1
|
Hosseini SM, Karimi-Abdolrezaee S. New insights on the role of chondroitin sulfate proteoglycans in neural stem cell-mediated repair in spinal cord injury. Neural Regen Res 2025; 20:1699-1700. [PMID: 39104100 PMCID: PMC11688555 DOI: 10.4103/nrr.nrr-d-24-00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Qu W, Wu X, Wu W, Wang Y, Sun Y, Deng L, Walker M, Chen C, Dai H, Han Q, Ding Y, Xia Y, Smith G, Li R, Liu NK, Xu XM. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen Res 2025; 20:1467-1482. [PMID: 39075913 PMCID: PMC11624882 DOI: 10.4103/nrr.nrr-d-23-01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
Collapse
Affiliation(s)
- Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying Ding
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Smith
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Zhang S, Zhu H, Li G, Zhu M. Cathepsin B promotes optic nerve axonal regeneration. Neuroreport 2025; 36:279-289. [PMID: 40177832 PMCID: PMC11949221 DOI: 10.1097/wnr.0000000000002148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/05/2025]
Abstract
This study explored the role of cathepsin B (CTSB) in optic nerve regeneration. Sprague-Dawley rats were utilized for optic nerve crush and long-range crush injury model. Gene and protein expression changes were analyzed via reverse transcription quantitative polymerase chain reaction and western blot. Primary cortical neurons and BV2 cells were cultured to assess CTSB's effects on neuronal outgrowth and microglial activity. Local CTSB administration degraded chondroitin sulfate proteoglycans (CSPGs), promoting axonal growth in-vivo. In-vitro, CTSB neutralized CSPG-mediated inhibition of neuronal growth. Quantitative proteomics revealed elevated microglial marker proteins in the regenerative environment. Activation of signal transducer and activator of transcription 3 (STAT3) and signal transducer and activator of transcription 6 (STAT6) pathways in BV2 cells increased CTSB secretion. These findings suggest that postinjury regenerative microenvironment reconstruction is associated with upregulated CTSB, which degrades CSPGs to facilitate axonal growth. Microglia-derived CTSB, regulated by STAT3/STAT6 signaling, may play a key role in this process. Modulating CTSB expression could thus be a therapeutic strategy to enhance optic nerve regeneration by modifying the injury microenvironment.
Collapse
Affiliation(s)
- Si Zhang
- Department of Ophthalmology, The First People’s Hospital of Foshan
| | - Hui Zhu
- Department of Ophthalmology, The Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guopei Li
- Department of Ophthalmology, The First People’s Hospital of Foshan
| | - Min Zhu
- Department of Ophthalmology, The First People’s Hospital of Foshan
| |
Collapse
|
4
|
Du S, Zhang XX, Gao X, He YB. Structure-based screening of FDA-approved drugs and molecular dynamics simulation to identify potential leukocyte antigen related protein (PTP-LAR) inhibitors. Comput Biol Chem 2024; 113:108264. [PMID: 39488935 DOI: 10.1016/j.compbiolchem.2024.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Leukocyte antigen related protein (LAR), a member of the PTP family, has become a potential target for exploring therapeutic interventions for various complex diseases, including neurodegenerative diseases. The reuse of FDA-approved drugs offers a promising approach for rapidly identifying potential LAR inhibitors. In this study, we conducted a structure-based virtual screening of FDA-approved drugs from ZINC database and selected candidate compounds based on their binding affinity and interactions with LAR. Our research revealed that the candidate compound ZINC6716957 exhibited excellent binding affinity to the binding pocket of LAR, formed interactions with key residues at the active site, and demonstrated low toxicity. To further understand the binding dynamics and interaction mechanisms, the 100-ns molecular dynamics simulations were performed. Post-dynamics analyses (RMSD, RMSF, SASA, hydrogen bond, binding free energy and free energy landscape) indicated that the compound ZINC6716957 stabilized the structure of LAR and the residues (Tyr1355, Arg1431, Lys1433, Arg1528, Tyr1563 and Thr1567) played a vital role in stabilizing the conformational changes of protein. In conclusion, the identified compound ZINC6716957 possessed robust inhibitory activity on LAR and merited extensive research, potentially unleashing its significant therapeutic potential in the treatment of complex diseases, particularly neurodegenerative disorders.
Collapse
Affiliation(s)
- Shan Du
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Xin-Xin Zhang
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Xiang Gao
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Yan-Bin He
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China.
| |
Collapse
|
5
|
Hosseini SM, Nemati S, Karimi-Abdolrezaee S. Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury. Stem Cell Reports 2024; 19:1451-1473. [PMID: 39303705 PMCID: PMC11561464 DOI: 10.1016/j.stemcr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Neural degeneration is a hallmark of spinal cord injury (SCI). Multipotent neural precursor cells (NPCs) have the potential to reconstruct the damaged neuron-glia network due to their tri-lineage capacity to generate neurons, astrocytes, and oligodendrocytes. However, astrogenesis is the predominant fate of resident or transplanted NPCs in the SCI milieu adding to the abundant number of resident astrocytes in the lesion. How NPC-derived astrocytes respond to the inflammatory milieu of SCI and the mechanisms by which they contribute to the post-injury recovery processes remain largely unknown. Here, we uncover that activated NPC-derived astrocytes exhibit distinct molecular signature that is immune modulatory and foster neurogenesis, neuronal maturity, and synaptogenesis. Mechanistically, NPC-derived astrocytes perform regenerative matrix remodeling by clearing inhibitory chondroitin sulfate proteoglycans (CSPGs) from the injury milieu through LAR and PTP-σ receptor-mediated endocytosis and the production of ADAMTS1 and ADAMTS9, while most resident astrocytes are pro-inflammatory and contribute to the pathologic deposition of CSPGs. These novel findings unravel critical mechanisms of NPC-mediated astrogenesis in SCI repair.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Shiva Nemati
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Manitoba Multiple Sclerosis Research Center, Winnipeg, MB, Canada; Children Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Zhu S, Ma H, Hou M, Li H, Ning G. Schwann Cell-Derived Exosomes Induced Axon Growth after Spinal Cord Injury by Decreasing PTP-σ Activation on CSPGs via the Rho/ROCK Pathway. Neurochem Res 2024; 49:2120-2130. [PMID: 38819695 DOI: 10.1007/s11064-024-04166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mengfan Hou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hailiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
- Department of Orthopedics, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China.
