we summarize the current knowledge on BMAs, focusing on their distinct characteristics, functional significance in bone physiology and metabolism, as well as their emerging role in cancer pathogenesis. We present and discuss the current methodologies for investigating BMA-cancer interactions, encompassing both in vitro 3D culture systems and in vivo models, and their limitations in accurately replicating the phenotypes and biological processes of the human species. We highlight the imperative for advancing towards humanized models to better mimic the complexities of human physiology and disease progression. Finally, therapeutic strategies targeting metabolism or BMA-secreted factors, such as anti-cholesterol drugs, hold considerable promise in cancer treatment. We present the synergistic avenue of combining conventional cancer therapies with agents targeting adipocyte signaling to amplify treatment efficacy. Developing preclinical models that more faithfully replicate human pathological and physiological processes will lead to more accurate mechanistic understanding of the role of BMAs in bone metastasis and lead to more relevant preclinical drug screening.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Brisbane, QLD, 4000, Australia
| | - Jennifer Gunter
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia; Centre for Genomics and Personalised Health, QUT, Brisbane, QLD, 4102, Australia
| | - Jacqui McGovern
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Brisbane, QLD, 4000, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET), QUT, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Brisbane, QLD, 4000, Australia; Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
2
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
3
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
4
|
Reynolds DS, de Lázaro I, Blache ML, Liu Y, Jeffreys NC, Doolittle RM, Grandidier E, Olszewski J, Dacus MT, Mooney DJ, Lewis JA. Microporogen-Structured Collagen Matrices for Embedded Bioprinting of Tumor Models for Immuno-Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210748. [PMID: 37163476 DOI: 10.1002/adma.202210748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Embedded bioprinting enables the rapid design and fabrication of complex tissues that recapitulate in vivo microenvironments. However, few biological matrices enable good print fidelity, while simultaneously facilitate cell viability, proliferation, and migration. Here, a new microporogen-structured (µPOROS) matrix for embedded bioprinting is introduced, in which matrix rheology, printing behavior, and porosity are tailored by adding sacrificial microparticles composed of a gelatin-chitosan complex to a prepolymer collagen solution. To demonstrate its utility, a 3D tumor model is created via embedded printing of a murine melanoma cell ink within the µPOROS collagen matrix at 4 °C. The collagen matrix is subsequently crosslinked around the microparticles upon warming to 21 °C, followed by their melting and removal at 37 °C. This process results in a µPOROS matrix with a fibrillar collagen type-I network akin to that observed in vivo. Printed tumor cells remain viable and proliferate, while antigen-specific cytotoxic T cells incorporated in the matrix migrate to the tumor site, where they induce cell death. The integration of the µPOROS matrix with embedded bioprinting opens new avenues for creating complex tissue microenvironments in vitro that may find widespread use in drug discovery, disease modeling, and tissue engineering for therapeutic use.
Collapse
Affiliation(s)
- Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Manon L Blache
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Nicholas C Jeffreys
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ramsey M Doolittle
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Estée Grandidier
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Jason Olszewski
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mason T Dacus
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
5
|
Bessot A, Gunter J, Waugh D, Clements JA, Hutmacher DW, McGovern J, Bock N. GelMA and Biomimetic Culture Allow the Engineering of Mineralized, Adipose, and Tumor Tissue Human Microenvironments for the Study of Advanced Prostate Cancer In Vitro and In Vivo. Adv Healthc Mater 2023; 12:e2201701. [PMID: 36708740 PMCID: PMC11469108 DOI: 10.1002/adhm.202201701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Indexed: 01/30/2023]
Abstract
Increasing evidence shows bone marrow (BM)-adipocytes as a potentially important contributor in prostate cancer (PCa) bone metastases. However, a lack of relevant models has prevented the full understanding of the effects of human BM-adipocytes in this microenvironment. It is hypothesized that the combination of tunable gelatin methacrylamide (GelMA)-based hydrogels with the biomimetic culture of human cells would offer a versatile 3D platform to engineer human bone tumor microenvironments containing BM-adipocytes. Human osteoprogenitors, adipocytes, and PCa cells are individually cultured in vitro in GelMA hydrogels, leading to mineralized, adipose, and PCa tumor 3D microtissues, respectively. Osteoblast mineralization and tumor spheroid formation are tailored by hydrogel stiffness with lower stiffnesses correlating with increased mineralization and tumor spheroid size. Upon coculture with tumor cells, BM-adipocytes undergo morphological changes and delipidation, suggesting reciprocal interactions between the cell types. When brought in vivo, the mineralized and adipose microtissues successfully form a humanized fatty bone microenvironment, presenting, for the first time, with human adipocytes. Using this model, an increase in tumor burden is observed when human adipocytes are present, suggesting that adipocytes support early bone tumor growth. The advanced platform presented here combines natural aspects of the microenvironment with tunable properties useful for bone tumor research.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Jennifer Gunter
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Genomics and Personalised HealthQUTBrisbaneQLD4102Australia
| | - David Waugh
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
| | - Judith A. Clements
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
| | - Dietmar W. Hutmacher
- School of MechanicalMedical and Process EngineeringEngineering FacultyQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Jacqui McGovern
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Nathalie Bock
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| |
Collapse
|
6
|
Su C, Himes JE, Kirsch DG. Relationship between the tumor microenvironment and the efficacy of the combination of radiotherapy and immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:201-232. [PMID: 37438018 DOI: 10.1016/bs.ircmb.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Activating and recruiting the immune system is critical for successful cancer treatment. Since the discovery of immune checkpoint inhibitors, immunotherapy has become the standard of care for many types of cancers. However, many patients fail to respond to immunotherapy. Further research is needed to understand the mechanisms of resistance and adjuvant therapies that can help sensitize patients to immunotherapies. Here, we will discuss how radiotherapy can change the tumor microenvironment and work synergistically with immunotherapy. We will examine different pre-clinical models focusing on their limitations and their unique advantages in studying the efficacy of treatments and the tumor microenvironment. We will also describe emerging findings from clinical trials testing the combination of immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Chang Su
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - Jonathon E Himes
- Molecular Cancer Biology Program and Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, United States
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, United States; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
7
|
Tang LW, Mallela AN, Deng H, Richardson TE, Hervey-Jumper SL, McBrayer SK, Abdullah KG. Preclinical modeling of lower-grade gliomas. Front Oncol 2023; 13:1139383. [PMID: 37051530 PMCID: PMC10083350 DOI: 10.3389/fonc.2023.1139383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Models for human gliomas prove critical not only to advancing our understanding of glioma biology but also to facilitate the development of therapeutic modalities. Specifically, creating lower-grade glioma (LGG) models has been challenging, contributing to few investigations and the minimal progress in standard treatment over the past decade. In order to reliably predict and validate the efficacies of novel treatments, however, LGG models need to adhere to specific standards that recapitulate tumor genetic aberrations and micro-environment. This underscores the need to revisit existing models of LGG and explore prospective models that may bridge the gap between preclinical insights and clinical translation. This review first outlines a set of criteria aimed to address the current challenges hindering model development. We then evaluate the strengths and weaknesses of existing preclinical models of LGG with respect to these established standards. To conclude, the review discusses potential future directions for integrating existing models to maximize the exploration of disease mechanisms and therapeutics development.
