1
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Ziegler ME, Lem M, Melkonian J, Nasrollahi T, Rahimian H, Shams A, Prabhakar N, Saifzadeh SS, Fritz A, Leis A, Widgerow A. Transforming Myofibroblasts Into Lipid-Filled Cells to Treat Dupuytren Disease. J Hand Surg Am 2025:S0363-5023(25)00132-7. [PMID: 40232216 DOI: 10.1016/j.jhsa.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/22/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE Transforming myofibroblasts (MFs) into adipocyte-like cells may be a viable option for treating Dupuytren disease. Human Dupuytren MFs (DMFs) and adipose-derived stem cells (ASCs) cocultured in the presence of platelet-rich plasma (PRP) reprogrammed into lipid-laden cells. This treatment also reduced fibrosis markers in vivo. We aimed to determine whether this treatment transformed DMFs into adipocyte-like cells in vivo and characterize the PRP factors contributing to this transformation. METHODS Dupuytren MFs and normal human dermal fibroblasts were transplanted into the forepaws of rats (Rowett Nude [rnu/rnu]). Two months later, the paws were treated with saline, ASCs + PRP, or Clostridium histolyticum (clinical comparison) once a week for three treatments. The paw tissue was harvested 1 week after each treatment and subjected to Masson trichrome staining, collagen I and III, α-smooth muscle actin (SMA), and perilipin detection by immunohistochemistry. Dupuytren MFs were cocultured with ASCs and PRP or insulin-like growth factor I (IGF-I) or IGF-I-depleted PRP. In addition, the IGF-I receptor was inhibited. Oil Red O or boron-dipyrromethene detected lipid-laden cells. RESULTS Rodent paws implanted with DMFs showed enhanced α-SMA expression, imbalanced collagen III:I ratio, and reduced adipocytes compared with normal human dermal fibroblasts. After treatment with ASCs + PRP, DMF paws demonstrated reduced α-SMA, a balanced collagen III:I ratio, and a replenishment of adipocytes. Dupuytren MFs treated with ASCs + IGF-I transformed into adipocyte-like cells in vitro, which was validated by IGF-I-depletion and IGF-I receptor inhibition. CONCLUSIONS Adipose-derived stem cells + PRP reduce fibrosis markers and induce adipocyte renewal in vivo. As a PRP component, IGF-I works with ASCs to transform DMFs into adipocyte-like cells in vitro. CLINICAL RELEVANCE Identifying an active factor in PRP that synergizes with ASCs to transform DMFs into adipocyte-like cells may contribute to finding a novel therapeutic for Dupuytren disease. Such a treatment may allow for less-extensive surgical intervention coupled with therapeutic injection to reduce the recurrence of Dupuytren disease.
Collapse
Affiliation(s)
- Mary E Ziegler
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Melinda Lem
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Jacklyn Melkonian
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Tania Nasrollahi
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Helia Rahimian
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Abtin Shams
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Nikhil Prabhakar
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Seyedeh Saina Saifzadeh
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Amalvin Fritz
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA
| | - Amber Leis
- Department of Plastic Surgery, University of California, Orange, CA
| | - Alan Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Orange, CA.
| |
Collapse
|
3
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Pimenta EM, Garza AE, Camp SY, Park J, Hoffman SE, Valderrábano L, Fu J, Bi K, Karam J, Titchen BM, Khandekar MJ, Shannon E, Kang YJ, Nag A, Thorner AR, Raut CP, Hornick JL, Merriam P, Solimini NL, George S, Demetri GD, Van Allen EM. Epigenetic dysregulation of metabolic programs mediates liposarcoma cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633920. [PMID: 39896505 PMCID: PMC11785083 DOI: 10.1101/2025.01.20.633920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sarcomas are rare connective tissue cancers thought to arise from aberrant mesenchymal stem cell (MSC) differentiation. Liposarcoma (LPS) holds valuable insights into dysfunctional differentiation given its well- and dedifferentiated histologic subtypes (WDLPS, DDLPS). Despite well-established differences in histology and clinical behavior, the molecular pathways underlying each subtype are poorly understood. Here, we performed single-nucleus multiome sequencing and spatial profiling on carefully curated human LPS samples and found defects in adipocyte-specific differentiation within LPS. Loss of insulin-like growth factor 1 (IGF1) and gain of cellular programs related to early mesenchymal development and glucagon-like peptide-1 (GLP-1)-induced insulin secretion are primary features of DDLPS. IGF1 loss was associated with worse overall survival in LPS patients. Through in vitro stimulation of the IGF1 pathway, we identified that DDLPS cells are deficient in the adipose-specific PPARG isoform 2 (PPARG2). Defects in IGF1/PPARG2 signaling in DDLPS led to a block in differentiation that could not be fully overcome with the addition of exogenous IGF1 or the pro-adipogenic agonists to PPARG and GLP-1. However, we noted upregulation of the IGF1 receptor (IGF1R) in the setting of IGF1 deficiency, which promoted sensitivity to an IGF1R-targeted antibody-drug conjugate that may serve as a novel therapeutic strategy in LPS. In summary, lineage-specific defects in adipogenesis drive dedifferentiation in LPS and may translate into selective therapeutic targeting in this disease.