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
8
|
Hosseini SM, Borys B, Karimi-Abdolrezaee S. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances. Brain 2024; 147:766-793. [PMID: 37975820 DOI: 10.1093/brain/awad392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a leading cause of lifelong disabilities. Permanent sensory, motor and autonomic impairments after SCI are substantially attributed to degeneration of spinal cord neurons and axons, and disintegration of neural network. To date, minimal regenerative treatments are available for SCI with an unmet need for new therapies to reconstruct the damaged spinal cord neuron-glia network and restore connectivity with the supraspinal pathways. Multipotent neural precursor cells (NPCs) have a unique capacity to generate neurons, oligodendrocytes and astrocytes. Due to this capacity, NPCs have been an attractive cell source for cellular therapies for SCI. Transplantation of NPCs has been extensively tested in preclinical models of SCI in the past two decades. These studies have identified opportunities and challenges associated with NPC therapies. While NPCs have the potential to promote neuroregeneration through various mechanisms, their low long-term survival and integration within the host injured spinal cord limit the functional benefits of NPC-based therapies for SCI. To address this challenge, combinatorial strategies have been developed to optimize the outcomes of NPC therapies by enriching SCI microenvironment through biomaterials, genetic and pharmacological therapies. In this review, we will provide an in-depth discussion on recent advances in preclinical NPC-based therapies for SCI. We will discuss modes of actions and mechanism by which engrafted NPCs contribute to the repair process and functional recovery. We will also provide an update on current clinical trials and new technologies that have facilitated preparation of medical-grade human NPCs suitable for transplantation in clinical studies.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ben Borys
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Multiple Sclerosis Research Center, Winnipeg, Manitoba R3E 0J9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
9
|
Milton AJ, Kwok JC, McClellan J, Randall SG, Lathia JD, Warren PM, Silver DJ, Silver J. Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ. J Neurotrauma 2023; 40:2500-2521. [PMID: 37606910 PMCID: PMC10698859 DOI: 10.1089/neu.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
Collapse
Affiliation(s)
- Adrianna J. Milton
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica C.F. Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jacob McClellan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabre G. Randall
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Philippa M. Warren
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J. Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
11
|
Wu X, Cheng X, Kang M, Dong R, Zhao J, Qu Y. Natural polysaccharide-based hydrogel bioprinting for articular cartilage repair. FRONTIERS IN MATERIALS 2023; 10. [DOI: 10.3389/fmats.2023.1204318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Tissue engineering represents a promising approach for impaired articular cartilage tissue regeneration. 3D printed hydrogels have become an emerging tissue engineering strategy because they closely mimic the physical and biochemical characteristics of the extracellular matrix. The formulation of hydrogel ink holds significant importance in attaining a precisely defined scaffold, which could exhibit excellent shape fidelity post-printing. Natural polysaccharide-based hydrogels are a highly promising class of scaffold biomaterials for articular cartilage regeneration in the field of material science and tissue engineering. These hydrogels are particularly advantageous due to their exceptional water absorption capacity, biodegradability, adjustable porosity, and biocompatibility, which closely resemble those of the natural extracellular matrix. This review aims to provide a comprehensive overview of the key characteristics, functions, and research progress in 3D printing technology for natural polysaccharide-based hydrogels. Specifically, this review categorizes the commonly used natural polysaccharide-based hydrogel materials in cartilage tissue engineering, and summarizes the classic literature in this area. In the end, we provide a comprehensive analysis of the challenges and potential applications of natural polysaccharide-based hydrogels in cartilage tissue engineering.
Collapse
|
12
|
Yao M, Fang J, Li J, Ng ACK, Liu J, Leung GKK, Song F, Zhang J, Chang C. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J Neuroinflammation 2022; 19:207. [PMID: 35982473 PMCID: PMC9387079 DOI: 10.1186/s12974-022-02561-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is associated with high morbidity and mortality rates. However, extant investigations have mainly focused on gray matter injury within the primary injury site after ICH rather than on white matter (WM) injury in the brain and spinal cord. This focus partly accounts for the diminished therapeutic discovery. Recent evidence suggests that chondroitin sulphate proteoglycans (CSPG), which can bind to the neural transmembrane protein tyrosine phosphatase-sigma (PTPσ), may facilitate axonal regrowth and remyelination by ameliorating neuroinflammation. Methods A clinically relevant ICH model was established using adult C57BL/6 mice. The mice were then treated systemically with intracellular sigma peptide (ISP), which specifically targets PTPσ. Sensorimotor function was assessed by various behavioral tests and electrophysiological assessment. Western blot was used to verify the expression levels of Iba-1 and different inflammatory cytokines. The morphology of white matter tracts of brain and spinal cord was evaluated by immunofluorescence staining and transmission electron microscopy (TEM). Adeno-associated virus (AAV) 2/9 injection was used to assess the ipsilateral axonal compensation after injury. Parallel in vitro studies on the effects of CSPG interference on oligodendrocyte–DRG neuron co-culture explored the molecular mechanism through which ISP treatment promoted myelination capability. Results ISP, by targeting PTPσ, improved WM integrity and sensorimotor recovery via immunomodulation. In addition, ISP administration significantly decreased WM injury in the peri-hematomal region as well as cervical spinal cord, enhanced axonal myelination and facilitated neurological restoration, including electrophysiologically assessed sensorimotor functions. Parallel in vitro studies showed that inhibition of PTPσ by ISP fosters myelination by modulating the Erk/CREB signaling pathway. Conclusions Our findings revealed for the first time that manipulation of PTPσ signaling by ISP can promote prolonged neurological recovery by restoration of the integrity of neural circuits in the CNS through modulation of Erk/CREB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02561-4.
Collapse
Affiliation(s)
- Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiewei Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Anson Cho Kiu Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanglai Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Luo F, Wang J, Zhang Z, You Z, Bedolla A, Okwubido-Williams F, Huang LF, Silver J, Luo Y. Inhibition of CSPG receptor PTPσ promotes migration of newly born neuroblasts, axonal sprouting, and recovery from stroke. Cell Rep 2022; 40:111137. [PMID: 35905716 PMCID: PMC9677607 DOI: 10.1016/j.celrep.2022.111137] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
In addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery. Use of a receptor modulatory peptide (ISP) or Ptprs gene deletion leads to increased neurite outgrowth and enhanced NSCs migration upon inhibitory CSPG substrates. Post-stroke ISP treatment results in increased axonal sprouting as well as neuroblast migration deeply into the lesion scar with a transcriptional signature reflective of repair. Lastly, peptide treatment post-stroke (initiated acutely or more chronically at 7 days) results in improved behavioral recovery in both motor and cognitive functions. Therefore, we propose that CSPGs induced by stroke play a predominant role in the regulation of neural repair and that blocking CSPG signaling pathways will lead to enhanced neurorepair and functional recovery in stroke.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jiapeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Zhen Zhang
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Zhen You
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alicia Bedolla
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - FearGod Okwubido-Williams
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Cannabinoid CB 1 receptor gene inactivation in oligodendrocyte precursors disrupts oligodendrogenesis and myelination in mice. Cell Death Dis 2022; 13:585. [PMID: 35798697 PMCID: PMC9263142 DOI: 10.1038/s41419-022-05032-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/21/2023]
Abstract
Cannabinoids are known to modulate oligodendrogenesis and developmental CNS myelination. However, the cell-autonomous action of these compounds on oligodendroglial cells in vivo, and the molecular mechanisms underlying these effects have not yet been studied. Here, by using oligodendroglial precursor cell (OPC)-targeted genetic mouse models, we show that cannabinoid CB1 receptors exert an essential role in modulating OPC differentiation at the critical periods of postnatal myelination. We found that selective genetic inactivation of CB1 receptors in OPCs in vivo perturbs oligodendrogenesis and postnatal myelination by altering the RhoA/ROCK signaling pathway, leading to hypomyelination, and motor and cognitive alterations in young adult mice. Conversely, pharmacological CB1 receptor activation, by inducing E3 ubiquitin ligase-dependent RhoA proteasomal degradation, promotes oligodendrocyte development and CNS myelination in OPCs, an effect that was not evident in OPC-specific CB1 receptor-deficient mice. Moreover, pharmacological inactivation of ROCK in vivo overcomes the defects in oligodendrogenesis and CNS myelination, and behavioral alterations found in OPC-specific CB1 receptor-deficient mice. Overall, this study supports a cell-autonomous role for CB1 receptors in modulating oligodendrogenesis in vivo, which may have a profound impact on the scientific knowledge and therapeutic manipulation of CNS myelination by cannabinoids.