Collapse
Affiliation(s)
- Lilly W. Tang
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Arka N. Mallela
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Timothy E. Richardson
- Department of Pathology, Cell and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Samuel K. McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kalil G. Abdullah
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdasait S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Sawyer WG. Three-Dimensional Bioconjugated Liquid-Like Solid (LLS) Enhance Characterization of Solid Tumor - Chimeric Antigen Receptor T cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529033. [PMID: 36865164 PMCID: PMC9980005 DOI: 10.1101/2023.02.17.529033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Cancer immunotherapy offers lifesaving treatments for cancers, but the lack of reliable preclinical models that could enable the mechanistic studies of tumor-immune interactions hampers the identification of new therapeutic strategies. We hypothesized 3D confined microchannels, formed by interstitial space between bio-conjugated liquid-like solids (LLS), enable CAR T dynamic locomotion within an immunosuppressive TME to carry out anti-tumor function. Murine CD70-specific CAR T cells cocultured with the CD70-expressing glioblastoma and osteosarcoma demonstrated efficient trafficking, infiltration, and killing of cancer cells. The anti-tumor activity was clearly captured via longterm in situ imaging and supported by upregulation of cytokines and chemokines including IFNg, CXCL9, CXCL10, CCL2, CCL3, and CCL4. Interestingly, target cancer cells, upon an immune attack, initiated an "immune escape" response by frantically invading the surrounding microenvironment. This phenomenon however was not observed for the wild-type tumor samples which remained intact and produced no relevant cytokine response. Single cells collection and transcriptomic profiling of CAR T cells at regions of interest revealed feasibility of identifying differential gene expression amongst the immune subpopulations. Complimentary 3D in vitro platforms are necessary to uncover cancer immune biology mechanisms, as emphasized by the significant roles of the TME and its heterogeneity.
Collapse
Affiliation(s)
- Duy T. Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Ruixuan Liu
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elizabeth Ogando-Rivas
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Alfonso Pepe
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Diego Pedro
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Sadeem Qdasait
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Nhi Tran Yen Nguyen
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Julia M. Lavrador
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | - Griffin R. Golde
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| | | | - John Ligon
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - Linchun Jin
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Haipeng Tao
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | | | | | - Duane A. Mitchell
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Elias J Sayour
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Jianping Huang
- UF Brain Tumor Immunotherapy Program, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Paul Castillo
- UF Department of Pediatrics, Division of Pediatric Hematology Oncology, Gainesville, FL, 32610
| | - W. Gregory Sawyer
- UF Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32610
| |
Collapse
|
9
|
Dai K, Zhang Q, Deng S, Yu Y, Zhu F, Zhang S, Pan Y, Long D, Wang J, Liu C. A BMP-2-triggered in vivo osteo-organoid for cell therapy. SCIENCE ADVANCES 2023; 9:eadd1541. [PMID: 36608118 PMCID: PMC9821865 DOI: 10.1126/sciadv.add1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell therapies and regenerative medicine interventions require an adequate source of therapeutic cells. Here, we demonstrate that constructing in vivo osteo-organoids by implanting bone morphogenetic protein-2-loaded scaffolds into the internal muscle pocket near the femur of mice supports the growth and subsequent harvest of therapeutically useful cells including hematopoietic stem/progenitor cells (HSPCs), mesenchymal stem cells (MSCs), lymphocytes, and myeloid cells. Profiling of the in vivo osteo-organoid maturation process delineated three stages-fibroproliferation, osteochondral differentiation, and marrow generation-each of which entailed obvious changes in the organoid structure and cell type distribution. The MSCs harvested from the osteochondral differentiation stage mitigated carbon tetrachloride (CCl4)-induced chronic liver fibrosis in mice, while HSPCs and immune cells harvested during the marrow generation stage rapidly and effectively reconstituted the impaired peripheral and solid immune organs of irradiated mice. These findings demonstrate the therapeutic potentials of in vivo osteo-organoid-derived cells in cell therapies.
Collapse
Affiliation(s)
- Kai Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinghao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shunshu Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuanman Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fuwei Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - YuanZhong Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dandan Long
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
- Key Laboratory for Ultrafine Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
10
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|
11
|
Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol 2022; 19:719-732. [PMID: 36151307 DOI: 10.1038/s41571-022-00682-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Under the selective pressure of therapy, tumours dynamically evolve multiple adaptive mechanisms that make static interrogation of genomic alterations insufficient to guide treatment decisions. Clinical research does not enable the assessment of how various regulatory circuits in tumours are affected by therapeutic insults over time and space. Likewise, testing different precision oncology approaches informed by composite and ever-changing molecular information is hard to achieve in patients. Therefore, preclinical models that incorporate the biology and genetics of human cancers, facilitate analyses of complex variables and enable adequate population throughput are needed to pinpoint randomly distributed response predictors. Patient-derived xenograft (PDX) models are dynamic entities in which cancer evolution can be monitored through serial propagation in mice. PDX models can also recapitulate interpatient diversity, thus enabling the identification of response biomarkers and therapeutic targets for molecularly defined tumour subgroups. In this Review, we discuss examples from the past decade of the use of PDX models for precision oncology, from translational research to drug discovery. We elaborate on how and to what extent preclinical observations in PDX models have confirmed and/or anticipated findings in patients. Finally, we illustrate emerging methodological efforts that could broaden the application of PDX models by honing their predictive accuracy or improving their versatility.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy. .,Department of Oncology, University of Torino, Candiolo, Italy.
| |
Collapse
|
12
|
Chiu WC, Ou DL, Tan CT. Mouse Models for Immune Checkpoint Blockade Therapeutic Research in Oral Cancer. Int J Mol Sci 2022; 23:ijms23169195. [PMID: 36012461 PMCID: PMC9409124 DOI: 10.3390/ijms23169195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The most prevalent oral cancer globally is oral squamous cell carcinoma (OSCC). The invasion of adjacent bones and the metastasis to regional lymph nodes often lead to poor prognoses and shortened survival times in patients with OSCC. Encouraging immunotherapeutic responses have been seen with immune checkpoint inhibitors (ICIs); however, these positive responses to monotherapy have been limited to a small subset of patients. Therefore, it is urgent that further investigations into optimizing immunotherapies are conducted. Areas of research include identifying novel immune checkpoints and targets and tailoring treatment programs to meet the needs of individual patients. Furthermore, the advancement of combination therapies against OSCC is also critical. Thus, additional studies are needed to ensure clinical trials are successful. Mice models are advantageous in immunotherapy research with several advantages, such as relatively low costs and high tumor growth success rate. This review paper divided methods for establishing OSCC mouse models into four categories: syngeneic tumor models, chemical carcinogen induction, genetically engineered mouse, and humanized mouse. Each method has advantages and disadvantages that influence its application in OSCC research. This review comprehensively surveys the literature and summarizes the current mouse models used in immunotherapy, their advantages and disadvantages, and details relating to the cell lines for oral cancer growth. This review aims to present evidence and considerations for choosing a suitable model establishment method to investigate the early diagnosis, clinical treatment, and related pathogenesis of OSCC.
Collapse
Affiliation(s)
- Wei-Chiao Chiu
- Department of Medical Research, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City 24352, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei City 100225, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City 10051, Taiwan
- YongLin Institute of Health, National Taiwan University, Taipei City 10672, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei City 100225, Taiwan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei City 10051, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei City 100233, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302058, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88649)
| |
Collapse
|
13
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
14
|
Shao H, Ge M, Zhang J, Zhao T, Zhang S. Osteoclasts differential-related prognostic biomarker for osteosarcoma based on single cell, bulk cell and gene expression datasets. BMC Cancer 2022; 22:288. [PMID: 35300639 PMCID: PMC8932072 DOI: 10.1186/s12885-022-09380-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignant tumors. Osteoclasts have been shown to have a valuable role in OS. In the present study, we analyzed the differentiation states of osteoclasts in OS and their prognostic significance based on integrated scRNA-seq and bulk RNA-seq data. Osteoclasts in distinct differentiation states were characterized, and 661 osteoclasts differentiation-related genes (ODRGs) were obtained. ORDGs in distinct differentiation states were enriched in distinct functions and pathways. TPM1, S100A13, LOXL1, PSMD10, ST3GAL4, PEF1, SERPINE2, TUBB, FAM207A, TUBA1A, and DCN were identified as the significant survival-predicting ODRGs. We successfully developed a risk score model based on these survival-predicting ODRGs. In addition, we generated a nomogram applicable for clinical with both ODRGs signatures and clinicopathological parameters, and validated in OS cohorts to predict OS patient outcome. This study proposed and verified the important roles of osteoclasts differentiation in the prognosis of patients with OS, suggesting promising therapeutic targets for OS.