Collapse
Affiliation(s)
- Erica M. Pimenta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- David Liposarcoma Research Initiative, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Amanda E. Garza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sabrina Y. Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samantha E. Hoffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Division of Medical Sciences PhD Program in Biological and Biomedical Sciences, Boston, MA 02115, USA
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura Valderrábano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jingxin Fu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, 02115, USA
| | - Kevin Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Julie Karam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Breanna M. Titchen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Division of Medical Sciences PhD Program in Biological and Biomedical Sciences, Boston, MA 02115, USA
| | - Melin J. Khandekar
- David Liposarcoma Research Initiative, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yun Jee Kang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Anwesha Nag
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Aaron R. Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Chandrajit P. Raut
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Jason L. Hornick
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Priscilla Merriam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nicole L. Solimini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- David Liposarcoma Research Initiative, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- David Liposarcoma Research Initiative, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Boston, MA, 02115, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- David Liposarcoma Research Initiative, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Pagani A, Duscher D, Kempa S, Ghods M, Prantl L. Preliminary Single-Cell RNA-Sequencing Analysis Uncovers Adipocyte Heterogeneity in Lipedema. Cells 2024; 13:1028. [PMID: 38920656 PMCID: PMC11201579 DOI: 10.3390/cells13121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Background: Despite its increasing incidence and prevalence throughout Western countries, lipedema continues to be a very enigmatic disease, often misunderstood or misdiagnosed by the medical community and with an intrinsic pathology that is difficult to trace. The nature of lipedemic tissue is one of hypertrophic adipocytes and poor tissue turnover. So far, there are no identified pathways responsible, and little is known about the cell populations of lipedemic fat. Methods: Adipose tissue samples were collected from affected areas of both lipedema and healthy participants. For single-cell RNA sequencing analysis, the samples were dissociated into single-cell suspensions using enzymatic digestion and then encapsulated into nanoliter-sized droplets containing barcoded beads. Within each droplet, cellular mRNA was converted into complementary DNA. Complementary DNA molecules were then amplified for downstream analysis. Results: The single-cell RNA-sequencing analysis revealed three distinct adipocyte populations at play in lipedema. These populations have unique gene signatures which can be characterized as a lipid generating adipocyte, a disease catalyst adipocyte, and a lipedemic adipocyte. Conclusions: The single-cell RNA sequencing of lipedemic tissue samples highlights a triad of distinct adipocyte subpopulations, each characterized by unique gene signatures and functional roles. The interplay between these adipocyte subtypes offers promising insights into the complex pathophysiology of lipedema.
Collapse
Affiliation(s)
- Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| | - Mojtaba Ghods
- Department of Plastic, Aesthetic and Reconstructive Surgery, Clinic Ernst von Bergmann, Charlottenstraße 71, 14467 Potsdam, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Hong J, Raza SHA, Ma H, Cao W, Chong Y, Wu J, Xi D, Deng W. Multiple omics analysis reveals the regulation of SIRT5 on mitochondrial function and lipid metabolism during the differentiation of bovine preadipocytes. Genomics 2024; 116:110773. [PMID: 38158141 DOI: 10.1016/j.ygeno.2023.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Preadipocyte differentiation represents a critical stage in adipogenesis, with mitochondria playing an undeniable pivotal role. Given the intricate interplay between transcription and metabolic signaling during adipogenesis, the regulation of sirtuin 5 (SIRT5) on mitochondrial function and lipid metabolism was revealed via multiple omics analysis. The findings suggest that SIRT5 plays a crucial role in promoting mitochondrial biosynthesis and maintaining mitochondrial function during preadipocyte differentiation. Moreover, SIRT5 modulates the metabolic levels of numerous bioactive substances by extensively regulating genes expression associated with differentiation, energy metabolism, lipid synthesis, and mitochondrial function. Finally, SIRT5 was found to suppress triacylglycerols (TAG) accumulation while enhancing the proportion and diversity of unsaturated fatty acids, and providing conditions for the expansion and stability of membrane structure during mitochondrial biosynthesis through numerous gene regulations. Our findings provide a foundation for the identification of crucial functional genes, signaling pathways, and metabolic substances associated with adipose tissue differentiation and metabolism.
Collapse
Affiliation(s)
- Jieyun Hong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongming Ma
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weina Cao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
8
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Vietor I, Cikes D, Piironen K, Vasakou T, Heimdörfer D, Gstir R, Erlacher MD, Tancevski I, Eller P, Demetz E, Hess MW, Kuhn V, Degenhart G, Rozman J, Klingenspor M, Hrabe de Angelis M, Valovka T, Huber LA. The negative adipogenesis regulator Dlk1 is transcriptionally regulated by Ifrd1 (TIS7) and translationally by its orthologue Ifrd2 (SKMc15). eLife 2023; 12:e88350. [PMID: 37603466 PMCID: PMC10468205 DOI: 10.7554/elife.88350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/20/2023] [Indexed: 08/23/2023] Open
Abstract
Delta-like homolog 1 (Dlk1), an inhibitor of adipogenesis, controls the cell fate of adipocyte progenitors. Experimental data presented here identify two independent regulatory mechanisms, transcriptional and translational, by which Ifrd1 (TIS7) and its orthologue Ifrd2 (SKMc15) regulate Dlk1 levels. Mice deficient in both Ifrd1 and Ifrd2 (dKO) had severely reduced adipose tissue and were resistant to high-fat diet-induced obesity. Wnt signaling, a negative regulator of adipocyte differentiation, was significantly upregulated in dKO mice. Elevated levels of the Wnt/β-catenin target protein Dlk1 inhibited the expression of adipogenesis regulators Pparg and Cebpa, and fatty acid transporter Cd36. Although both Ifrd1 and Ifrd2 contributed to this phenotype, they utilized two different mechanisms. Ifrd1 acted by controlling Wnt signaling and thereby transcriptional regulation of Dlk1. On the other hand, distinctive experimental evidence showed that Ifrd2 acts as a general translational inhibitor significantly affecting Dlk1 protein levels. Novel mechanisms of Dlk1 regulation in adipocyte differentiation involving Ifrd1 and Ifrd2 are based on experimental data presented here.