Collapse
|
15
|
Zhang S, Zhu H, Pan Y, Liu X, Jin H, Nan K, Wu W. Exploration of the strategies to enhance the regeneration of the optic nerve. Exp Eye Res 2022; 219:109068. [DOI: 10.1016/j.exer.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
|
16
|
Siddiqui N, Oshima K, Hippensteel JA. Proteoglycans and Glycosaminoglycans in Central Nervous System Injury. Am J Physiol Cell Physiol 2022; 323:C46-C55. [PMID: 35613357 PMCID: PMC9273265 DOI: 10.1152/ajpcell.00053.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brain and spinal cord constitute the central nervous system (CNS), which when injured, can be exceedingly devastating. The mechanistic roles of proteoglycans (PGs) and their glycosaminoglycan (GAG) side chains in such injuries have been extensively studied. CNS injury immediately alters endothelial and extracellular matrix (ECM) PGs and GAGs. Subsequently, these alterations contribute to acute injury, post-injury fibrosis, and post-injury repair. These effects are central to the pathophysiology of CNS injury. This review focuses on the importance of PGs and GAGs in multiple forms of injury including traumatic brain injury, spinal cord injury, and stroke. We highlight the causes and consequences of degradation of the PG and GAG-enriched endothelial glycocalyx in early injury and discuss the pleiotropic roles of PGs in neuroinflammation. We subsequently evaluate the dualistic effects of PGs on recovery: both PG/GAG-mediated inhibition and facilitation of repair. We then report promising therapeutic strategies that may prove effective for repair of CNS injury including PG receptor inhibition, delivery of endogenous, pro-repair PGs and GAGs, and direct degradation of pathologic GAGs. Last, we discuss importance of two PG- and GAG-containing ECM structures (synapses and perineuronal nets) in CNS injury and recovery.
Collapse
Affiliation(s)
- Noah Siddiqui
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
17
|
Visintin R, Ray SK. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sci 2022; 12:247. [PMID: 35204010 PMCID: PMC8870708 DOI: 10.3390/brainsci12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a major challenge, with a severe lack of effective therapies for yielding meaningful improvements in function. Therefore, there is a great opportunity for the development of novel treatment strategies for SCI. The modulation of autophagy, a process by which a cell degrades and recycles unnecessary or harmful components (protein aggregates, organelles, etc.) to maintain cellular homeostasis and respond to a changing microenvironment, is thought to have potential for treating many neurodegenerative conditions, including SCI. The discovery of microRNAs (miRNAs), which are short ribonucleotide transcripts for targeting of specific messenger RNAs (mRNAs) for silencing, shows prevention of the translation of mRNAs to the corresponding proteins affecting various cellular processes, including autophagy. The number of known miRNAs and their targets continues to grow rapidly. This review article aims to explore the relationship between autophagy and SCI, specifically with the intent of identifying specific miRNAs that can be useful to modulate autophagy for neuroprotection and the improvement of functional recovery in SCI.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
18
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
19
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021; 58:4652-4665. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Secondary pathogenesis following primary mechanical damage to the spinal cord is believed to be the ultimate reason for the limitation of currently available therapies. Precisely, the complex cascade of secondary events-mediated scar formation is the sole hurdle in the recovery process due to its inhibitory effect on axonal regeneration, plasticity, and remyelination. Neutrophils initiate this secondary injury along with other extracellular matrix components such as matrix metalloproteinase (MMPs), and chondroitin sulfate proteoglycans (CSPGs). Together, they mediate inflammation, necrosis, apoptosis, lesion, and scar formation at the injury site. Activated neutrophil releases several proteases, cytokines, and chemokines that cause complete tissue destruction. Thus, neutrophil activation and infiltration in the acute phase of injury act as a roadmap for inducing tissue destruction. MMPs, are extracellular proteolytic enzymes that degrade the ECM proteins, increases vascular permeability, and are predominantly released by neutrophils. These MMPs, in turn, cleave NG2 proteoglycan, a subtype of CSPG, into the active form. This active or shed form is involved in both the fibrotic as well as glial scar formation. Since neutrophils and ECM components are closely associated with each other in pathological conditions. Herein, we emphasize the interaction of neutrophils and their influence on ECM protein expression during the acute and chronic phases to identify a promising targets for designing a therapeutic approach in spinal cord injury.
Collapse
|
21
|
Li X, Xu Q, Johnson M, Wang X, Lyu J, Li Y, McMahon S, Greiser U, A S, Wang W. A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomater Sci 2021; 9:4139-4148. [PMID: 33955435 DOI: 10.1039/d1bm00482d] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chondroitin sulfate (CS), as a popular material for cartilage tissue engineering scaffolds, has been extensively studied and reported for its safety and excellent biocompatibility. However, the rapid degradation of pure CS scaffolds has brought a challenge to regenerate neo-tissue similar to natural articular cartilage effectively. Meanwhile, the poly(ethene glycol) (PEG) -based biopolymer is frequently applied as a structural constituent material because of its remarkable mechanical properties, long-lasting in vivo stability, and hypo-immunity. Here, we report that the combination of CS and hyperbranched multifunctional PEG copolymer (HB-PEG) could synergistically promote cartilage repair. The thiol functionalised CS (CS-SH)/HB-PEG hydrogel scaffolds were fabricated via thiol-ene reaction, which exhibits rapid gelation, excellent mechanical properties and prolonged degradation properties. We found that rat adipose-derived mesenchymal stem cells presented great cell viability and improved chondrogenesis in CS-SH/HB-PEG hydrogels. Moreover, the injectable hydrogel scaffolds reduced stem cell inflammatory response, consistent with the well-documented anti-inflammatory activities of CS.
Collapse
Affiliation(s)
- Xiaolin Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Xi Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland. and Ashland Specialties Ireland Ltd, National Science Park, Building V, Dublin Road, Petitswood, Mullingar, Co. Westmeath, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Sean McMahon
- Ashland Specialties Ireland Ltd, National Science Park, Building V, Dublin Road, Petitswood, Mullingar, Co. Westmeath, Ireland
| | - Udo Greiser
- Ashland Specialties Ireland Ltd, National Science Park, Building V, Dublin Road, Petitswood, Mullingar, Co. Westmeath, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
22
|
McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG. Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther 2021; 21:1411-1427. [PMID: 33830863 DOI: 10.1080/14712598.2021.1914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Traumatic Spinal Cord Injury (SCI) results from primary physical injury to the spinal cord, which initiates a secondary cascade of neural cell death. Current therapeutic approaches can attenuate the consequences of the primary and secondary events, but do not address the degenerative aspects of SCI. Transplantation of neural stem/progenitor cells (NPCs) for the replacement of the lost/damaged neural cells is suggested here as a regenerative approach that is complementary to current therapeutics.Areas Covered: This review addresses how neurons, oligodendrocytes, and astrocytes are impacted by traumatic SCI, and how current research in regenerative-NPC therapeutics aims to restore their functionality. Methods used to enhance graft survival, as well as bias progenitor cells towards neuronal, oligodendrogenic, and astroglia lineages are discussed.Expert Opinion: Despite an NPC's ability to differentiate into neurons, oligodendrocytes, and astrocytes in the transplant environment, their potential therapeutic efficacy requires further optimization prior to translation into the clinic. Considering the temporospatial identity of NPCs could promote neural repair in region specific injuries throughout the spinal cord. Moreover, understanding which cells are targeted by NPC-derived myelinating cells can help restore physiologically-relevant myelin patterns. Finally, the duality of astrocytes is discussed, outlining their context-dependent importance in the treatment of SCI.