Collapse
Affiliation(s)
- Haiyu Shao
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Meng Ge
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China.,Department of Orthopaedics, Bengbu Medical College, Bengbu, Anhui, China
| | - Jun Zhang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Tingxiao Zhao
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China
| | - Shuijun Zhang
- Department of Orthopaedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158#, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
15
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
16
|
Fu B, Shen J, Chen Y, Wu Y, Zhang H, Liu H, Huang W. Narrative review of gene modification: applications in three-dimensional (3D) bioprinting. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1502. [PMID: 34805364 PMCID: PMC8573440 DOI: 10.21037/atm-21-2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
Objective This article focused on the application scenarios of three-dimensional (3D) bioprinting and gene-editing technology in various medical fields, including gene therapy, tissue engineering, tumor microenvironment simulation, tumor model construction, cancer regulation and expression, osteogenesis, and skin and vascular regeneration, and summarizing its development prospects and shortcomings. Background 3D bioprinting is a process based on additive manufacturing that uses biological materials as the microenvironment living cells. The scaffolds and carriers manufactured by 3D bioprinting technology provide a safe, efficient, and economical platform for genes, cells, and biomolecules. Gene modification refers to replacing, splicing, silencing, editing, controlling or inactivating genes and delivering new genes. The combination of this technology that changes cell function or cell fate or corrects endogenous mutations and 3D bioprinting technology has been widely used in various medical field. Methods We conducted a literature search for papers published up to March 2021 on the gene modification combined with 3D bioprinting in various medical fields via PubMed, Web of Science, China National Knowledge Infrastructure (CNKI). The following medical subject heading terms were included for a MEDLINE search: “3D printing/gene editing”, “3D printing/genetic modification”, “3D printing/seed cell”, “bioprinting/gene editing”, “bioprinting/genetic modification”, “bioprinting/seed cell”, “scaffold/gene editing”, “scaffold/genetic modification”, “scaffold/seed cell”, “gene/scaffold”, “gene/bioprinting”, “gene/3D printing”. Quantitative and qualitative data was extracted through interpretation of each article. Conclusions We have reviewed the application scenarios of 3D bioprinting and gene-editing technology in various medical fields, it provides an efficient and accurate delivery system for personalized tumor therapy, enhancing the targeting effect while maintaining the integrity of the fabricated structure. It exhibits significant application potential in developing tumor drugs. In addition, scaffolds obtained via 3D bioprinting provide gene therapy applications for skin and bone healing and repair and inducing stem cell differentiation. It also considers the future development direction in this field, such as the emergence and development of gene printing, 4D printing. The combination of nanotechnology and gene printing may provide a new way for future disease research and treatment.
Collapse
Affiliation(s)
- Bowen Fu
- Department of Orthopedics, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Medical 3D Printing Application Transformation Engineering Technology Research Center, Guangzhou, China
| | - Jianlin Shen
- Department of Orthopedics, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopaedics, Affiliated Hospital, Putian University, Putian, China
| | - Yu Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University Guangzhou, China
| | - Heshi Zhang
- Department of Vessel & Breast & Thyroid Surgery, Hospital (TCM) Affiliated to Southwest Medical University, Luzhou, China
| | - Huan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenhua Huang
- Department of Orthopedics, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Provincial Medical 3D Printing Application Transformation Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
17
|
Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. VIII: CAR-T cells: preclinical development - Safety and efficacy evaluation. Hematol Transfus Cell Ther 2021; 43 Suppl 2:S54-S63. [PMID: 34794798 PMCID: PMC8606693 DOI: 10.1016/j.htct.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Currently, there are four CAR-T products commercially available on the market. CAR-T cells have shown high remission rates and they represent an effective treatment option for patients with resistant or refractory B cell malignancies. Approval of these cell therapy products came after an extended period of preclinical evaluation that demonstrated unprecedented efficacy in this difficult-to-treat patient population. This review article outlines the main preclinical evaluations needed for CAR T cell product development.
Collapse
|
18
|
Preclinical pharmacology modeling of chimeric antigen receptor T therapies. Curr Opin Pharmacol 2021; 61:49-61. [PMID: 34619442 DOI: 10.1016/j.coph.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have largely been successful in treating hematological malignancies in the clinic but have not been as effective in treating solid tumors, in part, owing to poor access and the immunosuppressive tumor microenvironment. In addition, CAR-T therapy can cause potentially life-threatening side effects, including cytokine release syndrome and neurotoxicity. Current preclinical testing of CAR-T therapy efficacy is typically performed in mouse tumor models, which often fails to predict toxicity. Recent developments in humanized models and transgenic mice as well as in vitro three-dimensional organoids in early development and nonhuman primate models are being adopted for CAR-T cell efficacy and toxicity assessment. However, because no single model perfectly recapitulates the human immune system and tumor microenvironment, careful model selection based on their respective pros and cons is crucial for adequate evaluation of different CAR-T treatments, so that their clinical development can be better supported.
Collapse
|
19
|
Amens JN, Bahçecioglu G, Zorlutuna P. Immune System Effects on Breast Cancer. Cell Mol Bioeng 2021; 14:279-292. [PMID: 34295441 PMCID: PMC8280260 DOI: 10.1007/s12195-021-00679-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers in women, with the ability to metastasize to secondary organs, which is the main cause of cancer-related deaths. Understanding how breast tumors progress is essential for developing better treatment strategies against breast cancer. Until recently, it has been considered that breast cancer elicits a small immune response. However, it is now clear that breast tumor progression is either prevented by the action of antitumor immunity or exacerbated by proinflammatory cytokines released mainly by the immune cells. In this comprehensive review we first explain antitumor immunity, then continue with how the tumor suppresses and evades the immune response, and next, outline the role of inflammation in breast tumor initiation and progression. We finally review the current immunotherapeutic and immunoengineering strategies against breast cancer as a promising emerging approach for the discovery and design of immune system-based strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Jensen N. Amens
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Gökhan Bahçecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
20
|
Palacios-Acedo AL, Mege D, Crescence L, Panicot-Dubois L, Dubois C. Cancer animal models in thrombosis research. Thromb Res 2021; 191 Suppl 1:S112-S116. [PMID: 32736767 DOI: 10.1016/s0049-3848(20)30407-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
The cancer-thrombosis relationship has been established for decades, in both cancer biology and in the clinical signs and symptoms seen in cancer patients (thrombosis in cancer patients has been associated with a worse prognosis and survival). As the link between the pathologies becomes clearer, so does the need to develop models that enable researchers to study them simultaneously in vivo. Mouse models have often been used, and they have helped determine molecular pathways between cancer spread and thrombosis in humans. This review is a summary of the current literature that describes the use of cancer mouse models in thrombosis research. We included cancer models that are not yet used in thrombosis research, but that can positively impact this area of research in the near future. We describe the most commonly used techniques to generate thrombosis as well as the mouse strains and cancer cell types that are commonly used along with inoculation techniques. We endeavoured to create a compendium of the different mouse models that are beneficial for cancer-thrombosis research, as understanding these mechanisms is crucial for creating better and more effective treatments for thrombosis in cancer patients.