Collapse
Affiliation(s)
- Ilja Vietor
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - Domagoj Cikes
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- IMBA, Institute of MolecularBiotechnology of the Austrian Academy of SciencesViennaAustria
| | - Kati Piironen
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of HelsinkiHelsinkiFinland
| | - Theodora Vasakou
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - David Heimdörfer
- Division of Genomics and RNomics, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - Ronald Gstir
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- ADSI – Austrian Drug Screening Institute GmbHInnsbruckAustria
| | | | - Ivan Tancevski
- Department of Internal Medicine II, Innsbruck Medical UniversityInnsbruckAustria
| | - Philipp Eller
- Department of Internal Medicine II, Innsbruck Medical UniversityInnsbruckAustria
| | - Egon Demetz
- Department of Internal Medicine II, Innsbruck Medical UniversityInnsbruckAustria
| | - Michael W Hess
- Division of Histology and Embryology, Innsbruck Medical UniversityInnsbruckAustria
| | - Volker Kuhn
- Department Trauma Surgery, Innsbruck Medical UniversityInnsbruckAustria
| | - Gerald Degenhart
- Department of Radiology, Medical University InnsbruckInnsbruckAustria
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, School of Life SciencesWeihenstephanGermany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of MunichFreisingGermany
- ZIEL - Institute for Food & Health, Technical University of MunichFreisingGermany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Chair of Experimental Genetics, Technical University of Munich, School of Life SciencesFreisingGermany
| | - Taras Valovka
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Innsbruck Medical UniversityInnsbruckAustria
- ADSI – Austrian Drug Screening Institute GmbHInnsbruckAustria
| |
Collapse
|
10
|
Han HS, Ahn E, Park ES, Huh T, Choi S, Kwon Y, Choi BH, Lee J, Choi YH, Jeong YL, Lee GB, Kim M, Seong JK, Shin HM, Kim HR, Moon MH, Kim JK, Hwang GS, Koo SH. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. NATURE AGING 2023; 3:982-1000. [PMID: 37488415 DOI: 10.1038/s43587-023-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process. We found that adipocyte-specific Crtc2 knockout protected mice from age-associated metabolic decline. Multiomics analysis revealed that BCAA catabolism was impaired in aged visceral adipose tissues, leading to the activation of mechanistic target of rapamycin complex (mTORC1) signaling and the resultant cellular senescence, which was restored by Crtc2 knockout in adipocytes. Using single-cell RNA sequencing analysis, we found that age-associated decline in adipogenic potential of visceral adipose tissues was reinstated by Crtc2 knockout, via the reduction of BCAA-mTORC1 senescence-associated secretory phenotype axis. Collectively, we propose that perturbation of BCAA catabolism by CRTC2 is critical in instigating age-associated remodeling of adipose tissue and the resultant metabolic decline in vivo.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eunyong Ahn
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | | | - Tom Huh
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seri Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yongmin Kwon
- Division of Life Sciences, Korea University, Seoul, Korea
| | | | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, Korea
| | | | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Minji Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | | | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, Korea.
- Department of Life Sciences, POSTECH, Pohang, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea.
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea.
| |
Collapse
|
11
|
Yue M, Liu Y, Zhang P, Li Z, Zhou Y. Integrative Analysis Reveals the Diverse Effects of 3D Stiffness upon Stem Cell Fate. Int J Mol Sci 2023; 24:9311. [PMID: 37298263 PMCID: PMC10253631 DOI: 10.3390/ijms24119311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The origin of life and native tissue development are dependent on the heterogeneity of pluripotent stem cells. Bone marrow mesenchymal stem cells (BMMSCs) are located in a complicated niche with variable matrix stiffnesses, resulting in divergent stem cell fates. However, how stiffness drives stem cell fate remains unknown. For this study, we performed whole-gene transcriptomics and precise untargeted metabolomics sequencing to elucidate the complex interaction network of stem cell transcriptional and metabolic signals in extracellular matrices (ECMs) with different stiffnesses, and we propose a potential mechanism involved in stem cell fate decision. In a stiff (39~45 kPa) ECM, biosynthesis of aminoacyl-tRNA was up-regulated, and increased osteogenesis was also observed. In a soft (7~10 kPa) ECM, biosynthesis of unsaturated fatty acids and deposition of glycosaminoglycans were increased, accompanied by enhanced adipogenic/chondrogenic differentiation of BMMSCs. In addition, a panel of genes responding to the stiffness of the ECM were validated in vitro, mapping out the key signaling network that regulates stem cells' fate decisions. This finding of "stiffness-dependent manipulation of stem cell fate" provides a novel molecular biological basis for development of potential therapeutic targets within tissue engineering, from both a cellular metabolic and a biomechanical perspective.