Collapse
Affiliation(s)
- William Brett McIntyre
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Termini CM, Pang A, Batton DM, Chute JP. Proteoglycans regulate protein tyrosine phosphatase receptor σ organization on hematopoietic stem/progenitor cells. Exp Hematol 2021; 96:44-51. [PMID: 33515635 PMCID: PMC10838547 DOI: 10.1016/j.exphem.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
Protein tyrosine phosphatase receptor σ (PTPσ) is highly expressed by murine and human hematopoietic stem cells (HSCs) and negatively regulates HSC self-renewal and regeneration. Previous studies of the nervous system suggest that heparan sulfate proteoglycans can inactivate PTPσ by clustering PTPσ receptors on neurons, but this finding has yet to be visually verified with adequate resolution. Here, we sought to visualize and quantify how heparan sulfate proteoglycans regulate the organization and activation of PTPσ in hematopoietic stem/progenitor cells (HSPCs). Our study illustrates that syndecan-2 promotes PTPσ clustering, which sustains phospho-tyrosine and phospho-ezrin levels in association with augmentation of hematopoietic colony formation. Strategies that promote clustering of PTPσ on HSPCs may serve to powerfully augment hematopoietic function.
Collapse
Affiliation(s)
- Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA; Department of Orthopaedic Surgery, University of California at Los Angeles, Los Angeles, CA; Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Amara Pang
- Division of Hematology/Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA; Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Destiny M Batton
- Division of Hematology/Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA; Department of Orthopaedic Surgery, University of California at Los Angeles, Los Angeles, CA; Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA; Broad Stem Cell Research Center, University of California at Los Angeles, Los Angeles, CA; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA.
| |
Collapse
|
24
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
25
|
Khazaei M, Ahuja CS, Nakashima H, Nagoshi N, Li L, Wang J, Chio J, Badner A, Seligman D, Ichise A, Shibata S, Fehlings MG. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents. Sci Transl Med 2021; 12:12/525/eaau3538. [PMID: 31915299 DOI: 10.1126/scitranslmed.aau3538] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Neural progenitor cell (NPC) transplantation is a promising strategy for the treatment of spinal cord injury (SCI). In this study, we show that injury-induced Notch activation in the spinal cord microenvironment biases the fate of transplanted NPCs toward astrocytes in rodents. In a screen for potential clinically relevant factors to modulate Notch signaling, we identified glial cell-derived neurotrophic factor (GDNF). GDNF attenuates Notch signaling by mediating delta-like 1 homolog (DLK1) expression, which is independent of GDNF's effect on cell survival. When transplanted into a rodent model of cervical SCI, GDNF-expressing human-induced pluripotent stem cell-derived NPCs (hiPSC-NPCs) demonstrated higher differentiation toward a neuronal fate compared to control cells. In addition, expression of GDNF promoted endogenous tissue sparing and enhanced electrical integration of transplanted cells, which collectively resulted in improved neurobehavioral recovery. CRISPR-induced knockouts of the DLK1 gene in GDNF-expressing hiPSC-NPCs attenuated the effect on functional recovery, demonstrating that this effect is partially mediated through DLK1 expression. These results represent a mechanistically driven optimization of hiPSC-NPC therapy to redirect transplanted cells toward a neuronal fate and enhance their integration.
Collapse
Affiliation(s)
- Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Christopher S Ahuja
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiroaki Nakashima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Narihito Nagoshi
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Lijun Li
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jonathon Chio
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Seligman
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Ayaka Ichise
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
26
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
27
|
Zavvarian MM, Toossi A, Khazaei M, Hong J, Fehlings M. Novel innovations in cell and gene therapies for spinal cord injury. F1000Res 2020; 9. [PMID: 32399196 PMCID: PMC7194487 DOI: 10.12688/f1000research.21989.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) leads to chronic and multifaceted disability, which severely impacts the physical and mental health as well as the socio-economic status of affected individuals. Permanent disabilities following SCI result from the failure of injured neurons to regenerate and rebuild functional connections with their original targets. Inhibitory factors present in the SCI microenvironment and the poor intrinsic regenerative capacity of adult spinal cord neurons are obstacles for regeneration and functional recovery. Considerable progress has been made in recent years in developing cell and molecular approaches to enable the regeneration of damaged spinal cord tissue. In this review, we highlight several potent cell-based approaches and genetic manipulation strategies (gene therapy) that are being investigated to reconstruct damaged or lost spinal neural circuits and explore emerging novel combinatorial approaches for enhancing recovery from SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Amirali Toossi
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mohamad Khazaei
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - James Hong
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael Fehlings
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
28
|
Rodemer W, Zhang G, Sinitsa I, Hu J, Jin LQ, Li S, Selzer ME. PTPσ Knockdown in Lampreys Impairs Reticulospinal Axon Regeneration and Neuronal Survival After Spinal Cord Injury. Front Cell Neurosci 2020; 14:61. [PMID: 32265663 PMCID: PMC7096546 DOI: 10.3389/fncel.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in persistent functional deficits due to the lack of axon regeneration within the mammalian CNS. After SCI, chondroitin sulfate proteoglycans (CSPGs) inhibit axon regrowth via putative interactions with the LAR-family protein tyrosine phosphatases, PTPσ and LAR, localized on the injured axon tips. Unlike mammals, the sea lamprey, Petromyzon marinus, robustly recovers locomotion after complete spinal cord transection (TX). Behavioral recovery is accompanied by heterogeneous yet predictable anatomical regeneration of the lamprey's reticulospinal (RS) system. The identified RS neurons can be categorized as "good" or "bad" regenerators based on the likelihood that their axons will regenerate. Those neurons that fail to regenerate their axons undergo a delayed form of caspase-mediated cell death. Previously, this lab reported that lamprey PTPσ mRNA is selectively expressed in "bad regenerator" RS neurons, preceding SCI-induced caspase activation. Consequently, we hypothesized that PTPσ deletion would reduce retrograde cell death and promote axon regeneration. Using antisense morpholino oligomers (MOs), we knocked down PTPσ expression after TX and assessed the effects on axon regeneration, caspase activation, intracellular signaling, and behavioral recovery. Unexpectedly, PTPσ knockdown significantly impaired RS axon regeneration at 10 weeks post-TX, primarily due to reduced long-term neuron survival. Interestingly, cell loss was not preceded by an increase in caspase or p53 activation. Behavioral recovery was largely unaffected, although PTPσ knockdowns showed mild deficits in the recovery of swimming distance and latency to immobility during open field swim assays. Although the mechanism underlying the cell death following TX and PTPσ knockdown remains unknown, this study suggests that PTPσ is not a net negative regulator of long tract axon regeneration in lampreys.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Isabelle Sinitsa
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Li-qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 2020; 328:113276. [PMID: 32145250 DOI: 10.1016/j.expneurol.2020.113276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive. Recently, CSPGs/PTPσ interactions were found to regulate autophagic flux at the axon growth cone by dampening the autophagosome-lysosomal fusion step. Because of the intense interest in autophagic phenomena in the regulation of a wide variety of critical cellular functions, we summarize here what is currently known about dysregulation of autophagy following spinal cord injury, and highlight this critical new mechanism underlying axon regeneration failure. Furthermore, we review how CSPGs/PTPσ interactions influence plasticity through autophagic regulation and how PTPσ serves as a switch to execute either axon outgrowth or synaptogenesis. This has exciting implications for the role CSPGs play not only in axon regeneration failure after spinal cord injury, but also in neurodegenerative diseases where, again, inhibitory CSPGs are upregulated.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Seattle Children's Hospital Research Institute, Integrative Center for Brain Research, Seattle, Washington, USA
| | - Philippa Mary Warren
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH, USA.