Collapse
Affiliation(s)
| | - Diane Mege
- Aix Marseille University, INSERM 1263, INRAE, C2VN, Marseille, France; Department of Digestive Surgery, Timone University Hospital, Marseille, France
| | - Lydie Crescence
- Aix Marseille University, INSERM 1263, INRAE, C2VN, Marseille, France
| | | | - Christophe Dubois
- Aix Marseille University, INSERM 1263, INRAE, C2VN, Marseille, France.
| |
Collapse
|
21
|
Takahashi H, Tsuboi H, Abe S, Honda F, Kondo Y, Matsumoto I, Sumida T. Humanized NOD/SCID/IL2rγ null mice exhibit functionally augmented human regulatory T cells associated with enzymatic up-regulation of H3K27me3 in comparison with humans. Clin Exp Immunol 2021; 204:239-250. [PMID: 33555619 DOI: 10.1111/cei.13583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 01/14/2023] Open
Abstract
Humanized non-obese diabetic/severe combined immunodeficiency/interleukin-2 receptor-γ-null (NOD/SCID/IL2rγnull ) [humanized (huNSG)] mice engrafted with human hematopoietic cells have been used for investigations of the human immune system. However, the epigenetic features of the human regulatory T (Treg ) cells of huNSG mice have not been studied. The objective of this study was to clarify the characteristics of human Treg cells in huNSG mice, especially in terms of the epigenetic aspects. We compared the populations, inhibitory molecule expression and suppressive capacity of human Treg cells in spleens harvested from the huNSG mice 120 days after the engraftment of human umbilical cord blood CD34+ cells with human peripheral blood mononuclear cells (PBMCs). Histone modifications and enhancer of zeste homolog 2 (Ezh2), an H3K27 methyltransferase, of human Treg cells were quantified in huNSG mice and human PBMCs. The effect of Ezh2 inhibitor on human Treg cells exposed to interleukin (IL)-6 was also compared between them. Human Treg cells in the spleens of huNSG mice showed an increased proportion among CD4+ T cells, higher expressions of forkhead box protein 3 (FoxP3), cytotoxic T lymphocyte antigen 4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor-related protein (GITR), a higher production of IL-10 and enhanced suppressive capacity when compared with those in human PBMCs. H3K27me3 and Ezh2 were specifically up-regulated in human Treg cells of huNSG mice in comparison with those of human PBMCs. The decrease in Treg cells induced by IL-6 exposure was attenuated in huNSG mice when compared with human PBMCs, while the difference between them was cancelled by addition of Ezh2 inhibitor. In conclusion, huNSG mice exhibit functionally augmented human Treg cells owing to enzymatic up-regulation of H3K27me3.
Collapse
Affiliation(s)
- H Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - H Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - S Abe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - F Honda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Y Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - I Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - T Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
22
|
Fang L, Liu YJ, Zhang YW, Pan ZF, Zhong LK, Jiang LH, Wang JF, Zheng XW, Chen LY, Huang P, Ge MH, Tan Z. Comparison of Proteomics Profiles Between Xenografts Derived from Cell Lines and Primary Tumors of Thyroid Carcinoma. J Cancer 2021; 12:1978-1989. [PMID: 33753996 PMCID: PMC7974514 DOI: 10.7150/jca.50897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Patient-consistent xenograft model is a challenge for all cancers but particularly for thyroid cancer, which shows some of the greatest genetic divergence between human tumors and cell lines. In this study, proteomic profiles of tumor tissues from patients, included anaplastic thyroid carcinoma (ATC) and papillary thyroid carcinoma, and xenografts (8305C, 8505C, FRO, BAPAP and IHH4) were obtained using HPLC-tandem mass spectrometry and compared based on all proteins detected (3,961), cancer-related proteins and druggable proteins using pairwise Pearson's correlation analysis. The human tissue showed low proteomic similarity to the ATC cell lines (8305C, r = 0.344-0.416; 8505C, 0.47-0.579; FRO, 0.267-0.307) and to PTC cell lines (BCPAP, 0.303-0.468; IHH4, 0.262-0.509). Human tissue showed the following similarity to cell lines at the level of 135 cancer-related pathways. The ATC cell lines contained 47.4% of the cancer-related pathways (19.26%-33.33%), while the PTC cell lines contained 40% (BCPAP, 25.93%; IHH4, 28.89%). In patient tumor tissues, 44-60 of 76 and 52-53 of 93 druggable proteins were identified in ATC and PTC tumors, respectively. Ten and 29 druggable proteins were not identified in any of the ATC and PTC xenografts, respectively. We provide a reference for CDX selecting in in vivo studies of thyroid cancer.
Collapse
Affiliation(s)
- Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1# Bashan East Road, 310022, Hangzhou, China
| | - Yu-Jia Liu
- Department of Pharmacy, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China
| | - Yi-Wen Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| | - Zong-Fu Pan
- Department of Pharmacy, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| | - Li-Ke Zhong
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1# Bashan East Road, 310022, Hangzhou, China
| | - Lie-Hao Jiang
- Department of Head and neck & thyroid surgery, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| | - Jia-Feng Wang
- Department of Head and neck & thyroid surgery, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| | - Xiao-Wei Zheng
- Department of Pharmacy, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China
| | - Ling-Ya Chen
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1# Bashan East Road, 310022, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| | - Ming-Hua Ge
- Department of Head and neck & thyroid surgery, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| | - Zhuo Tan
- Department of Head and neck & thyroid surgery, Zhejiang Provincial People's Hospital; People's Hospital of Hangzhou Medical College, 310010, Hangzhou, Zhejiang, China.,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310010, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Di Renzo MF, Corso S. Patient-Derived Cancer Models. Cancers (Basel) 2020; 12:E3779. [PMID: 33333972 PMCID: PMC7765364 DOI: 10.3390/cancers12123779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
For many decades, basic and preclinical cancer research has been based on the use of established, commercially available cell lines, originally derived from patients' samples but adapted to grow indefinitely in artificial culture conditions, and on xenograft models developed by injection of these cells in immunocompromised animals [...].
Collapse
Affiliation(s)
- Maria Flavia Di Renzo
- Department of Oncology, University of Torino, 10124 Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, 10124 Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Torino, Italy
| |
Collapse
|
24
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
26
|
Klöß S, Dehmel S, Braun A, Parnham MJ, Köhl U, Schiffmann S. From Cancer to Immune-Mediated Diseases and Tolerance Induction: Lessons Learned From Immune Oncology and Classical Anti-cancer Treatment. Front Immunol 2020; 11:1423. [PMID: 32733473 PMCID: PMC7360838 DOI: 10.3389/fimmu.2020.01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
Success in cancer treatment over the last four decades has ranged from improvements in classical drug therapy to immune oncology. Anti-cancer drugs have also often proven beneficial for the treatment of inflammatory and autoimmune diseases. In this review, we report on challenging examples that bridge between treatment of cancer and immune-mediated diseases, addressing mechanisms and experimental models as well as clinical investigations. Patient-derived tumor xenograft (PDX) (humanized) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. However, new developments using human ex vivo approaches modeling cancer, for example in microfluidic human organs-on-chips, promise to identify key molecular, cellular and immunological features of human cancer progression in a fully human setting. Classical drugs which bridge the gap, for instance, include cytotoxic drugs, proteasome inhibitors, PI3K/mTOR inhibitors and metabolic inhibitors. Biologicals developed for cancer therapy have also shown efficacy in the treatment of autoimmune diseases. In immune oncology, redirected chimeric antigen receptor (CAR) T cells have achieved spectacular remissions in refractory B cell leukemia and lymphoma and are currently under development for tolerance induction using cell-based therapies such as CAR Tregs or NK cells. Finally, a brief outline will be given of the lessons learned from bridging cancer and autoimmune diseases as well as tolerance induction.
Collapse
Affiliation(s)
- Stephan Klöß
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Susanne Schiffmann
- Institute of Clinical Pharmacology, University Hospital Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| |
Collapse
|
27
|
Goto T. Patient-Derived Tumor Xenograft Models: Toward the Establishment of Precision Cancer Medicine. J Pers Med 2020; 10:jpm10030064. [PMID: 32708458 PMCID: PMC7565668 DOI: 10.3390/jpm10030064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenografts (PDXs) describe models involving the implantation of patient-derived tumor tissue into immunodeficient mice. Compared with conventional preclinical models involving the implantation of cancer cell lines into mice, PDXs can be characterized by the preservation of tumor heterogeneity, and the tumor microenvironment (including stroma/vasculature) more closely resembles that in patients. Consequently, the use of PDX models has improved the predictability of clinical therapeutic responses to 80% or greater, compared with approximately 5% for existing models. In the future, molecular biological analyses, omics analyses, and other experiments will be conducted using recently prepared PDX models under the strong expectation that the analysis of cancer pathophysiology, stem cells, and novel treatment targets and biomarkers will be improved, thereby promoting drug development. This review outlines the methods for preparing PDX models, advances in cancer research using PDX mice, and perspectives for the establishment of precision cancer medicine within the framework of personalized cancer medicine.