Collapse
Affiliation(s)
- Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; (M.Y.); (Y.L.); (P.Z.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
12
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
13
|
Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc Natl Acad Sci U S A 2023; 120:e2203779120. [PMID: 36577075 PMCID: PMC9910602 DOI: 10.1073/pnas.2203779120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor I (IGF-1) is a key regulator of tissue growth and development in response to growth hormone stimulation. In the skeletal system, IGF-1 derived from osteoblasts and chondrocytes are essential for normal bone development; however, whether bone marrow (BM)-resident cells provide distinct sources of IGF-1 in the adult skeleton remains elusive. Here, we show that BM stromal cells (BMSCs) and megakaryocytes/platelets (MKs/PLTs) express the highest levels of IGF-1 in adult long bones. Deletion of Igf1 from BMSCs by Lepr-Cre leads to decreased bone formation, impaired bone regeneration, and increased BM adipogenesis. Importantly, reduction of BMSC-derived IGF-1 contributes to fasting-induced marrow fat accumulation. In contrast, deletion of Igf1 from MKs/PLTs by Pf4-Cre leads to reduced bone formation and regeneration without affecting BM adipogenesis. To our surprise, MKs/PLTs are also an important source of systemic IGF-1. Platelet-rich plasma (PRP) from Pf4-Cre; Igf1f/fmice showed compromised osteogenic potential both in vivo and in vitro, suggesting that MK/PLT-derived IGF-1 underlies the therapeutic effects of PRP. Taken together, this study identifies BMSCs and MKs/PLTs as two important sources of IGF-1 that coordinate to maintain and regenerate the adult skeleton, highlighting reciprocal regulation between the hematopoietic and skeletal systems.
Collapse
|
14
|
Fu H, Dong S, Li K. Study on promoting the regeneration of grafted fat by cell-assisted lipotransfer. Regen Ther 2022; 22:7-18. [PMID: 36582606 PMCID: PMC9762074 DOI: 10.1016/j.reth.2022.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Cell-assisted lipotransfer (CAL), a modified adipose-derived stromal/stem cells (ADSCs)-based approach for autologous fat grafting that is an ideal option for soft tissue augmentation, has many shortcomings in terms of retention and adverse effects. The objective of our study was to improve the treatment efficacy of CAL by adding fibroblasts. Methods ADSCs and fibroblasts were isolated from human adipose and dermal tissues, with fibroblasts identified by immunofluorescence and ADSCs identified by the multilineage differentiation method. We performed cell proliferation, apoptosis, migration, adipogenic, and hemangioendothelial differentiation experiments, qPCR and Western blotting analysis in co-cultures of fibroblasts and ADSCs. Subsequently, we conducted animal experiments with BALB/c nude mice. Masson's staining, immunofluorescence staining and ultrasound were used to analyze the occurrence of adverse reactions of the grafted fat, and CT and three-dimensional reconstruction were used to accurately evaluate the volume of the grafted fat. Results We found that the co-culture of fibroblasts and ADSCs promoted their mutual proliferation, adipogenic differentiation, hemangioendothelial differentiation and proliferation and migration of HUVECs. Fibroblasts inhibit the apoptosis of ADSCs. Moreover, in animal experiments, the autografted adipose group combined with ADSCs and fibroblasts had the least occurrence of oily cysts, and fat had the best form of survival. Conclusions We enhanced adipocyte regeneration and angiogenesis in ADSCs and fibroblast cells after adding fibroblasts to conventional CAL autologous fat grafts. In turn, the volume retention rate of the grafted fat is improved, and the adverse reactions are reduced.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha 410004, Hunan, China,Corresponding author. The Affiliated Changsha Central Hospital, 161 Shaoshan South Road, Changsha 410004, China.
| |
Collapse
|
15
|
Yang M, Tang B, Wang S, Tang L, Wen D, Vlodavsky I, Yang SM. Non-enzymatic heparanase enhances gastric tumor proliferation via TFEB-dependent autophagy. Oncogenesis 2022; 11:49. [PMID: 35970822 PMCID: PMC9378687 DOI: 10.1038/s41389-022-00424-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Heparanase (HPA) is the predominant enzyme that cleaves heparan sulfate and plays a critical role in a variety of pathophysiological processes. HPA activity has been traditionally correlated with tumor metastasis due to participation in the cleavage and remodeling of the extracellular matrix (ECM). Apart from its well-characterized catalytic properties, HPA was noticed to exert biological functions not rely on its enzymatic activity. This feature is supported by studies showing induction of signaling events, such as Src and AKT, by nonenzymatic HPA mutant. We provide evidence here that active HPA and inactive HPA mutant proteins enhance gastric cancer cell growth, possibly attributed to TFEB-mediated autophagy. Similarly, HPA gene silencing resulted in decreased gastric cancer cell proliferation and autophagy. Besides, TFEB inhibition reduced cell growth and autophagy induced by nonenzymatic HPA. Notably, HPA and TFEB were significantly elevated in gastric carcinomas compared with the adjacent gastric tissue. Moreover, the elevation of HPA gene expression and upregulation of TFEB levels have been associated with advanced clinical stage and poor prognosis of gastric cancer, providing strong clinical support for a connection between TFEB and HPA. Thus, neutralizing the nonenzymatic function of HPA and the related TFEB-driven autophagy may profoundly impact gastric cancer progression.