| |
Collapse
|
30
|
Feliu A, Mestre L, Carrillo-Salinas FJ, Yong VW, Mecha M, Guaza C. 2-arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia 2020; 68:1255-1273. [PMID: 31894889 DOI: 10.1002/glia.23775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023]
Abstract
The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-β1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-β1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Ana Feliu
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | | | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Miriam Mecha
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - Carmen Guaza
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
31
|
Hart CG, Dyck SM, Kataria H, Alizadeh A, Nagakannan P, Thliveris JA, Eftekharpour E, Karimi-Abdolrezaee S. Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury. Exp Neurol 2019; 325:113163. [PMID: 31881217 DOI: 10.1016/j.expneurol.2019.113163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
Abstract
Traumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events. Here, we demonstrate that the active form of bone morphogenetic protein-4 (BMP4) is robustly and transiently upregulated in acute SCI in rats. BMP4 is a key morphogen in neurodevelopment; however, its role in SCI is not fully defined. Thus, we elucidated the ramification of BMP4 upregulation in a preclinical model of compressive/contusive SCI in the rat by employing noggin, an endogenous antagonist of BMP ligands, and LDN193189, an intracellular inhibitor of BMP signaling. In parallel, we studied cell-specific effects of BMP4 on neural precursor cells (NPCs), oligodendrocyte precursor cells (OPCs), neurons and astrocytes in vitro. We demonstrate that activation of BMP4 inhibits differentiation of spinal cord NPCs and OPCs into mature myelin-expressing oligodendrocytes, and acute blockade of BMPs promotes oligodendrogenesis, oligodendrocyte preservation and remyelination after SCI. Importantly, we report for the first time that BMP4 directly induces caspase-3 mediated apoptosis in neurons and oligodendrocytes in vitro, and noggin and LDN193189 remarkably attenuate caspase-3 activation and lipid peroxidation in acute SCI. BMP4 also enhances the production of inhibitory chondroitin sulfate proteoglycans (CSPGs) in activated astrocytes in vitro and after SCI. Interestingly, our work reveals that despite the beneficial effects of BMP inhibition in acute SCI, neither noggin nor LDN193189 treatment resulted in long-term functional recovery. Collectively, our findings suggest a role for BMP4 in regulating acute secondary injury mechanisms following SCI, and a potential target for combinatorial approaches to improve endogenous cell response and remyelination.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Scott M Dyck
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
32
|
Zhong J, Lan C, Zhang C, Yang Y, Chen WX, Zhang KY, Zhao HL, Fang XY, Li HH, Tan L, Wang P, Ge HF, Hu R, Feng H. Chondroitin sulfate proteoglycan represses neural stem/progenitor cells migration via PTPσ/α-actinin4 signaling pathway. J Cell Biochem 2019; 120:11008-11021. [PMID: 30688376 DOI: 10.1002/jcb.28379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Neural stem/progenitor cells (NSPCs) are a promising candidate for the cell-replacement therapy after central nervous system (CNS) injury. However, the short of sufficient NSPCs migration and integration into the lesions is an essential challenge for cell-based therapy after CNS injury due to the disturbance of local environmental homeostasis. Chondroitin sulfate proteoglycan (CSPG) is obviously accumulated at the lesions and destroyed local homeostasis after CNS injury. The previous study has demonstrated that the CSPG is a dominating ingredient inhibiting axonal regrowth of newly born neurons after CNS injury. NSPCs, a strain of special neural subtypes, hold the capacity of leading processes formation to regulate NSPCs migration, which has the same mechanism as axonal regrowth. Hence, it is worth investigating the effect of CSPG on NSPCs migration and its underlying mechanism. Here, different concentration of CSPG was used to evaluate its effect on NSPCs migration. The results showed that the CSPG suppressed NSPCs migration in a dose-dependent manner from 10 to 80 µg/mL with phase-contrast microscopy after 24 hours. Meanwhile, transwell assays were performed to certify the above results. Our data indicated that the 40 µg/mL CSPG obviously suppressed NSPCs migration via decreasing filopodia formation using immunofluorescence staining. Furthermore, data indicated that the 40 µg/mL CSPG upregulated protein tyrosine phosphatase receptor σ (PTPσ) expression and decreased α-actinin4 (ACTN4) expression through immunofluorescence, reverse transcription polymerase chain reaction, and Western blot assays. While the inhibitory effect was attenuated using PTPσ-specific small interfering RNA. In addition, data demonstrated that the 40 µg/mL CSPG facilitated NSPCs differentiation into glial fibrillary acidic protein-positive cells and inhibited NSPCs directing into MAP2- and MBP-positive cells. Collectively, these data demonstrated that the CSPG suppressed NSPCs migration through PTPσ/ACTN4 signaling pathway. Meanwhile, CSPG facilitated NSPCs differentiation into astrocytes and inhibited NSPCs directing into neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Jun Zhong
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Lan
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Zhang
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Yang
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Xiang Chen
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kai-Yuan Zhang
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Heng-Li Zhao
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuan-Yu Fang
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huan-Huan Li
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pan Wang
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong-Fei Ge
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Key Laboratory of Neurotrauma, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
33
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
34
|
Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019; 377:125-151. [PMID: 31065801 DOI: 10.1007/s00441-019-03039-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Axonal regeneration and formation of tripartite (axo-glial) junctions at damaged sites is a prerequisite for early repair of injured spinal cord. Transplantation of stem cells at such sites of damage which can generate both neuronal and glial population has gained impact in terms of recuperation upon infliction with spinal cord injury. In spite of the fact that a copious number of pre-clinical studies using different stem/progenitor cells have shown promising results at acute and subacute stages, at the chronic stages of injury their recovery rates have shown a drastic decline. Therefore, developing novel therapeutic strategies are the need of the hour in order to assuage secondary morbidity and effectuate improvement of the spinal cord injury (SCI)-afflicted patients' quality of life. The present review aims at providing an overview of the current treatment strategies and also gives an insight into the potential cell-based therapies for the treatment of SCI.
