1
|
Santambrogio A, Kemkem Y, Willis TL, Berger I, Kastriti ME, Faure L, Russell JP, Lodge EJ, Yianni V, Kövér B, Oakey RJ, Altieri B, Bornstein SR, Steenblock C, Adameyko I, Andoniadou CL. SOX2 + sustentacular cells are stem cells of the postnatal adrenal medulla. Nat Commun 2025; 16:16. [PMID: 39747853 PMCID: PMC11696870 DOI: 10.1038/s41467-024-55289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Renewal of the catecholamine-secreting chromaffin cell population of the adrenal medulla is necessary for physiological homeostasis throughout life. Definitive evidence for the presence or absence of an adrenomedullary stem cell has been enigmatic. In this work, we demonstrate that a subset of sustentacular cells endowed with a support role, are in fact adrenomedullary stem cells. Through genetic tracing and comprehensive transcriptomic data of the mouse adrenal medulla, we show that cells expressing Sox2/SOX2 specialise as a unique postnatal population from embryonic Schwann Cell Precursors and are also present in the normal adult human adrenal medulla. Postnatal SOX2+ cells give rise to chromaffin cells of both the adrenaline and noradrenaline lineages in vivo and in vitro. We reveal that SOX2+ stem cells have a second, paracrine role in maintaining adrenal chromaffin cell homeostasis, where they promote proliferation through paracrine secretion of WNT6. This work identifies SOX2+ cells as a true stem cell for catecholamine-secreting chromaffin cells.
Collapse
Affiliation(s)
- Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Department of Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Thea L Willis
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Ilona Berger
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Department of Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maria Eleni Kastriti
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - John P Russell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Bence Kövér
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Stefan R Bornstein
- Department of Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Charlotte Steenblock
- Department of Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- Department of Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Sadek DR, Abunasef SK, Khalil S. Role of Adrenal Progenitor Cells in the Structural Response of Adrenal Gland to Various forms of Acute Stress and Subsequent Recovery in Adult Male Albino Rats. J Microsc Ultrastruct 2025; 13:16-24. [PMID: 40351741 PMCID: PMC12063925 DOI: 10.4103/jmau.jmau_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 02/09/2023] Open
Abstract
Background Stress is a response to stressogenic stimuli that interferes with an organism's homeostasis. The adrenal gland is crucial in the body's reaction to stress. Objective This study compared the effects of immobility and cold as acute stressors and the subsequent recovery on the histological changes of the adrenal gland and the suspected role of the adrenal progenitor cells. Materials and Methods Thirty-five adult male albino rats were divided equally into five groups. Group I: Control group, Group II: Rats subjected to the acute cold stress procedure, Group III: Rats subjected to the acute immobilization stress procedure, Group IV: The combined stress group, and Group V: Similar to the combined stress group and recovered for 6 days then sacrificed 1 day later. Serum cortisol level was determined, and the adrenal glands were processed for histological and immunohistochemical studies. Results Serum cortisol concentration was higher in the acute-stress groups and decreased in the recovery group. The adrenal cortex had enlarged, vacuolated cells with pyknotic nuclei, sinusoidal dilatation, and congestion. Chromaffin cells were crowded, enlarged, and vacuolated. There was strong immunohistochemical reactivity for heat shock protein-70 and caspase-3. In addition, the combined group showed a significant increase in the optical density of chromogranin-A in the medullary cells as well as CD44+ve cells. These findings were decreased in the recovery group. Conclusions The combined stress has more deleterious adrenal cortical changes than immobilization and cold stress alone. The progenitor and chromaffin cells apparently had an important regenerative role in recovery from both types of stress.