Collapse
Affiliation(s)
- Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Dalin Wen
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, 31096, Israel.
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
16
|
Li J, Zuo L, Geng Z, Li Q, Cheng Y, Yang Z, Shi R, Zhou Y, Nie W, Wang Y, Zhang X, Ge S, Song X, Hu J. Pygopus2 ameliorates mesenteric adipocyte poor differentiation to alleviate Crohn's disease -like colitis via the Axin2/GSK3β pathway. Cell Prolif 2022; 55:e13292. [PMID: 35707871 PMCID: PMC9528773 DOI: 10.1111/cpr.13292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives Crohn's disease (CD) mesenteric adipose tissue (MAT) inflammation affects enteritis through the interaction between the mesentery and intestine, and we previously found that poorly differentiated mesenteric adipocytes were related to its inflammatory features. Pygopus2 (Pygo2) is a key negative regulator of adipocyte differentiation. We aimed to determine whether Pygo2 participates in CD mesenteric lesions and whether Pygo2 knockdown would be beneficial in a CD model (Il‐10−/− mice). Methods Pygo2 expression in MAT from control and CD patients and Il‐10−/− mice was measured by immunohistochemistry. Lentiviral transfection was used to regulate Pygo2 expression in Il‐10−/− mice, and the effects on mesenteric adipocyte differentiation, inflammation, and dysfunction during spontaneous colitis, as well as the possible mechanism, were investigated. Results Pygo2 expression was increased in MAT from CD patients and Il‐10−/− mice, and its expression correlated with poor adipocyte differentiation and inflammation. Pygo2 knockdown significantly ameliorated colitis in Il‐10−/− mice. Moreover, the downregulation of Pygo2 gene expression could promote adipocyte differentiation and inhibit adipocyte inflammation in vivo and in vitro, and the effects were at least partly mediated by the Axis inhibition protein 2 (Axin2)/glycogen synthase kinase 3 beta (GSK3β) pathway. Conclusions The increase in Pygo2 may be related to mesenteric adipocyte poor differentiation and inflammatory features of CD, and Pygo2 inhibition could alleviate CD‐like colitis by improving mesenteric lesions by regulating the Axin2/GSK3β pathway.
Collapse
Affiliation(s)
- Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Cheng
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ruohan Shi
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Yueqing Zhou
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Wenhu Nie
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
17
|
Lamblet H, Ferreira LM. Fat obtained from plastic surgery procedures—stem cells derived from adipose tissue and their potential in technological innovation: a narrative literature review and perspective on dissociative methods. EUROPEAN JOURNAL OF PLASTIC SURGERY 2022; 45:701-731. [PMID: 35308897 PMCID: PMC8916487 DOI: 10.1007/s00238-022-01951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Background Throughout its illustrious history, plastic surgery has searched for novel regenerative therapies and procedures. Recently, interest has emerged in using adipose tissue-derived stem cells (ASCs) in an ethical, easy, and reproducible manner. ASCs are generally not administered alone but as a constituent of the stromal vascular fraction (SVF) in clinical practice. Herein, we searched for innovative fat collection and ASC isolation technologies and applications and evaluated each study’s relevance to plastic surgery. Methods A narrative literature review was carried out using the MEDLINE/PubMed databases. Studies published from January 1993 to August 2020 and written in English, Portuguese, or Spanish were considered. Results The selection process yielded 33 articles for subsequent review, involving exploratory, selective, and interpretive reading, material choice, and text analysis. Twenty-three articles employed enzymatic dissociation methods to isolate ASCs, and 25 employed liposuction as the plastic surgery technique. Moreover, articles describing new devices (n = 2), techniques (n = 4), computational models (n = 1), tissue scaffolds (n = 21), and therapies and/or treatments (n = 5) were identified. Conclusions Given the importance of fat tissue for plastic surgery purposes, innovative ASC isolation and liposuction technologies could change how the surgeon conducts surgeries and improve surgical outcomes. Furthermore, many articles investigating tissue scaffolds demonstrate the importance of this area of research and development in plastic surgery and regenerative medicine. Continued efforts in the identified research areas will eventually bring in vivo human plastic surgery applications and regenerative medicine into the operating room. Level of evidence: Not gradable.
Collapse
Affiliation(s)
- Hebert Lamblet
- Plastic Surgery Division at Universidade Federal de São Paulo (Unifesp), São Paulo, SP Brazil
| | - Lydia Masako Ferreira
- Plastic Surgery Division at Universidade Federal de São Paulo (Unifesp), São Paulo, SP Brazil
| |
Collapse
|
18
|
Nahmgoong H, Jeon YG, Park ES, Choi YH, Han SM, Park J, Ji Y, Sohn JH, Han JS, Kim YY, Hwang I, Lee YK, Huh JY, Choe SS, Oh TJ, Choi SH, Kim JK, Kim JB. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab 2022; 34:458-472.e6. [PMID: 35021043 DOI: 10.1016/j.cmet.2021.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022]
Abstract
In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.