Collapse
Affiliation(s)
- Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi 4008506, Japan
| |
Collapse
|
28
|
Noble JN, Mishra A. Development and Significance of Mouse Models in Lymphoma Research. Curr Hematol Malig Rep 2020; 14:119-126. [PMID: 30848424 DOI: 10.1007/s11899-019-00504-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Animal models have played an indispensable role in interpreting cancer gene functions, pathogenesis of disease, and in the development of innovative therapeutic approaches targeting aberrant biological pathways in human cancers. RECENT FINDINGS These models have guided the therapeutic targeting of cancer-causing mutations and paved the way for assessing anti-cancer drug responses and the preclinical development of immunotherapies. The mammalian models of cancer utilize genetically edited or transplanted mice that develop fairly accurate disease histopathology. The mouse model also allows us to study the effect of tumor microenvironment in the development of lymphoma. The emergence of patient-derived xenografts provides a better opportunity for recapitulating primary lymphoma characteristics and researching personalized drug therapy. In conclusion, the refinement and advancement of available mouse models in lymphoma significantly minimize the therapeutic translational failures in patients.
Collapse
Affiliation(s)
- Jordan N Noble
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Anjali Mishra
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA. .,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadephia, PA, 19107, USA.
| |
Collapse
|
29
|
Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int J Mol Sci 2020; 21:E4118. [PMID: 32526987 PMCID: PMC7312663 DOI: 10.3390/ijms21114118] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advances in the development of new methods of cancer immunotherapy require the production of complex cancer animal models that reliably reflect the complexity of the tumor and its microenvironment. Mice are good animals to create tumor models because they are low cost, have a short reproductive cycle, exhibit high tumor growth rates, and can be easily genetically modified. However, the obvious problem of these models is the high failure rate observed in human clinical trials after promising results obtained in mouse models. In order to increase the reliability of the results obtained in mice, the tumor model should reflect the heterogeneity of the tumor, contain components of the tumor microenvironment, in particular immune cells, to which the action of immunotherapeutic drugs are directed. This review discusses the current immunocompetent and immunocompromised mouse models of human tumors that are used to evaluate the effectiveness of immunotherapeutic agents, in particular chimeric antigen receptor (CAR) T-cells and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, University of Medicine, Nottingham NG7 2HA, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (K.V.K.); (A.A.R.)
| |
Collapse
|
30
|
|
31
|
Kieslinger M, Swoboda A, Kramer N, Pratscher B, Wolfesberger B, Burgener IA. Companion Animals as Models for Inhibition of STAT3 and STAT5. Cancers (Basel) 2019; 11:cancers11122035. [PMID: 31861073 PMCID: PMC6966487 DOI: 10.3390/cancers11122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
The use of transgenic mouse models has revolutionized the study of many human diseases. However, murine models are limited in their representation of spontaneously arising tumors and often lack key clinical signs and pathological changes. Thus, a closer representation of complex human diseases is of high therapeutic relevance. Given the high failure rate of drugs at the clinical trial phase (i.e., around 90%), there is a critical need for additional clinically relevant animal models. Companion animals like cats and dogs display chronic inflammatory or neoplastic diseases that closely resemble the human counterpart. Cat and dog patients can also be treated with clinically approved inhibitors or, if ethics and drug safety studies allow, pilot studies can be conducted using, e.g., inhibitors of the evolutionary conserved JAK-STAT pathway. The incidence by which different types of cancers occur in companion animals as well as mechanisms of disease are unique between humans and companion animals, where one can learn from each other. Taking advantage of this situation, existing inhibitors of known oncogenic STAT3/5 or JAK kinase signaling pathways can be studied in the context of rare human diseases, benefitting both, the development of drugs for human use and their application in veterinary medicine.
Collapse
|
32
|
Mouse Models for Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111800. [PMID: 31731753 PMCID: PMC6896030 DOI: 10.3390/cancers11111800] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is one of the dominant causes of cancer-related mortality, and the survival rate of liver cancer is among the lowest for all cancers. Immunotherapy for hepatocellular carcinoma (HCC) has yielded some encouraging results, but the percentage of patients responding to single-agent therapies remains low. Therefore, potential directions for improved immunotherapies include identifying new immune targets and checkpoints and customizing treatment procedures for individual patients. The development of combination therapies for HCC is also crucial and urgent and, thus, further studies are required. Mice have been utilized in immunotherapy research due to several advantages, for example, being low in cost, having high success rates for inducing tumor growth, and so on. Moreover, immune-competent mice are used in immunotherapy research to clarify the role that the immune system plays in cancer growth. In this review paper, the advantages and disadvantages of mouse models for immunotherapy, the equipment that are used for monitoring HCC, and the cell strains used for inducing HCC are reviewed.
Collapse
|
33
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
34
|
Lahr CA, Wagner F, Shafiee A, Rudert M, Hutmacher DW, Holzapfel BM. Recombinant Human Bone Morphogenetic Protein 7 Exerts Osteo-Catabolic Effects on Bone Grafts That Outweigh Its Osteo-Anabolic Capacity. Calcif Tissue Int 2019; 105:331-340. [PMID: 31214730 DOI: 10.1007/s00223-019-00574-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effects of recombinant human bone morphogenetic protein (rhBMP-7) on human cancellous bone grafts (BGs) while differentiating between anabolic and catabolic events. Human BGs alone or supplemented with rhBMP-7 were harvested 14 weeks after subcutaneous implantation into NOD/Scid mice, and studied via micro-CT, histomorphometry, immunohistochemistry and flow cytometry. Immunohistochemical staining for human-specific proteins made it possible to differentiate between grafted human bone and newly formed murine bone. Only BGs implanted with rhBMP-7 formed an ossicle containing a functional hematopoietic compartment. The total ossicle volume in the BMP+ group was higher than in the BMP- group (835 mm3 vs. 365 mm3, respectively, p < 0.001). The BMP+ group showed larger BM spaces (0.47 mm vs. 0.28 mm, p = 0.002) and lower bone volume-to-total volume ratio (31% vs. 47%, p = 0.002). Immunohistochemical staining for human-specific proteins confirmed a higher ratio of newly formed bone area (murine) to total area (0.12 vs. 0.001, p < 0.001) in the BMP+ group, while the ratio of grafted bone (human) area to total area was smaller (0.14 vs. 0.34, p = 0.004). The results demonstrate that rhBMP-7 induces BG resorption at a higher rate than new bone formation while creating a haematopoietic niche. Clinicians therefore need to consider the net catabolic effect when rhBMP-7 is used with BGs. Overall, this model indicates its promising application to further decipher BMPs action on BGs and its potential in complex bone tissue regeneration.
Collapse
Affiliation(s)
- Christoph A Lahr
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstrasse 11, 97074, Wuerzburg, Germany
| | - Ferdinand Wagner
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Abbas Shafiee
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Maximilian Rudert
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Dietmar W Hutmacher
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstrasse 11, 97074, Wuerzburg, Germany.
| |
Collapse
|
35
|
Human Immune System Increases Breast Cancer-Induced Osteoblastic Bone Growth in a Humanized Mouse Model without Affecting Normal Bone. J Immunol Res 2019; 2019:4260987. [PMID: 31211147 PMCID: PMC6532310 DOI: 10.1155/2019/4260987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Bone metastases are prevalent in many common cancers such as breast, prostate, and lung cancers, and novel therapies for treating bone metastases are needed. Human immune system-engrafted models are used in immuno-oncology (IO) studies for subcutaneous cancer cell or patient-derived xenograft implantations that mimic primary tumor growth. Novel efficacy models for IO compounds on bone metastases need to be established. The study was performed using CIEA NOG (NOG) mice engrafted with human CD34+ hematopoietic stem cells (huNOG) and age-matched immunodeficient NOG mice. Bone phenotyping was performed to evaluate baseline differences. BT-474 human breast cancer cells were inoculated into the tibia bone marrow, and cancer-induced bone changes were monitored by X-ray imaging. Bone content and volume were analyzed by dual X-ray absorptiometry and microcomputed tomography. Tumor-infiltrating lymphocytes (TILs) and the expression of immune checkpoint markers were analyzed by immunohistochemistry. Bone phenotyping showed no differences in bone architecture or volume of the healthy bones in huNOG and NOG mice, but the bone marrow fat was absent in huNOG mice. Fibrotic areas were observed in the bone marrow of some huNOG mice. BT-474 tumors induced osteoblastic bone growth. Bone lesions appeared earlier and were larger, and bone mineral density was higher in huNOG mice. huNOG mice had a high number of human CD3-, CD4-, and CD8-positive T cells and CD20-positive B cells in immune-related organs. A low number of TILs and PD-1-positive cells and low PD-L1 expression were observed in the BT-474 tumors at the endpoint. This study reports characterization of the first breast cancer bone growth model in huNOG mice. BT-474 tumors represent a “cold” tumor with a low number of TILs. This model can be used for evaluating the efficacy of combination treatments of IO therapies with immune-stimulatory compounds or therapeutic approaches on bone metastatic breast cancer.