Collapse
Affiliation(s)
- Doaa Ramadan Sadek
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Seham Kamel Abunasef
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar Khalil
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Yaglova NV, Obernikhin SS, Nazimova SV, Tsomartova DA, Timokhina EP, Yaglov VV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA. Postnatal Exposure to the Endocrine Disruptor Dichlorodiphenyltrichloroethane Affects Adrenomedullary Chromaffin Cell Physiology and Alters the Balance of Mechanisms Underlying Cell Renewal. Int J Mol Sci 2024; 25:1494. [PMID: 38338771 PMCID: PMC10855250 DOI: 10.3390/ijms25031494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is a wide-spread systemic pollutant with endocrine disrupting properties. Prenatal exposure to low doses of DDT has been shown to affect adrenal medulla growth and function. The role of postnatal exposure to DDT in developmental disorders remains unclear. The aim of the present investigation is to assess growth parameters and the expression of factors mediating the function and renewal of chromaffin cells in the adult adrenal medulla of male Wistar rats exposed to the endocrine disruptor o,p'-DDT since birth until sexual maturation. The DDT-exposed rats exhibited normal growth of the adrenal medulla but significantly decreased tyrosine hydroxylase production by chromaffin cells during postnatal period. Unlike the control, the exposed rats showed enhanced proliferation and reduced expression of nuclear β-catenin, transcription factor Oct4, and ligand of Sonic hedgehog after termination of the adrenal growth period. No expression of pluripotency marker Sox2 and absence of Ascl 1-positive progenitors were found in the adrenal medulla during postnatal ontogeny of the exposed and the control rats. The present findings indicate that an increase in proliferative activity and inhibition of the formation of reserve for chromaffin cell renewal, two main mechanisms for cell maintenance in adrenal medulla, in the adult DDT-exposed rats may reflect a compensatory reaction aimed at the restoration of catecholamine production levels. The increased proliferation of chromaffin cells in adults suggests excessive growth of the adrenal medulla. Thus, postnatal exposure to DDT alters cell physiology and increases the risk of functional insufficiency and hyperplasia of the adrenal medulla.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (S.V.N.); (D.A.T.); (E.P.T.); (V.V.Y.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Unlike the Control Institution of Higher Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| |
Collapse
|
5
|
BET and CDK Inhibition Reveal Differences in the Proliferation Control of Sympathetic Ganglion Neuroblasts and Adrenal Chromaffin Cells. Cancers (Basel) 2022; 14:cancers14112755. [PMID: 35681734 PMCID: PMC9179499 DOI: 10.3390/cancers14112755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma arising from the adrenal differ from ganglionic neuroblastoma both genetically and clinically, with adrenal tumors being associated with a more severe prognosis. The different tumor properties may be linked to specific tumor founder cells in adrenal and sympathetic ganglia. To address this question, we first set up cultures of mouse sympathetic neuroblasts and adrenal chromaffin cells. These cultures were then treated with various proliferation inhibitors to identify lineage-specific responses. We show that neuroblast and chromaffin cell proliferation was affected by WNT, ALK, IGF1, and PRC2/EZH2 signaling inhibitors to a similar extent. However, differential effects were observed in response to bromodomain and extraterminal (BET) protein inhibitors (JQ1, GSK1324726A) and to the CDK-7 inhibitor THZ1, with BET inhibitors preferentially affecting chromaffin cells, and THZ1 preferentially affecting neuroblasts. The differential dependence of chromaffin cells and neuroblasts on BET and CDK signaling may indicate different mechanisms during tumor initiation in sympathetic ganglia and adrenal.
Collapse
|
6
|
Friedrich L, Schuster M, Rubin de Celis MF, Berger I, Bornstein SR, Steenblock C. Isolation and in vitro cultivation of adrenal cells from mice. STAR Protoc 2021; 2:100999. [PMID: 34917978 PMCID: PMC8669109 DOI: 10.1016/j.xpro.2021.100999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The adrenal gland consists of two tissues, cortex and medulla, united under one capsule. Adrenal stem/progenitor cells play a key role in development and homeostasis. Here, we describe a protocol for generating primary cultures of adrenal cells from mice. We describe techniques for separating the cortex and medulla, generating spheroid cultures containing stem- and progenitor cells, and for the differentiation into steroidogenic and chromaffin cells, respectively. This protocol enables analysis of various treatments before, during, or after differentiation. For complete details on the use and execution of this protocol, please refer to Rubin de Celis et al. (2015), Steenblock et al. (2018), and Werdermann et al. (2021). Protocol for establishment of adrenal spheroids from mice Adrenal spheroids contain cells possessing stem cell characteristics Differentiation into steroid-producing cells or into chromaffin cells
Collapse
Affiliation(s)
- Linda Friedrich
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria Schuster
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maria F Rubin de Celis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Bechmann N, Berger I, Bornstein SR, Steenblock C. Adrenal medulla development and medullary-cortical interactions. Mol Cell Endocrinol 2021; 528:111258. [PMID: 33798635 DOI: 10.1016/j.mce.2021.111258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
The mammalian adrenal gland is composed of two distinct tissue types in a bidirectional connection, the catecholamine-producing medulla derived from the neural crest and the mesoderm-derived cortex producing steroids. The medulla mainly consists of chromaffin cells derived from multipotent nerve-associated descendants of Schwann cell precursors. Already during adrenal organogenesis, close interactions between cortex and medulla are necessary for proper differentiation and morphogenesis of the gland. Moreover, communication between the cortex and the medulla ensures a regular function of the adult adrenal. In tumor development, interfaces between the two parts are also common. Here, we summarize the development of the mammalian adrenal medulla and the current understanding of the cortical-medullary interactions under development and in health and disease.