Collapse
Affiliation(s)
- Hahn Nahmgoong
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yul Ji
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Seul Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye Young Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Jung Oh
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Deleon NMD, Adem S, Lavin CV, Abbas DB, Griffin M, King ME, Borrelli MR, Patel RA, Fahy EJ, Lee D, Shen AH, Momeni A, Longaker MT, Wan DC. Angiogenic CD34+CD146+ adipose-derived stromal cells augment recovery of soft tissue after radiotherapy. J Tissue Eng Regen Med 2021; 15:1105-1117. [PMID: 34582109 DOI: 10.1002/term.3253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Radiation therapy is effective for cancer treatment but may also result in collateral soft tissue contracture, contour deformities, and non-healing wounds. Autologous fat transfer has been described to improve tissue architecture and function of radiation-induced fibrosis and these effects may be augmented by enrichment with specific adipose-derived stromal cells (ASCs) with enhanced angiogenic potential. CD34+CD146+, CD34+CD146-, or CD34+ unfractionated human ASCs were isolated by flow cytometry and used to supplement human lipoaspirate placed beneath the scalp of irradiated mice. Volume retention was followed radiographically and fat grafts as well as overlying soft tissue were harvested after eight weeks for histologic and biomechanical analyses. Radiographic evaluation revealed the highest volume retention in fat grafts supplemented with CD34+CD146+ ASCs, and these grafts were also found to have greater histologic integrity than other groups. Irradiated skin overlying CD34+CD146+ ASC-enriched grafts was significantly more vascularized than other treatment groups, had significantly less dermal thickness and collagen deposition, and the greatest improvement in fibrillin staining and return of elasticity. Radiation therapy obliterates vascularity and contributes to scarring and loss of tissue function. ASC-enrichment of fat grafts with CD34+CD146+ ASCs not only enhances fat graft vascularization and retention, but also significantly promotes improvement in overlying radiation-injured soft tissue. This regenerative effect on skin is highly promising for patients with impaired wound healing and deformities following radiotherapy.
Collapse
Affiliation(s)
- Nestor M Diaz Deleon
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Sandeep Adem
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher V Lavin
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B Abbas
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Megan E King
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Mimi R Borrelli
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A Patel
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Evan J Fahy
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Lee
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H Shen
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, Lv Q. In situ Adipogenesis in Biomaterials Without Cell Seeds: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:647149. [PMID: 33763426 PMCID: PMC7982583 DOI: 10.3389/fcell.2021.647149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
For cosmetic and reconstructive purposes in the setting of small-volume adipose tissue damage due to aging, traumatic defects, oncological resections, and degenerative diseases, the current strategies for soft tissue replacement involve autologous fat grafts and tissue fillers with synthetic, bioactive, or tissue-engineered materials. However, they all have drawbacks such as volume shrinkage and foreign-body responses. Aiming to regenerate bioactive vascularized adipose tissue on biomaterial scaffolds, adipose tissue engineering (ATE) has emerged as a suitable substitute for soft tissue repair. The essential components of ATE include scaffolds as support, cells as raw materials for fat formation, and a tolerant local environment to allow regeneration to occur. The commonly loaded seeding cells are adipose-derived stem cells (ASCs), which are expected to induce stable and predictable adipose tissue formation. However, defects in stem cell enrichment, such as donor-site sacrifice, limit their wide application. As a promising alternative approach, cell-free bioactive scaffolds recruit endogenous cells for adipogenesis. In biomaterials without cell seeds, the key to sufficient adipogenesis relies on the recruitment of endogenous host cells and continuous induction of cell homing to scaffolds. Regeneration, rather than repair, is the fundamental dominance of an optimal mature product. To induce in situ adipogenesis, many researchers have focused on the mechanical and biochemical properties of scaffolds. In addition, efforts to regulate an angiogenic and adipogenic microenvironment in cell-free settings involve integrating growth factors or extracellular matrix (ECM) proteins onto bioactive scaffolds. Despite the theoretical feasibility and encouraging results in animal models, few of the reported cell-free biomaterials have been tested in humans, and failures of decellularized adipose tissues in adipogenesis have also been reported. In these cases, the most likely reason was the lack of supporting vasculature. This review summarizes the current status of biomaterials without cell seeds. Related mechanisms and influencing factors of in situ adipogenesis in cell-free biomaterials, dilemma in the development of biomaterials, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Fu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Qianru Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
de Winter TJJ, Nusse R. Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Front Cell Dev Biol 2021; 9:627429. [PMID: 33634128 PMCID: PMC7900430 DOI: 10.3389/fcell.2021.627429] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) give rise to adipocytes, osteocytes, and chondrocytes and reside in various tissues, including bone marrow and adipose tissue. The differentiation choices of MSCs are controlled by several signaling pathways, including the Wnt/β-catenin signaling. When MSCs undergo adipogenesis, they first differentiate into preadipocytes, a proliferative adipocyte precursor cell, after which they undergo terminal differentiation into mature adipocytes. These two steps are controlled by the Wnt/β-catenin pathway, in such a way that when signaling is abrogated, the next step in adipocyte differentiation can start. This sequence suggests that the main role of Wnt/β-catenin signaling is to suppress differentiation while increasing MSC and preadipocytes cell mass. During later steps of MSC differentiation, however, active Wnt signaling can promote osteogenesis instead of keeping the MSCs undifferentiated and proliferative. The exact mechanisms behind the various functions of Wnt signaling remain elusive, although recent research has revealed that during lineage commitment of MSCs into preadipocytes, Wnt signaling is inactivated by endogenous Wnt inhibitors. In part, this process is regulated by histone-modifying enzymes, which can lead to increased or decreased Wnt gene expression. The role of Wnt in adipogenesis, as well as in osteogenesis, has implications for metabolic diseases since Wnt signaling may serve as a therapeutic target.