Collapse
|
35
|
Neuregulin-1 Fosters Supportive Interactions between Microglia and Neural Stem/Progenitor Cells. Stem Cells Int 2019; 2019:8397158. [PMID: 31089334 PMCID: PMC6476022 DOI: 10.1155/2019/8397158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 02/13/2019] [Indexed: 01/23/2023] Open
Abstract
Microglia play diverse roles in homeostasis and pathology of the central nervous system (CNS). Their response to injury or insult is critical for initiating neuroinflammation and tissue damage as well as resolution of inflammation and wound healing. Changes to the microenvironment of microglia appear to be a key determinant of their phenotype and their role in the endogenous repair process in the injured or diseased CNS. Our recent findings have identified a positive role for neuregulin-1 (Nrg-1) in regulating immune response in spinal cord injury and focal demyelinating lesions. We show that increasing the tissue availability of Nrg-1 after injury can promote endogenous repair by modulating neuroinflammation. In the present study, we sought to elucidate the specific role of Nrg-1 in regulating microglial activity and more importantly their influence on the behavior of neural stem/progenitor cells (NPCs). Using injury-relevant in vitro systems, we demonstrate that Nrg-1 attenuates the expression of proinflammatory mediators in activated microglia. Moreover, we provide novel evidence that availability of Nrg-1 can restore the otherwise suppressed phagocytic ability of proinflammatory microglia. Interestingly, the presence of Nrg-1 in the microenvironment of proinflammatory microglia mitigates their inhibitory effects on NPC proliferation. Nrg-1 treated proinflammatory microglia also augment mobilization of NPCs, while they had no influence on their suppressive effects on NPC differentiation. Mechanistically, we show that Nrg-1 enhances the interactions of proinflammatory microglia and NPCs, at least in part, through reduction of TNF-α expression in microglia. These findings provide new insights into the endogenous regulation of microglia-NPC interactions and identify new potential targets for optimizing this important crosstalk during the regenerative process after CNS injury and neuroinflammatory conditions.
Collapse
|
36
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 749] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Nori S, Khazaei M, Ahuja CS, Yokota K, Ahlfors JE, Liu Y, Wang J, Shibata S, Chio J, Hettiaratchi MH, Führmann T, Shoichet MS, Fehlings MG. Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury. Stem Cell Reports 2018; 11:1433-1448. [PMID: 30472009 PMCID: PMC6294173 DOI: 10.1016/j.stemcr.2018.10.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023] Open
Abstract
Treatment of chronic spinal cord injury (SCI) is challenging due to cell loss, cyst formation, and the glial scar. Previously, we reported on the therapeutic potential of a neural progenitor cell (NPC) and chondroitinase ABC (ChABC) combinatorial therapy for chronic SCI. However, the source of NPCs and delivery system required for ChABC remained barriers to clinical application. Here, we investigated directly reprogrammed human NPCs biased toward an oligodendrogenic fate (oNPCs) in combination with sustained delivery of ChABC using an innovative affinity release strategy in a crosslinked methylcellulose biomaterial for the treatment of chronic SCI in an immunodeficient rat model. This combinatorial therapy increased long-term survival of oNPCs around the lesion epicenter, facilitated greater oligodendrocyte differentiation, remyelination of the spared axons by engrafted oNPCs, enhanced synaptic connectivity with anterior horn cells and neurobehavioral recovery. This combinatorial therapy is a promising strategy to regenerate the chronically injured spinal cord. Sustained biomaterial delivery of ChABC successfully degraded CSPGs XMC-ChABC promoted differentiation of oNPCs to more oligodendrocytes XMC-ChABC increased the long-term survival and integration of grafted oNPCs XMC-ChABC and oNPC combinatorial therapy is a promising treatment for chronic SCI
Collapse
Affiliation(s)
- Satoshi Nori
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinju-ku, Tokyo 160-8582, Japan
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Christopher S Ahuja
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kazuya Yokota
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jan-Eric Ahlfors
- New World Laboratories Inc., 500 Boulevard Cartier Quest, Laval, QC H7V 5B7, Canada
| | - Yang Liu
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinju-ku, Tokyo 160-8582, Japan
| | - Jonathon Chio
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Marian H Hettiaratchi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Tobias Führmann
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Institute of Biomaterials & Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Surgery and Spinal Program, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Surgery, Division of Anatomy, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
38
|
Dyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 2018; 67:125-145. [PMID: 30394599 DOI: 10.1002/glia.23533] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Following spinal cord injury (SCI), the population of mature oligodendrocytes undergoes substantial cell death; promoting their preservation and replacement is a viable strategy for preserving axonal integrity and white matter repair in the injured spinal cord. Dramatic upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) is shown to pose an obstacle to endogenous repair processes, and targeting CSPGs improves functional recovery after SCI. However, the cellular and molecular mechanisms underlying the inhibitory effects of CSPGs remain largely undefined. Modulation of CSPGs specific signaling receptors, leukocyte common antigen-related (LAR), and protein tyrosine phosphatase-sigma (PTPσ) allows us to uncover the role and mechanisms of CSPGs in regulating oligodendrocytes in SCI. Here, utilizing specific functionally blocking peptides in a clinically relevant model of contusive/compressive SCI in the rat, we demonstrate that inhibition of PTPσ and LAR receptors promotes oligodendrogenesis by endogenous precursor cells, attenuates caspase 3-mediated cell death in mature oligodendrocytes, and preserves myelin. In parallel in vitro systems, we have unraveled that CSPGs directly induce apoptosis in populations of neural precursor cells and oligodendrocyte progenitor cells and limit their ability for oligodendrocyte differentiation, maturation, and myelination. These negative effects of CSPGs are mediated through the activation of both LAR and PTPσ receptors and the downstream Rho/ROCK pathway. Thus, we have identified a novel inhibitory role for PTPσ and LAR in regulating oligodendrocyte differentiation and apoptosis in the injured adult spinal cord and a new feasible therapeutic strategy for optimizing endogenous cell replacement following SCI.