Collapse
|
36
|
Bregenzer ME, Horst EN, Mehta P, Novak CM, Raghavan S, Snyder CS, Mehta G. Integrated cancer tissue engineering models for precision medicine. PLoS One 2019; 14:e0216564. [PMID: 31075118 PMCID: PMC6510431 DOI: 10.1371/journal.pone.0216564] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumors are not merely cancerous cells that undergo mindless proliferation. Rather, they are highly organized and interconnected organ systems. Tumor cells reside in complex microenvironments in which they are subjected to a variety of physical and chemical stimuli that influence cell behavior and ultimately the progression and maintenance of the tumor. As cancer bioengineers, it is our responsibility to create physiologic models that enable accurate understanding of the multi-dimensional structure, organization, and complex relationships in diverse tumor microenvironments. Such models can greatly expedite clinical discovery and translation by closely replicating the physiological conditions while maintaining high tunability and control of extrinsic factors. In this review, we discuss the current models that target key aspects of the tumor microenvironment and their role in cancer progression. In order to address sources of experimental variation and model limitations, we also make recommendations for methods to improve overall physiologic reproducibility, experimental repeatability, and rigor within the field. Improvements can be made through an enhanced emphasis on mathematical modeling, standardized in vitro model characterization, transparent reporting of methodologies, and designing experiments with physiological metrics. Taken together these considerations will enhance the relevance of in vitro tumor models, biological understanding, and accelerate treatment exploration ultimately leading to improved clinical outcomes. Moreover, the development of robust, user-friendly models that integrate important stimuli will allow for the in-depth study of tumors as they undergo progression from non-transformed primary cells to metastatic disease and facilitate translation to a wide variety of biological and clinical studies.
Collapse
Affiliation(s)
- Michael E. Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric N. Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caymen M. Novak
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nowlan B, Williams ED, Doran MR, Levesque JP. CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains. Haematologica 2019; 105:71-82. [PMID: 31073070 PMCID: PMC6939540 DOI: 10.3324/haematol.2018.212910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Staining for CD27 and CD201 (endothelial protein C receptor) has been recently suggested as an alternative to stem cell antigen-1 (Sca1) to identify hematopoietic stem cells in inbred mouse strains with low or nil expression of SCA1. However, whether staining for CD27 and CD201 is compatible with low fms-like tyrosine kinase 3 (FLT3) expression and the "SLAM" code defined by CD48 and CD150 to identify mouse long-term reconstituting hematopoietic stem cells has not been established. We compared the C57BL/6 strain, which expresses a high level of SCA1 on hematopoietic stem cells to non-obese diabetic severe combined immune deficient NOD.CB17-prkdc scid/Sz (NOD-scid) mice and NOD.CB17-prkdc scid il2rg tm1Wj1/Sz (NSG) mice which both express low to negative levels of SCA1 on hematopoietic stem cells. We demonstrate that hematopoietic stem cells are enriched within the linage-negative C-KIT+ CD27+ CD201+ FLT3- CD48-CD150+ population in serial dilution long-term competitive transplantation assays. We also make the novel observation that CD48 expression is up-regulated in Lin- KIT+ progenitors from NOD-scid and NSG strains, which otherwise have very few cells expressing the CD48 ligand CD244. Finally, we report that unlike hematopoietic stem cells, SCA1 expression is similar on bone marrow endothelial and mesenchymal progenitor cells in C57BL/6, NOD-scid and NSG mice. In conclusion, we propose that the combination of Lineage, KIT, CD27, CD201, FLT3, CD48, and CD150 antigens can be used to identify long-term reconstituting hematopoietic stem cells from mouse strains expressing low levels of SCA1 on hematopoietic cells.
Collapse
Affiliation(s)
- Bianca Nowlan
- Stem Cell Therapies Laboratory, School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane.,School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland.,Mater Research Institute - The University of Queensland, Woolloongabba.,Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland.,Translational Research Institute, Woolloongabba, Queensland
| | - Elizabeth D Williams
- School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland.,Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland.,Translational Research Institute, Woolloongabba, Queensland
| | - Michael R Doran
- Stem Cell Therapies Laboratory, School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane .,School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland.,Mater Research Institute - The University of Queensland, Woolloongabba.,Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland.,Translational Research Institute, Woolloongabba, Queensland.,Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Woolloongabba .,Translational Research Institute, Woolloongabba, Queensland
| |
Collapse
|
38
|
Wagner F, Holzapfel BM, Martine LC, McGovern J, Lahr CA, Boxberg M, Prodinger PM, Grässel S, Loessner D, Hutmacher DW. A humanized bone microenvironment uncovers HIF2 alpha as a latent marker for osteosarcoma. Acta Biomater 2019; 89:372-381. [PMID: 30836200 DOI: 10.1016/j.actbio.2019.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
The quest for predictive tumor markers for osteosarcoma (OS) has not well progressed over the last two decades due to a lack of preclinical models. The aim of this study was to investigate if microenvironmental modifications in an original humanized in vivo model alter the expression of OS tumor markers. Human bone micro-chips and bone marrow, harvested during hip arthroplasty, were implanted at the flanks of NOD/scid mice. We administered recombinant human bone morphogenetic protein 7 (rhBMP-7) in human bone micro-chips/bone marrow group I in order to modulate bone matrix and bone marrow humanization. Ten weeks post-implantation, human Luc-SAOS-2 OS cells were injected into the humanized tissue-engineered bone organs (hTEBOs). Tumors were harvested 5 weeks post-implantation to determine the expression of the previously described OS markers ezrin, periostin, VEGF, HIF1α and HIF2α. Representation of these proteins was analyzed in two different OS patient cohorts. Ezrin was downregulated in OS in hTEBOs with rhBMP-7, whereas HIF2α was significantly upregulated in comparison to hTEBOs without rhBMP-7. The expression of periostin, VEGF and HIF1α did not differ significantly between both groups. HIF2α was consistently present in OS patients and dependent on tumor site and clinical stage. OS patients post-chemotherapy had suppressed levels of HIF2α. In conclusion, we demonstrated the overall expression of OS-related factors in a preclinical model, which is based on a humanized bone organ. Our preclinical research results and analysis of two comprehensive patient cohorts imply that HIF2α is a potential prognostic marker and/or therapeutic target. STATEMENT OF SIGNIFICANCE: This study demonstrates the clinical relevance of the humanized organ bone microenvironment in osteosarcoma research and validates the expression of tumor markers, especially HIF2α. The convergence of clinically proven bone engineering concepts for the development of humanized mice models is a new starting point for investigations of OS-related marker expression. The validation and first data set in such a model let one conclude that further clinical studies on the role of HIF2α as a prognostic marker and its potential as therapeutic target is a condition sine qua non.