Collapse
Affiliation(s)
- Twan J J de Winter
- Faculty of Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Roeland Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford, CA, United States.,School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
22
|
Sárvári AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, Nielsen R, Brewer JR, Madsen JGS, Mandrup S. Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab 2021; 33:437-453.e5. [PMID: 33378646 DOI: 10.1016/j.cmet.2020.12.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Adipose tissues display a remarkable ability to adapt to the dietary status. Here, we have applied single-nucleus RNA-seq to map the plasticity of mouse epididymal white adipose tissue at single-nucleus resolution in response to high-fat-diet-induced obesity. The single-nucleus approach allowed us to recover all major cell types and to reveal distinct transcriptional stages along the entire adipogenic trajectory from preadipocyte commitment to mature adipocytes. We demonstrate the existence of different adipocyte subpopulations and show that obesity leads to disappearance of the lipogenic subpopulation and increased abundance of the stressed lipid-scavenging subpopulation. Moreover, obesity is associated with major changes in the abundance and gene expression of other cell populations, including a dramatic increase in lipid-handling genes in macrophages at the expense of macrophage-specific genes. The data provide a powerful resource for future hypothesis-driven investigations of the mechanisms of adipocyte differentiation and adipose tissue plasticity.
Collapse
Affiliation(s)
- Anitta Kinga Sárvári
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Elvira Laila Van Hauwaert
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Lasse Kruse Markussen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ellen Gammelmark
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ann-Britt Marcher
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ronni Nielsen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jonathan Richard Brewer
- Danish Molecular Biomedical Imaging Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jesper Grud Skat Madsen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark.
| |
Collapse
|
23
|
Fei F, Sun S, Li Q, Pei Z, Wang L, Zhang R, Luo F, Yu M, Wang X. Combinatorial Normalization of Liver-Derived Cytokine Pathways Alleviates Hepatic Tumor-Associated Cachexia in Zebrafish. Cancer Res 2020; 81:873-884. [PMID: 33355239 DOI: 10.1158/0008-5472.can-20-2818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
The role and significance of liver-derived cytokines in cancer-associated cachexia syndrome remain elusive. Here we report that combinatorial counterbalances of the leptin and Igf1 signaling pathways in hepatocellular carcinoma (HCC) models significantly relieves cachexia. Double transgenic zebrafish models of HCC that stably displayed focal lesions, anorexia, and wasting of adipose and muscle tissues were first generated. Knockout of lepr or mc4r from these zebrafish partially restored appetite and exerted moderate or no effect on tissue wasting. However, genetic replenishment of Igf1 in a lepr-mutant background effectively relieved the cachexia-like phenotype without affecting tumor growth. Similarly, administration of napabucasin, a Stat3/Socs3 inhibitor, on the zebrafish HCC model, mammalian cell lines with exogenous IGF1, and two mouse xenograft models restored insulin sensitivity and rescued the wasting of nontumor tissues. Together, these results describe the synergistic impact of leptin and Igf1 normalization in treating certain HCC-associated cachexia as a practical strategy. SIGNIFICANCE: Disruption of leptin signaling with normalized Igf1 expression significantly rescues anorexia, muscle wasting, and adipose wasting in Ras- and Myc-driven zebrafish models of HCC.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pancreatic Surgery, Pancreatic Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Department of Rheumatology and Immunology, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shaoyang Sun
- Department of Pancreatic Surgery, Pancreatic Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children' Hospital of Fudan University, Shanghai, China
| | - Zhou Pei
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lei Wang
- Department of Pancreatic Surgery, Pancreatic Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Ranran Zhang
- Department of Oncology, Shanghai Medical College, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feihong Luo
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Min Yu
- Department of Oncology, Shanghai Medical College, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pancreatic Surgery, Pancreatic Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China
| |
Collapse
|
24
|
Pan Y, Xie Z, Cen S, Li M, Liu W, Tang S, Ye G, Li J, Zheng G, Li Z, Yu W, Wang P, Wu Y, Shen H. Long noncoding RNA repressor of adipogenesis negatively regulates the adipogenic differentiation of mesenchymal stem cells through the hnRNP A1-PTX3-ERK axis. Clin Transl Med 2020; 10:e227. [PMID: 33252864 PMCID: PMC7648959 DOI: 10.1002/ctm2.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate via osteogenesis and adipogenesis. The mechanism underlying MSC lineage commitment still remains incompletely elucidated. Understanding the regulatory mechanism of MSC differentiation will help researchers induce MSCs toward specific lineages for clinical use. In this research, we intended to figure out the long noncoding RNA (lncRNA) that plays a central role in MSC fate determination and explore its application value in tissue engineering. METHODS The expression pattern of lncRNAs during MSC osteogenesis/adipogenesis was detected by microarray and qRT-PCR. Lentivirus and siRNAs were constructed to regulate the expression of lncRNA repressor of adipogenesis (ROA). MSC osteogenesis/adipogenesis was evaluated by western blot and alizarin red/oil red staining. An adipokine array was used to select the paracrine/autocrine factor PTX3, followed by RNA interference or recombinant human protein stimulation to confirm its function. The activation of signaling pathways was also detected by western blot, and a small molecule inhibitor, SCH772984, was used to inhibit the activation of the ERK pathway. The interaction between ROA and hnRNP A1 was detected by RNA pull-down and RIP assays. Luciferase reporter and chromatin immunoprecipitation assays were used to confirm the binding of hnRNP A1 to the PTX3 promotor. Additionally, an in vivo adipogenesis experiment was conducted to evaluate the regulatory value of ROA in tissue engineering. RESULTS In this study, we demonstrated that MSC adipogenesis is regulated by lncRNA ROA both in vitro and in vivo. Mechanistically, ROA inhibits MSC adipogenesis by downregulating the expression of the key autocrine/paracrine factor PTX3 and the downstream ERK pathway. This downregulation was achieved through transcription inhibition by impeding hnRNP A1 from binding to the promoter of PTX3. CONCLUSIONS ROA negatively regulates MSC adipogenesis through the hnRNP A1-PTX3-ERK axis. ROA may be an effective target for modulating MSCs in tissue engineering.