Collapse
Affiliation(s)
- Nicole Bechmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Huang L, Liao J, Chen Y, Zou C, Zhang H, Yang X, Zhang Q, Li T, Mo L, Zeng Y, Bao M, Zhang F, Ye Y, Yang Z, Cheng J, Mo Z. Single-cell transcriptomes reveal characteristic features of cell types within the human adrenal microenvironment. J Cell Physiol 2021; 236:7308-7321. [PMID: 33934358 DOI: 10.1002/jcp.30398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023]
Abstract
Various cells within the adrenal microenvironment are important in maintaining the body homeostasis. However, our understanding of adrenal disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. We report a cellular landscape of the human adrenal gland using single-cell RNA sequencing. We reveal characteristic features of cell types within the human adrenal microenvironment and found immune activation of nonimmune cells in the adrenal endothelial cells. We also reveal that abundant immune cells occupied a lot of space in adrenal gland. Additionally, Sex-related diversity in the adrenocortical cells and different gene expression profiles between the left and right adrenal gland are also observed at single-cell resolution. Together, at single-cell resolution, the transcriptomic map presents a comprehensive view of the human adrenal gland, which serves as a fundamental baseline description of this organ and paves a way for the further studies of adrenal diseases.
Collapse
Affiliation(s)
- Lin Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Jinling Liao
- Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi Zhuang, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Qinyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Linjian Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Yu Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Zhanbin Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| |
Collapse
|
9
|
Kastriti ME, Kameneva P, Adameyko I. Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 2020; 518:110998. [PMID: 32818585 DOI: 10.1016/j.mce.2020.110998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The mammalian adrenal gland is composed of two main components; the catecholaminergic neural crest-derived medulla, found in the center of the gland, and the mesoderm-derived cortex producing steroidogenic hormones. The medulla is composed of neuroendocrine chromaffin cells with oxygen-sensing properties and is dependent on tissue interactions with the overlying cortex, both during development and in adulthood. Other relevant organs include the Zuckerkandl organ containing extra-adrenal chromaffin cells, and carotid oxygen-sensing bodies containing glomus cells. Chromaffin and glomus cells reveal a number of important similarities and are derived from the multipotent nerve-associated descendants of the neural crest, or Schwann cell precursors. Abnormalities in complex developmental processes during differentiation of nerve-associated and other progenitors into chromaffin and oxygen-sensing populations may result in different subtypes of paraganglioma, neuroblastoma and pheochromocytoma. Here, we summarize recent findings explaining the development of chromaffin and oxygen-sensing cells, as well as the potential mechanisms driving neuroendocrine tumor initiation.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Werdermann M, Berger I, Scriba LD, Santambrogio A, Schlinkert P, Brendel H, Morawietz H, Schedl A, Peitzsch M, King AJF, Andoniadou CL, Bornstein SR, Steenblock C. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol Metab 2020; 43:101112. [PMID: 33157254 PMCID: PMC7691554 DOI: 10.1016/j.molmet.2020.101112] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis. Methods In vitro, we applied insulin and leptin to murine progenitor cells isolated from the pituitary and adrenal cortex and examined the role of these hormones on proliferation and differentiation. In vivo, we investigated two different mouse models of metabolic disease, obesity in leptin-deficient ob/ob mice and obesity achieved via feeding with a high-fat diet. Results Insulin was shown to lead to enhanced proliferation and differentiation of both pituitary and adrenocortical progenitors. No alterations in the progenitors were noted in our chronic metabolic stress models. However, hyperactivation of the hypothalamic-pituitary-adrenal axis was observed and the expression of the appetite-regulating genes Npy and Agrp changed in both the hypothalamus and adrenal. Conclusions It is well-known that chronic stress and stress hormones such as glucocorticoids can induce metabolic changes including obesity and diabetes. In this article, we show for the first time that this might be based on an early sensitization of stem cells of the hypothalamic-pituitary-adrenal axis. Thus, pituitary and adrenal progenitor cells exposed to high levels of insulin are metabolically primed to a hyper-functional state leading to enhanced hormone production. Likewise, obese animals exhibit a hyperactive hypothalamic-pituitary-adrenal axis leading to adrenal hyperplasia. This might explain how stress in early life can increase the risk for developing metabolic syndrome in adulthood. Insulin enhances proliferation and differentiation of adrenocortical and pituitary progenitors. Obesity leads to hyperactivation and priming of the HPA axis. Obesity leads to overexpression of appetite-regulating genes in the hypothalamus. Obesity leads to a decrease in the expression of appetite-regulating genes in the adrenal gland.