Collapse
|
39
|
Bisht S, Feldmann G. Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opin Drug Discov 2019; 14:127-142. [DOI: 10.1080/17460441.2019.1566319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Savita Bisht
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Liu Z, Chen M, Guo Y, Wang X, Zhang L, Zhou J, Li H, Shi Q. Self-assembly of cationic amphiphilic cellulose-g-poly (p-dioxanone) copolymers. Carbohydr Polym 2019; 204:214-222. [DOI: 10.1016/j.carbpol.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
|
41
|
Villano JS, Vleck SE, Felt SA, Myers DD, Lester PA. Safety Considerations When Working with Humanized Animals. ILAR J 2018; 59:150-160. [PMID: 30541024 DOI: 10.1093/ilar/ily012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/31/2018] [Indexed: 01/05/2023] Open
Abstract
Research using laboratory animals has been revolutionized by the creation of humanized animal models, which are immunodeficient animals engrafted with human cells, tissues, or organs. These animal models provide the research community a unique and promising opportunity to mimic a wide variety of disease conditions in humans, from infectious disease to cancer. A vast majority of these models are humanized mice like those injected with human CD34+ hematopoietic stem cells and patient-derived xenografts. With this technology comes the need for the animal research enterprise to understand the inherent and potential risks, such as exposure to bloodborne pathogens, associated with the model development and research applications. Here, we review existing humanized animal models and provide recommendations for their safe use based on regulatory framework and literature. A risk assessment program-from handling the human material to its administration to animals and animal housing-is a necessary initial step in mitigating risks associated with the use of humanized animals in research. Ultimately, establishing institutional policies and guidelines to ensure personnel safety is a legal and ethical responsibility of the research institution as part of the occupational health and safety program and overall animal care and use program.
Collapse
Affiliation(s)
- Jason S Villano
- Unit for Laboratory Animal Medicine, University of Michigan Medical School in Ann Arbor, Michigan
| | - Susan E Vleck
- Department of Environmental Health and Safety at Stanford University in Stanford, California
| | - Stephen A Felt
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Daniel D Myers
- Unit for Laboratory Animal Medicine, University of Michigan Medical School in Ann Arbor, Michigan.,Department of Surgery, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Patrick A Lester
- Unit for Laboratory Animal Medicine, University of Michigan Medical School in Ann Arbor, Michigan
| |
Collapse
|
42
|
Tyagi RK, Tandel N, Deshpande R, Engelman RW, Patel SD, Tyagi P. Humanized Mice Are Instrumental to the Study of Plasmodium falciparum Infection. Front Immunol 2018; 9:2550. [PMID: 30631319 PMCID: PMC6315153 DOI: 10.3389/fimmu.2018.02550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023] Open
Abstract
Research using humanized mice has advanced our knowledge and understanding of human haematopoiesis, non-adaptive and adaptive immunity, autoimmunity, infectious disease, cancer biology, and regenerative medicine. Challenges posed by the human-malaria parasite Plasmodium falciparum include its complex life cycle, the evolution of drug resistance against anti-malarials, poor diagnosis, and a lack of effective vaccines. Advancements in genetically engineered and immunodeficient mouse strains, have allowed for studies of the asexual blood stage, exoerythrocytic stage and the transition from liver-to-blood stage infection, in a single vertebrate host. This review discusses the process of "humanization" of various immunodeficient/transgenic strains and their contribution to translational biomedical research. Our work reviews the strategies employed to overcome the remaining-limitations of the developed human-mouse chimera(s).
Collapse
Affiliation(s)
- Rajeev K. Tyagi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical parasitology Unit, Institute Pasteur, Paris, France
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | | | - Robert W. Engelman
- Department of Pediatrics, Pathology and Cell Biology, University of South Florida, Tampa, FL, United States
| | | | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering, GD Goenka University, Gurgaon, India
| |
Collapse
|
43
|
Kim H, Schaniel C. Modeling Hematological Diseases and Cancer With Patient-Specific Induced Pluripotent Stem Cells. Front Immunol 2018; 9:2243. [PMID: 30323816 PMCID: PMC6172418 DOI: 10.3389/fimmu.2018.02243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) together with recent advances in genome editing, microphysiological systems, tissue engineering and xenograft models present new opportunities for the investigation of hematological diseases and cancer in a patient-specific context. Here we review the progress in the field and discuss the advantages, limitations, and challenges of iPSC-based malignancy modeling. We will also discuss the use of iPSCs and its derivatives as cellular sources for drug target identification, drug development and evaluation of pharmacological responses.
Collapse
Affiliation(s)
- Huensuk Kim
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christoph Schaniel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Noto FK, Adjan-Steffey V, Tong M, Ravichandran K, Zhang W, Arey A, McClain CB, Ostertag E, Mazhar S, Sangodkar J, DiFeo A, Crawford J, Narla G, Jamling TY. Sprague Dawley Rag2-Null Rats Created from Engineered Spermatogonial Stem Cells Are Immunodeficient and Permissive to Human Xenografts. Mol Cancer Ther 2018; 17:2481-2489. [PMID: 30206106 DOI: 10.1158/1535-7163.mct-18-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The rat is the preferred model for toxicology studies, and it offers distinctive advantages over the mouse as a preclinical research model including larger sample size collection, lower rates of drug clearance, and relative ease of surgical manipulation. An immunodeficient rat would allow for larger tumor size development, prolonged dosing and drug efficacy studies, and preliminary toxicologic testing and pharmacokinetic/pharmacodynamic studies in the same model animal. Here, we created an immunodeficient rat with a functional deletion of the Recombination Activating Gene 2 (Rag2) gene, using genetically modified spermatogonial stem cells (SSC). We targeted the Rag2 gene in rat SSCs with TALENs and transplanted these Rag2-deficient SSCs into sterile recipients. Offspring were genotyped, and a founder with a 27 bp deletion mutation was identified and bred to homozygosity to produce the Sprague-Dawley Rag2 - Rag2 tm1Hera (SDR) knockout rat. We demonstrated that SDR rat lacks mature B and T cells. Furthermore, the SDR rat model was permissive to growth of human glioblastoma cell line subcutaneously resulting in successful growth of tumors. In addition, a human KRAS-mutant non-small cell lung cancer cell line (H358), a patient-derived high-grade serous ovarian cancer cell line (OV81), and a patient-derived recurrent endometrial cancer cell line (OV185) were transplanted subcutaneously to test the ability of the SDR rat to accommodate human xenografts from multiple tissue types. All human cancer cell lines showed efficient tumor uptake and growth kinetics indicating that the SDR rat is a viable host for a range of xenograft studies. Mol Cancer Ther; 17(11); 2481-9. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Min Tong
- Poseida Therapeutics Inc., San Diego, California
| | | | - Wei Zhang
- Hera BioLabs Inc., Lexington, Kentucky
| | | | | | - Eric Ostertag
- Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| | - Sahar Mazhar
- Case Western Reserve University, Cleveland, Ohio
| | | | | | - Jack Crawford
- Hera BioLabs Inc., Lexington, Kentucky.,Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| | - Goutham Narla
- Hera BioLabs Inc., Lexington, Kentucky.,The University of Michigan, Ann Arbor, Michigan
| | - Tseten Y Jamling
- Hera BioLabs Inc., Lexington, Kentucky. .,Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| |
Collapse
|
45
|
Morton JJ, Keysar SB, Perrenoud L, Chimed TS, Reisinger J, Jackson B, Le PN, Nieto C, Gomez K, Miller B, Gao D, Somerset H, Wang XJ, Jimeno A. Dual use of hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking in an allogeneic humanized mouse model of head and neck cancer. Mol Carcinog 2018; 57:1651-1663. [PMID: 30129680 DOI: 10.1002/mc.22887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
In this report, we describe in detail the evolving procedures to optimize humanized mouse cohort generation, including optimal conditioning, choice of lineage for engraftment, threshold for successful engraftment, HNSCC tumor implantation, and immune and stroma cell analyses. We developed a dual infusion protocol of human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), leading to incremental human bone marrow engraftment, and exponential increase in mature peripheral human immune cells, and intratumor homing that includes a more complete lineage reconstitution. Additionally, we have identified practical rules to predict successful HSPC/MSC expansion, and a peripheral human cell threshold associated with bone marrow engraftment, both of which will optimize cohort generation and management. The tremendous advances in immune therapy in cancer have made the need for appropriate and standardized models more acute than ever, and therefore, we anticipate that this manuscript will have an immediate impact in cancer-related research. The need for more representative tools to investigate the human tumor microenvironment (TME) has led to the development of humanized mouse models. However, the difficulty of immune system engraftment and minimal human immune cell infiltration into implanted xenografts are major challenges. We have developed an improved method for generating mismatched humanized mice (mHM), using a dual infusion of human HSPCs and MSCs, isolated from cord blood and expanded in vitro. Engraftment with both HSPCs and MSCs produces mice with almost twice the percentage of human immune cells in their bone marrow, compared to mice engrafted with HSPCs alone, and yields 9- to 38-fold higher levels of mature peripheral human immune cells. We identified a peripheral mHM blood human B cell threshold that predicts an optimal degree of mouse bone marrow humanization. When head and neck squamous cell carcinoma (HNSCC) tumors are implanted on the flanks of HSPC-MSC engrafted mice, human T cells, B cells, and macrophages infiltrate the stroma of these tumors at 2- to 8-fold higher ratios. In dually HSPC-MSC engrafted mice we also more frequently observed additional types of immune cells, including regulatory T cells, cytotoxic T cells, and MDSCs. Higher humanization was associated with in vivo response to immune-directed therapy. The complex immune environment arising in tumors from dually HSPC-MSC engrafted mice better resembles that of the originating patient's tumor, suggesting an enhanced capability to accurately recapitulate a human TME.