Collapse
Affiliation(s)
- Scott Dyck
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Khashayar Akbari-Kelachayeh
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jerry Silver
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
39
|
Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018. [PMID: 29513146 DOI: 10.1152/physrev.00017.2017] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring. The glial scar, which stabilizes the spread of secondary injury, also acts as a chronic, physical, and chemo-entrapping barrier that prevents axonal regeneration. Understanding the formative events in glial scarring helps guide strategies towards the development of potential therapies to enhance axon regeneration and functional recovery at both acute and chronic stages following SCI. This review will also discuss the perineuronal net and how chondroitin sulfate proteoglycans (CSPGs) deposited in both the glial scar and net impede axonal outgrowth at the level of the growth cone. We will end the review with a summary of current CSPG-targeting strategies that help to foster axonal regeneration, neuroplasticity/sprouting, and functional recovery following SCI.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Philippa Mary Warren
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
40
|
Luo F, Tran AP, Xin L, Sanapala C, Lang BT, Silver J, Yang Y. Modulation of proteoglycan receptor PTPσ enhances MMP-2 activity to promote recovery from multiple sclerosis. Nat Commun 2018; 9:4126. [PMID: 30297691 PMCID: PMC6175851 DOI: 10.1038/s41467-018-06505-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by focal CNS inflammation leading to the death of oligodendrocytes (OLs) with subsequent demyelination, neuronal degeneration, and severe functional deficits. Inhibitory chondroitin sulfate proteoglycans (CSPGs) are increased in the extracellular matrix in the vicinity of MS lesions and are thought to play a critical role in myelin regeneration failure. We here show that CSPGs curtail remyelination through binding with their cognate receptor, protein tyrosine phosphatase σ (PTPσ) on oligodendrocyte progenitor cells (OPCs). We report that inhibition of CSPG/PTPσ signaling by systemically deliverable Intracellular Sigma Peptide (ISP), promotes OPC migration, maturation, remyelination, and functional recovery in animal models of MS. Furthermore, we report a downstream molecular target of PTPσ modulation in OPCs involving upregulation of the protease MMP-2 that allows OPCs to enzymatically digest their way through CSPGs. In total, we demonstrate a critical role of PTPσ/CSPG interactions in OPC remyelination in MS. Demyelination failure in multiple sclerosis (MS) may contribute to the disease progression. This study shows that chondroitin sulfate proteoglycans (CSPGs) can inhibit remyelination in an animal model of MS via CSPG binding with the receptor PTPσ on oligodendrocyte progenitor cells, and disruption of this interaction can promote recovery in the animal models of MS.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li Xin
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chandrika Sanapala
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Bradley T Lang
- BioEnterprise, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Yan Yang
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Center for Translational Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
41
|
Hu Y, Hu D, Yu H, Xu W, Fu R. Hypoxia‑inducible factor 1α and ROCK1 regulate proliferation and collagen synthesis in hepatic stellate cells under hypoxia. Mol Med Rep 2018; 18:3997-4003. [PMID: 30132575 DOI: 10.3892/mmr.2018.9397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/27/2018] [Indexed: 11/06/2022] Open
Abstract
Hypoxia serves a critical role in the pathogenesis of liver fibrosis. Hypoxia‑inducible factor 1α (HIF1‑α) is induced when cells are exposed to low O2 concentrations. Recently, it has been suggested that Rho‑associated coiled‑coil‑forming kinase 1 (ROCK1) may be an important HIF1‑α regulator. In the present study, it was analyzed whether crosstalk between HIF1‑α and ROCK1 regulates cell proliferation and collagen synthesis in hepatic stellate cells (HSCs) under hypoxic conditions. For this purpose, a rat hepatic HSC line (HSC‑T6) was cultured under hypoxic or normoxic conditions, and HIF1‑α and ROCK1 expression was measured at different time points. Additionally, HSC‑T6 cells were transfected with HIF1‑α small interfering RNA (siHIF1‑α), and measured protein expression and mRNA transcript levels of α‑smooth muscle actin, collagen 1A1 and ROCK1. Collagen 3A1 secretion was also measured by ELISA. Cell proliferation was assessed by the MTT assay under these hypoxic conditions. The results indicated that a specific ROCK inhibitor, Y‑27632, increased HIF1‑α and ROCK1 expression over time in HSC‑T6 cells in response to hypoxia. In addition, knockdown of HIF1‑α inhibited HSC‑T6 proliferation, suppressed collagen 1A1 expression, decreased collagen 3A1 secretion and attenuated ROCK1 expression. Notably, ROCK1 inhibition caused HSC‑T6 quiescence, suppressed collagen secretion and downregulated HIF1‑α expression. Collectively, these findings indicated that the interplay between HIF1‑α and ROCK1 may be a critical factor that regulates cell proliferation and collagen synthesis in rat HSCs under hypoxia.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Danping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Huanhuan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Wangwang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Rongquan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| |
Collapse
|
42
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
43
|
Rink S, Arnold D, Wöhler A, Bendella H, Meyer C, Manthou M, Papamitsou T, Sarikcioglu L, Angelov DN. Recovery after spinal cord injury by modulation of the proteoglycan receptor PTPσ. Exp Neurol 2018; 309:148-159. [PMID: 30118740 DOI: 10.1016/j.expneurol.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
SCI is followed by dramatic upregulation of chondroitin sulfate proteoglycans (CSPGs) which limit axonal regeneration, oligodendrocyte replacement and remyelination. The recent discovery of the specific CSPGs signaling receptor protein tyrosine phosphatase sigma (RPTPσ) provided an opportunity to refine the therapeutic approach to overcome CSPGs inhibitory actions. In previously published work, subcutaneous (s.c.) delivery of 44 μg/day of a peptide mimetic of PTPσ called intracellular sigma peptide (ISP), which binds to PTPσ and blocks CSPG-mediated inhibition, facilitated recovery after contusive SCI. Since this result could be of great interest for clinical trials, we independently repeated this study, but modified the method of injury as well as peptide application and the dosage. Following SCI at the Th10-segment, 40 rats were distributed in 3 groups. Animals in group 1 (20 rats) were subjected to SCI, but received no treatment. Rats in group 2 were treated with intraperitoneal (i.p.) injections of 44 μg/day ISP (SCI + ISP44) and animals of group 3 with s.c. injections of 500 μg/day ISP (SCI + ISP500) for 7 weeks after lesioning. Recovery was analyzed at 1, 3, 6, 9 and 12 weeks after SCI by determining (i) BBB-score, (ii) foot-stepping angle, (iii) rump-height index, (iv) number of correct ladder steps, (v) bladder score and (vi) sensitivity (withdrawal latency after thermal stimulus). Finally, we determined the amount of serotonergic fibers in the preserved neural tissue bridges (PNTB) around the lesion site. Our results show that, systemic therapy with ISP improved locomotor, sensory and vegetative recovery which correlated with more spared serotonergic fibers in PNTB.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | | | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany.
| | - Carolin Meyer
- Department of Orthopedics and Trauma Surgery, University of Cologne, Germany.
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece.