Collapse
Affiliation(s)
- Martin Werdermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Laura D Scriba
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Alice Santambrogio
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Pia Schlinkert
- Department of Pharmacology and Toxicology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Andreas Schedl
- University of Côte d'Azur, INSERM, CNRS, iBV, Parc Valrose, Nice, 06108, France.
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK.
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Diabetes and Nutritional Sciences Division, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| |
Collapse
|
11
|
Abstract
In a number of adult tissues, Nestin-positive stem cells/progenitors have been identified and shown to be involved in maintenance and remodeling. Various studies have shown that under stressful conditions, quiescent Nestin-positive progenitor cells are activated. Thereby, they migrate to their target location and differentiate into mature cells. In the current paper, we discuss if Nestin-positive progenitors in the hippocampus and adrenal gland belong to unique cell populations that are responsive to stress. Furthermore, we speculate about the mechanism behind their activation and the clinical importance of this stress-response.
Collapse
Affiliation(s)
- Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
13
|
Steenblock C, Todorov V, Kanczkowski W, Eisenhofer G, Schedl A, Wong ML, Licinio J, Bauer M, Young AH, Gainetdinov RR, Bornstein SR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Mol Psychiatry 2020; 25:1611-1617. [PMID: 32382135 PMCID: PMC7204611 DOI: 10.1038/s41380-020-0758-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Vladimir Todorov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, UK
| |
Collapse
|
14
|
Scriba LD, Bornstein SR, Santambrogio A, Mueller G, Huebner A, Hauer J, Schedl A, Wielockx B, Eisenhofer G, Andoniadou CL, Steenblock C. Cancer Stem Cells in Pheochromocytoma and Paraganglioma. Front Endocrinol (Lausanne) 2020; 11:79. [PMID: 32158431 PMCID: PMC7051940 DOI: 10.3389/fendo.2020.00079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Pheochromocytoma (PCC) and paraganglioma (PGL) are rare neuroendocrine tumors associated with high cardiovascular morbidity and variable risk of malignancy. The current therapy of choice is surgical resection. Nevertheless, PCCs/PGLs are associated with a lifelong risk of tumor persistence or recurrence. A high rate of germline or somatic mutations in numerous genes has been found in these tumors. For some, the tumorigenic processes are initiated during embryogenesis. Such tumors carry gene mutations leading to pseudohypoxic phenotypes and show more immature characteristics than other chromaffin cell tumors; they are also often multifocal or metastatic and occur at an early age, often during childhood. Cancer stem cells (CSCs) are cells with an inherent ability of self-renewal, de-differentiation, and capacity to initiate and maintain malignant tumor growth. Targeting CSCs to inhibit cancer progression has become an attractive anti-cancer therapeutic strategy. Despite progress for this strategy for solid tumors such as neuroblastoma, brain, breast, and colon cancers, no substantial advance has been made employing similar strategies in PCCs/PGLs. In the current review, we discuss findings related to the identification of normal chromaffin stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs in PCCs/PGLs. Additionally, we examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating especially recurrent and metastatic tumors.