Collapse
Affiliation(s)
- John J Morton
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Loni Perrenoud
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Julie Reisinger
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Brian Jackson
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Karina Gomez
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Dexiang Gao
- Department of Biostatistics and Informatics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, School of Medicine, University of Colorado, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
46
|
|
47
|
Wagner F, Holzapfel BM, McGovern JA, Shafiee A, Baldwin JG, Martine LC, Lahr CA, Wunner FM, Friis T, Bas O, Boxberg M, Prodinger PM, Shokoohmand A, Moi D, Mazzieri R, Loessner D, Hutmacher DW. Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma. Biomaterials 2018; 171:230-246. [PMID: 29705656 DOI: 10.1016/j.biomaterials.2018.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Existing preclinical murine models often fail to predict effects of anti-cancer drugs. In order to minimize interspecies-differences between murine hosts and human bone tumors of in vivo xenograft platforms, we tissue-engineered a novel orthotopic humanized bone model. METHODS Orthotopic humanized tissue engineered bone constructs (ohTEBC) were fabricated by 3D printing of medical-grade polycaprolactone scaffolds, which were seeded with human osteoblasts and embedded within polyethylene glycol-based hydrogels containing human umbilical vein endothelial cells (HUVECs). Constructs were then implanted at the femur of NOD-scid and NSG mice. NSG mice were then bone marrow transplanted with human CD34 + cells. Human osteosarcoma (OS) growth was induced within the ohTEBCs by direct injection of Luc-SAOS-2 cells. Tissues were harvested for bone matrix and marrow morphology analysis as well as tumor biology investigations. Tumor marker expression was analyzed in the humanized OS and correlated with the expression in 68 OS patients utilizing tissue micro arrays (TMA). RESULTS After harvesting the femurs micro computed tomography and immunohistochemical staining showed an organ, which had all features of human bone. Around the original mouse femur new bone trabeculae have formed surrounded by a bone cortex. Staining for human specific (hs) collagen type-I (hs Col-I) showed human extracellular bone matrix production. The presence of nuclei staining positive for human nuclear mitotic apparatus protein 1 (hs NuMa) proved the osteocytes residing within the bone matrix were of human origin. Flow cytometry verified the presence of human hematopoietic cells. After injection of Luc-SAOS-2 cells a primary tumor and lung metastasis developed. After euthanization histological analysis showed pathognomic features of osteoblastic OS. Furthermore, the tumor utilized the previously implanted HUVECS for angiogenesis. Tumor marker expression was similar to human patients. Moreover, the recently discovered musculoskeletal gene C12orf29 was expressed in the most common subtypes of OS patient samples. CONCLUSION OhTEBCs represent a suitable orthotopic microenvironment for humanized OS growth and offers a new translational direction, as the femur is the most common location of OS. The newly developed and validated preclinical model allows controlled and predictive marker studies of primary bone tumors and other bone malignancies.
Collapse
Affiliation(s)
- Ferdinand Wagner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstraße 4, 80337 Munich, Germany; Department of Orthopedics for the University of Regensburg, Asklepios Klinikum Bad Abbach, Kaiser-Karl V.-Allee 3, 93077 Bad Abbach, Germany
| | - Boris M Holzapfel
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Jeremy G Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Laure C Martine
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Christoph A Lahr
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Felix M Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Onur Bas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Melanie Boxberg
- Institute of Pathology, Klinikum Rechts der Isar, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany
| | - Peter M Prodinger
- Department of Orthopedic Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Ali Shokoohmand
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Davide Moi
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Roberta Mazzieri
- The University of Queensland, Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Daniela Loessner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA; Institute for Advanced Study, Technical University Munich, Lichtenbergstraße 2a, 85748 Garching, Munich, Germany.
| |
Collapse
|
48
|
Siegler EL, Wang P. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy. Hum Gene Ther 2018; 29:534-546. [PMID: 29390873 DOI: 10.1089/hum.2017.243] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.
Collapse
Affiliation(s)
- Elizabeth Louise Siegler
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Pin Wang
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California.,2 Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California.,3 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California
| |
Collapse
|
49
|
Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med 2018; 215:729-743. [PMID: 29453226 PMCID: PMC5839768 DOI: 10.1084/jem.20172139] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Xenotransplantation of patient-derived samples in mouse models has been instrumental in depicting the role of hematopoietic stem and progenitor cells in the establishment as well as progression of hematological malignancies. The foundations for this field of research have been based on the development of immunodeficient mouse models, which provide normal and malignant human hematopoietic cells with a supportive microenvironment. Immunosuppressed and genetically modified mice expressing human growth factors were key milestones in patient-derived xenograft (PDX) models, highlighting the importance of developing humanized microenvironments. The latest major improvement has been the use of human bone marrow (BM) niche-forming cells to generate human-mouse chimeric BM tissues in PDXs, which can shed light on the interactions between human stroma and hematopoietic cells. Here, we summarize the methods used for human hematopoietic cell xenotransplantation and their milestones and review the latest approaches in generating humanized BM tissues in mice to study human normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Syed A Mian
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haematological Medicine, King's College London School of Medicine, London, England, UK
| | - Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, England, UK
| | - William Grey
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, England, UK
| |
Collapse
|
50
|
Sereti E, Karagianellou T, Kotsoni I, Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N, Zacharoulis D, Dimas K. Patient Derived Xenografts (PDX) for personalized treatment of pancreatic cancer: emerging allies in the war on a devastating cancer? J Proteomics 2018; 188:107-118. [PMID: 29398619 DOI: 10.1016/j.jprot.2018.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC), the eighth most lethal cancer for men and ninth for women worldwide, remains dismal. The increasing rates of deaths by PDAC indicate that the overall management of the disease in 21st century is still insufficient. Thus it is obvious that there is an unmet need to improve management of PDAC by finding new biomarkers to screen high risk patients, confirm diagnosis, and predict response to treatment as well more efficacious and safer treatments. Patient Derived Xenografts (PDX) have been developed as a new promising tool in an effort to mirror genetics, tumor heterogeneity and cancer microenvironment of the primary tumor. Herein we aim to give an updated overview of the current status and the perspectives of PDX in the search for the identification of novel biomarkers and improved therapeutic outcomes for PDAC but also their use as a valuable tool towards individualized treatments to improve the outcome of the disease. Furthermore, we critically review the applications, advantages, limitations, and perspectives of PDX in the research towards an improved management of PDAC. SIGNIFICANCE This review provides a comprehensive overview of the current status and the potential role as well as the challenges of PDX in the road to fight one of the most lethal cancers in the developed countries, pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Evangelia Sereti
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Ioanna Kotsoni
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dimitrios Magouliotis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Surgery, University Hospital of Larissa, Larissa, Greece
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|