| | - Levent Sarikcioglu
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | | |
Collapse
|
44
|
NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biol 2018; 68-69:571-588. [DOI: 10.1016/j.matbio.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
|
45
|
Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem Cells Reveal Specific Interactions with Their Microenvironment. Stem Cell Reports 2018; 11:565-577. [PMID: 29983386 PMCID: PMC6092681 DOI: 10.1016/j.stemcr.2018.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
Deciphering the mechanisms that regulate the quiescence of adult neural stem cells (NSCs) is crucial for the development of therapeutic strategies based on the stimulation of their endogenous regenerative potential in the damaged brain. We show that LeXbright cells sorted from the adult mouse subventricular zone exhibit all the characteristic features of quiescent NSCs. Indeed, they constitute a subpopulation of slowly dividing cells that is able to enter the cell cycle to regenerate the irradiated niche. Comparative transcriptomic analyses showed that they express hallmarks of NSCs but display a distinct molecular signature from activated NSCs (LeX+EGFR+ cells). Particularly, numerous membrane receptors are expressed on quiescent NSCs. We further revealed a different expression pattern of Syndecan-1 between quiescent and activated NSCs and demonstrated its role in the proliferation of activated NSCs. Our data highlight the central role of the stem cell microenvironment in the regulation of quiescence in adult neurogenic niches. Transcriptome analysis reveals molecular hallmarks of activated and quiescent NSCs Data resource of putative markers and/or regulators of NSC quiescence Quiescent NSCs integrate various signals from the microenvironment Syndecan-1 is involved in proliferation of NSCs
Collapse
|
46
|
Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, Karimi-Abdolrezaee S. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflammation 2018; 15:90. [PMID: 29558941 PMCID: PMC5861616 DOI: 10.1186/s12974-018-1128-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) results in upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia that impedes repair and regeneration in the spinal cord. Degradation of CSPGs is known to be beneficial in promoting endogenous repair mechanisms including axonal sprouting/regeneration, oligodendrocyte replacement, and remyelination, and is associated with improvements in functional outcomes after SCI. Recent evidence suggests that CSPGs may regulate secondary injury mechanisms by modulating neuroinflammation after SCI. To date, the role of CSPGs in SCI neuroinflammation remains largely unexplored. The recent discovery of CSPG-specific receptors, leukocyte common antigen-related (LAR) and protein tyrosine phosphatase-sigma (PTPσ), allows unraveling the cellular and molecular mechanisms of CSPGs in SCI. In the present study, we have employed parallel in vivo and in vitro approaches to dissect the role of CSPGs and their receptors LAR and PTPσ in modulating the inflammatory processes in the acute and subacute phases of SCI. METHODS In a clinically relevant model of compressive SCI in female Sprague Dawley rats, we targeted LAR and PTPσ by two intracellular functionally blocking peptides, termed ILP and ISP, respectively. We delivered ILP and ISP treatment intrathecally to the injured spinal cord in a sustainable manner by osmotic mini-pumps for various time-points post-SCI. We employed flow cytometry, Western blotting, and immunohistochemistry in rat SCI, as well as complementary in vitro studies in primary microglia cultures to address our questions. RESULTS We provide novel evidence that signifies a key immunomodulatory role for LAR and PTPσ receptors in SCI. We show that blocking LAR and PTPσ reduces the population of classically activated M1 microglia/macrophages, while promoting alternatively activated M2 microglia/macrophages and T regulatory cells. This shift was associated with a remarkable elevation in pro-regenerative immune mediators, interleukin-10 (IL-10), and Arginase-1. Our parallel in vitro studies in microglia identified that while CSPGs do not induce an M1 phenotype per se, they promote a pro-inflammatory phenotype. Interestingly, inhibiting LAR and PTPσ in M1 and M2 microglia positively modulates their inflammatory response in the presence of CSPGs, and harnesses their ability for phagocytosis and mobilization. Interestingly, our findings indicate that CSPGs regulate microglia, at least in part, through the activation of the Rho/ROCK pathway downstream of LAR and PTPσ. CONCLUSIONS We have unveiled a novel role for LAR and PTPσ in regulating neuroinflammation in traumatic SCI. Our findings provide new insights into the mechanisms by which manipulation of CSPG signaling can promote recovery from SCI. More importantly, this work introduces the potential of ILP/ISP as a viable strategy for modulating the immune response following SCI and other neuroinflammatory conditions of the central nervous system.
Collapse
Affiliation(s)
- Scott Dyck
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Kallivalappil T Santhosh
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Bradley Lang
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jerry Silver
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
47
|
Führmann T, Anandakumaran PN, Payne SL, Pakulska MM, Varga BV, Nagy A, Tator C, Shoichet MS. Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. ACTA ACUST UNITED AC 2018; 13:024103. [PMID: 29083317 DOI: 10.1088/1748-605x/aa96dc] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lack of tissue regeneration after traumatic spinal cord injury in animal models is largely attributed to the local inhibitory microenvironment. To overcome this inhibitory environment while promoting tissue regeneration, we investigated the combined delivery of chondroitinase ABC (chABC) with human induced pluripotent stem cell-derived neuroepithelial stem cells (NESCs). ChABC was delivered to the injured spinal cord at the site of injury by affinity release from a crosslinked methylcellulose (MC) hydrogel by injection into the intrathecal space. NESCs were distributed in a hydrogel comprised of hyaluronan and MC and injected into the spinal cord tissue both rostral and caudal to the site of injury. Cell transplantation led to reduced cavity formation, but did not improve motor function. While few surviving cells were found 2 weeks post injury, the majority of live cells were neurons, with only few astrocytes, oligodendrocytes, and progenitor cells. At 9 weeks post injury, there were more progenitor cells and a more even distribution of cell types compared to those at 2 weeks post injury, suggesting preferential survival and differentiation. Interestingly, animals that received cells and chABC had more neurons than animals that received cells alone, suggesting that chABC influenced the injury environment such that neuronal differentiation or survival was favoured.
Collapse
Affiliation(s)
- Tobias Führmann
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3E1, Canada. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gordon T. Nerve regeneration in the peripheral and central nervous systems. J Physiol 2018; 594:3517-20. [PMID: 27365158 DOI: 10.1113/jp270898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tessa Gordon
- Department of Surgery, Division of Plastic Reconstructive Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8.
| |
Collapse
|
49
|
Dyck SM, Karimi-Abdolrezaee S. Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury. Neural Regen Res 2018; 13:2080-2082. [PMID: 30323126 PMCID: PMC6199928 DOI: 10.4103/1673-5374.241452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Scott M Dyck
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
50
|
Kataria H, Alizadeh A, Shahriary GM, Saboktakin Rizi S, Henrie R, Santhosh KT, Thliveris JA, Karimi-Abdolrezaee S. Neuregulin-1 promotes remyelination and fosters a pro-regenerative inflammatory response in focal demyelinating lesions of the spinal cord. Glia 2017; 66:538-561. [PMID: 29148104 DOI: 10.1002/glia.23264] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Oligodendroglial cell death and demyelination are hallmarks of neurotrauma and multiple sclerosis that cause axonal damage and functional impairments. Remyelination remains a challenge as the ability of endogenous precursor cells for oligodendrocyte replacement is hindered in the unfavorable milieu of demyelinating conditions. Here, in a rat model of lysolecithin lysophosphatidyl-choline (LPC)-induced focal demyelination, we report that Neuregulin-1 (Nrg-1), an important factor for oligodendrocytes and myelination, is dysregulated in demyelinating lesions and its bio-availability can promote oligodendrogenesis and remyelination. We delivered recombinant human Nrg-1β1 (rhNrg-1β1) intraspinally in the vicinity of LPC demyelinating lesion in a sustained manner using poly lactic-co-glycolic acid microcarriers. Availability of Nrg-1 promoted generation and maturation of new oligodendrocytes, and accelerated endogenous remyelination by both oligodendrocyte and Schwann cell populations in demyelinating foci. Importantly, Nrg-1 enhanced myelin thickness in newly remyelinated spinal cord axons. Our complementary in vitro studies also provided direct evidence that Nrg-1 significantly promotes maturation of new oligodendrocytes and facilitates their transition to a myelinating phenotype. Nrg-1 therapy remarkably attenuated the upregulated expression chondroitin sulfate proteoglycans (CSPGs) specific glycosaminoglycans in the extracellular matrix of demyelinating foci and promoted interleukin-10 (IL-10) production by immune cells. CSPGs and IL-10 are known to negatively and positively regulate remyelination, respectively. We found that Nrg-1 effects are mediated through ErbB2 and ErbB4 receptor activation. Our work provides novel evidence that dysregulated levels of Nrg-1 in demyelinating lesions of the spinal cord pose a challenge to endogenous remyelination, and appear to be an underlying cause of myelin thinning in newly remyelinated axons.
Collapse
Affiliation(s)
- Hardeep Kataria
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ghazaleh M Shahriary
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shekoofeh Saboktakin Rizi
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryan Henrie
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kallivalappil T Santhosh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|