Collapse
Affiliation(s)
- Laura D. Scriba
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Alice Santambrogio
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Gregor Mueller
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Huebner
- Children's Hospital, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ben Wielockx
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cynthia L. Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Bornstein SR, Berger I, Scriba L, Santambrogio A, Steenblock C. Adrenal cortex–medulla interactions in adaptation to stress and disease. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Berger I, Werdermann M, Bornstein SR, Steenblock C. The adrenal gland in stress - Adaptation on a cellular level. J Steroid Biochem Mol Biol 2019; 190:198-206. [PMID: 30959152 DOI: 10.1016/j.jsbmb.2019.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023]
Abstract
Human individuals are constantly confronted to various kinds of stressors and the body's response and adaptation is essential for human health. The adrenal gland as the main producer of stress hormones plays a major role in the response to physiological challenges and is able to adapt to these physiological needs. Proper adaptation is of particular importance since dysregulation of the stress system is the cause of various human diseases including obesity, depression, Parkinson's disease, and post-traumatic stress disorder. Therefore, it is fundamental to understand the physiological, cellular, and molecular underpinnings of the stress adaptation in humans. Because of ethical reasons it is problematic to study the plasticity of the human gland in stress. Hence, various experimental models have been established for the analysis of the functional and cellular role of the adrenal gland adaptation on a translational approach. Here, we summarize the insights of stress-induced adrenal plasticity gained from these models and discuss their relevance to clinical observations.
Collapse
Affiliation(s)
- Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Werdermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
18
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
19
|
Stress-inducible-stem cells: a new view on endocrine, metabolic and mental disease? Mol Psychiatry 2019; 24:2-9. [PMID: 30242231 PMCID: PMC6755998 DOI: 10.1038/s41380-018-0244-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/08/2023]
|
20
|
Isolation and characterization of adrenocortical progenitors involved in the adaptation to stress. Proc Natl Acad Sci U S A 2018; 115:12997-13002. [PMID: 30514817 PMCID: PMC6304967 DOI: 10.1073/pnas.1814072115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humans are constantly confronted with multiple stressors, to which the bodily response and adaptation are essential. The adrenal gland plays a major role in the response to physiological challenges. Maintenance of the adrenal is partly accomplished by proliferation and differentiation of adult progenitors and stem cells in the cortex and medulla. In this study, we have isolated and characterized a subpopulation of adrenocortical progenitors, which are interconnected with adrenomedullary stress-dependent progenitors. Under stress, the adrenocortical progenitors are also activated and they mobilize, giving rise to steroidogenic cells. Our findings demonstrate the coordinated action of stress-inducible stem cells to ensure tissue remodeling and cellular and functional adaptation to stress. The adrenal gland is a master regulator of the human body during response to stress. This organ shows constant replacement of senescent cells by newly differentiated cells. A high degree of plasticity is critical to sustain homeostasis under different physiological demands. This is achieved in part through proliferation and differentiation of adult adrenal progenitors. Here, we report the isolation and characterization of a Nestin+ population of adrenocortical progenitors located under the adrenal capsule and scattered throughout the cortex. These cells are interconnected with progenitors in the medulla. In vivo lineage tracing revealed that, under basal conditions, this population is noncommitted and slowly migrates centripetally. Under stress, this migration is greatly enhanced, and the cells differentiate into steroidogenic cells. Nestin+ cells cultured in vitro also show multipotency, as they differentiate into mineralocorticoid and glucocorticoid-producing cells, which can be further influenced by the exposure to Angiotensin II, adrenocorticotropic hormone, and the agonist of luteinizing hormone-releasing hormone, triptorelin. Taken together, Nestin+ cells in the adult adrenal cortex exhibit the features of adrenocortical progenitor cells. Our study provides evidence for a role of Nestin+ cells in organ homeostasis and emphasizes their role under stress. This cell population might be a potential source of cell replacement for the treatment of adrenal insufficiency.
Collapse
|
21
|
Reckmann AN, Tomczyk CUM, Davidoff MS, Michurina TV, Arnhold S, Müller D, Mietens A, Middendorff R. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency. PLoS One 2018; 13:e0194585. [PMID: 29874225 PMCID: PMC5991371 DOI: 10.1371/journal.pone.0194585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/06/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.
Collapse
Affiliation(s)
- Ansgar N Reckmann
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Claudia U M Tomczyk
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michail S Davidoff
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana V Michurina
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States of America
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Balyura M, Gelfgat E, Steenblock C, Androutsellis-Theotokis A, Ruiz-Babot G, Guasti L, Werdermann M, Ludwig B, Bornstein T, Schally AV, Brennand A, Bornstein SR. Expression of progenitor markers is associated with the functionality of a bioartificial adrenal cortex. PLoS One 2018; 13:e0194643. [PMID: 29596439 PMCID: PMC5875767 DOI: 10.1371/journal.pone.0194643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2018] [Indexed: 11/19/2022] Open
Abstract
Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenvironment and for investigation of cell–cell interactions in the adrenals. The aim of this work was the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive, self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartificial gland, as these undifferentiated cells play important roles in the function of the mature gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine adrenocortical cells, studied the dynamics of their appearance and growth and determined the optimal time point for cell encapsulation. These procedures increased the functional life span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuropeptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long periods of time.
Collapse
Affiliation(s)
- Mariya Balyura
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| | - Evgeny Gelfgat
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Martin Werdermann
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Tobias Bornstein
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Andrew V. Schally
- Divisions of Endocrinology and Hematology–Oncology, Departments of Medicine and Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, United States of America
- Veterans Affairs Medical Center, Miami, FL, United States of America
| | - Ana Brennand
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Stefan R. Bornstein
- University Hospital Carl Gustav Carus, Dept. of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| |
Collapse
|
23
|
López-Barneo J. Oxygen sensing and stem cell activation in the hypoxic carotid body. Cell Tissue Res 2018; 372:417-425. [PMID: 29368257 DOI: 10.1007/s00441-017-2783-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
The carotid body (CB) is the major arterial chemoreceptor responsible for the detection of acute decreases in O2 tension (hypoxia) in arterial blood that trigger hyperventilation and sympathetic activation. The CB contains O2-sensitive glomus (chief) cells, which respond to hypoxia with the release of transmitters to activate sensory nerve fibers impinging upon the brain respiratory and autonomic centers. During exposure to sustained hypoxia (for weeks or months), the CB grows several-fold in size, a response associated with acclimatization to high altitude or to medical conditions presenting hypoxemia. Here, I briefly present recent advances on the mechanisms underlying glomus cell sensitivity to hypoxia, in particular the role of mitochondrial complex I in acute oxygen sensing. I also summarize the properties of adult CB stem cells and of glomus cell-stem cell synapses, which contribute to CB hypertrophy in chronic hypoxia. A note on the relationship between hypoxic CB growth and tumorigenesis is included. Finally, the medical implications of CB pathophysiology are discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avenida Manuel Siurot s/n, 41013, Seville, Spain. .,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
24
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
25
|
|
26
|
Abstract
A major impediment to the development of effective treatments for metastatic or unresectable pheochromocytomas and paragangliomas has been the absence of valid models for pre-clinical testing. Attempts to establish cell lines or xenografts from human pheochromocytomas and paragangliomas have previously been unsuccessful. NOD-scid gamma (NSG) mice are a recently developed strain lacking functional B-cells, T-cells, and NK cells. We report here that xenografts of primary human paragangliomas will take in NSG mice while maintaining their architectural and immunophenotypic characteristics as expressed in the patients. In contrast to grafts of cell lines and of most common types of primary tumors, the growth rate of grafted paragangliomas is very slow, accurately representing the growth rate of most pheochromocytomas and paragangliomas even in metastases in humans. Although the model is therefore technically challenging, primary patient-derived xenografts of paragangliomas in NSG mice provide a potentially valuable new tool that could prove especially valuable for testing treatments aimed at eradicating the small tumor deposits that are often numerous in patients with metastatic paraganglioma.
Collapse
Affiliation(s)
- James F Powers
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
27
|
Steenblock C, Rubin de Celis MF, Androutsellis-Theotokis A, Sue M, Delgadillo Silva LF, Eisenhofer G, Andoniadou CL, Bornstein SR. Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation? Mol Cell Endocrinol 2017; 441:156-163. [PMID: 27637345 DOI: 10.1016/j.mce.2016.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The adrenal gland is a highly plastic organ with the capacity to adapt the body homeostasis to different physiological needs. The existence of stem-like cells in the adrenal cortex has been revealed in many studies. Recently, we identified and characterized in mice a pool of glia-like multipotent Nestin-expressing progenitor cells, which contributes to the plasticity of the adrenal medulla. In addition, we found that these Nestin progenitors are actively involved in the stress response by giving rise to chromaffin cells. Interestingly, we also observed a Nestin-GFP-positive cell population located under the adrenal capsule and scattered through the cortex. In this article, we discuss the possibility of a common progenitor giving rise to subpopulations of cells both in the adrenal cortex and medulla, the isolation and characterization of this progenitor as well as its clinical potential in transplantation therapies and in pathophysiology.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
| | | | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, University of Nottingham, Nottingham, UK
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Graeme Eisenhofer
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Endocrinology and Diabetes, King's College London, London, UK
| |
Collapse
|
28
|
The effects of stress on brain and adrenal stem cells. Mol Psychiatry 2016; 21:590-3. [PMID: 26809844 DOI: 10.1038/mp.2015.230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023]
Abstract
The brain and adrenal are critical control centers that maintain body homeostasis under basal and stress conditions, and orchestrate the body's response to stress. It is noteworthy that patients with stress-related disorders exhibit increased vulnerability to mental illness, even years after the stress experience, which is able to generate long-term changes in the brain's architecture and function. High levels of glucocorticoids produced by the adrenal cortex of the stressed subject reduce neurogenesis, which contributes to the development of depression. In support of the brain-adrenal connection in stress, many (but not all) depressed patients have alterations in the components of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis, with enlarged adrenal cortex and increased glucocorticoid levels. Other psychiatric disorders, such as post-traumatic stress disorder, bipolar disorder and depression, are also associated with abnormalities in hippocampal volume and hippocampal function. In addition, hippocampal lesions impair the regulation of the LHPA axis in stress response. Our knowledge of the functional connection between stress, brain function and adrenal has been further expanded by two recent, independent papers that elucidate the effects of stress on brain and adrenal stem cells, showing similarities in the way that the progenitor populations of these organs behave under stress, and shedding more light into the potential cellular and molecular mechanisms involved in the adaptation of tissues to stress.
Collapse
|
29
|
Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne) 2016; 7:156. [PMID: 28018291 PMCID: PMC5155014 DOI: 10.3389/fendo.2016.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Waldemar Kanczkowski,
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Endocrinology and Diabetes, King’s College London, London, UK
| |
Collapse
|
30
|
Tischler AS, deKrijger RR. 15 YEARS OF PARAGANGLIOMA: Pathology of pheochromocytoma and paraganglioma. Endocr Relat Cancer 2015; 22:T123-33. [PMID: 26136457 DOI: 10.1530/erc-15-0261] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/17/2023]
Abstract
Pathologists using their routine diagnostic tools can contribute both to the care of patients with pheochromocytoma/paraganglioma and to understanding the pathobiology of the tumors. They can document details of tissue organization and cytology that are accessible only by microscopy and can characterize admixtures of cell types that are morphologically distinct or show differential expression of immunohistochemical markers. Current roles and challenges for pathologists include differential diagnosis, identifying clues to the presence of hereditary disease, and effective communication of pathology information for clinical and research purposes. Future roles will increasingly involve risk stratification, identification of actionable targets for personalized therapies, and aiding the interpretation of molecular tests by helping characterize genetic variants of unknown significance. It remains to be determined to what extent the need for pathology input will be overshadowed by the availability of genetic testing and other molecular analyses at ever-decreasing cost, together with very effective clinical paradigms for risk stratification and patient care.
Collapse
Affiliation(s)
- Arthur S Tischler
- Department of Pathology and Laboratory MedicineTufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Box 802, Boston, Massachusetts 02111, USADepartment of PathologyErasmus MC University Medical Center, Rotterdam, The NetherlandsDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| | - Ronald R deKrijger
- Department of Pathology and Laboratory MedicineTufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Box 802, Boston, Massachusetts 02111, USADepartment of PathologyErasmus MC University Medical Center, Rotterdam, The NetherlandsDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands Department of Pathology and Laboratory MedicineTufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Box 802, Boston, Massachusetts 02111, USADepartment of PathologyErasmus MC University Medical Center, Rotterdam, The NetherlandsDepartment of PathologyReinier de Graaf Hospital, Delft, The Netherlands
| |
Collapse
|