Collapse
Affiliation(s)
- Yiqian Pan
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenjie Liu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Su'an Tang
- Clinical Research CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guiwen Ye
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhaofeng Li
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenhui Yu
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yanfeng Wu
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
- Department of OrthopedicsSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
25
|
Wang L, Zhang CG, Jia YL, Hu L. Tissue Inhibitor of Metalloprotease-1 (TIMP-1) Regulates Adipogenesis of Adipose-derived Stem Cells (ASCs) via the Wnt Signaling Pathway in an MMP-independent Manner. Curr Med Sci 2020; 40:989-996. [PMID: 33123912 DOI: 10.1007/s11596-020-2265-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Tissue inhibitor of metalloprotease-1 (TIMP-1) is a tissue inhibitor of matrix metalloproteinases (MMPs). It however exerts multiple effects on biological processes, such as cell growth, proliferation, differentiation and apoptosis, in an MMP-independent manner. This study aimed to examine the role of TIMP-1 in adipogenesis of adipose-derived stem cells (ASCs) and the underlying mechanism. We knocked down the TIMP-1 gene in ASCs through lentiviral vectors encoding TIMP-1 small interfering RNA (siRNA), and then found that the knockdown of TIMP-1 in ASCs promoted the adipogenic differentiation of stem cells and inhibited the Wnt/β-catenin signaling pathway in ASCs. We also noted that mutant TIMP-1 without the inhibitory activity on MMPs promoted the activation of Wnt/β-catenin pathway as well as the recombinant wild type TIMP-1 did, which indicated that the effect of TIMP-1 on Wnt/β-catenin pathway was MMP-independent. Our study suggested that TIMP-1 negatively regulated the adipogenesis of ASCs via the Wnt/β-catenin signaling pathway in an MMP-independent manner.
Collapse
Affiliation(s)
- Lu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen-Guang Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Chen Y, Li K, Zhang X, Chen J, Li M, Liu L. The novel long noncoding RNA lncRNA-Adi regulates adipogenesis. Stem Cells Transl Med 2020; 9:1053-1067. [PMID: 32356938 PMCID: PMC7445023 DOI: 10.1002/sctm.19-0438] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
Adipogenesis participates in many physiological and pathological processes, such as obesity and diabetes, and is regulated by a series of precise molecular events. However, the molecules involved in this regulation have not been fully characterized. In this study, we identified a long noncoding (lnc)RNA, lncRNA-Adi, which is highly expressed in adipose tissue-derived stromal cells (ADSCs) that are differentiating into adipocytes. Knockdown of lncRNA-Adi impaired the adipogenic differentiation ability of ADSCs. Moreover, lncRNA-Adi was found to interact with microRNA (miR)-449a to enhance the expression of cyclin-dependent kinase (CDK)6 during adipogenesis. The mechanism by which lncRNA-Adi regulates adipogenesis was determined to involve an lncRNA-Adi-miR-449a interaction that competes with the CDK6 3' untranslated region to increase CDK6 translation and activate the pRb-E2F1 pathway to promote adipogenesis. These findings provide valuable information and a new study angle to search for therapeutic targets against metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Yuanwei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral & Maxillofacial SurgerySchool of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiPeople's Republic of China
| | - Kaide Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Jinlong Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Meisheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
27
|
Zohora FT, Aldebs AI, Nosoudi N, Singh SP, Ramirez-Vick JE. Gene Expression Profiling of Human Adipose Tissue Stem Cells during 2D versus 3D Adipogenesis. Cells Tissues Organs 2020; 208:113-133. [PMID: 32464628 DOI: 10.1159/000507187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 11/19/2022] Open
Abstract
Much of the current understanding on molecular and cellular events of adipose developmental biology comes from monolayer cell culture models using preadipocyte cell lines, although in vivo adipose tissue consists of a much more complex three-dimensional microenvironment of diverse cell types, extracellular network, and tissue-specific morphological and functional features. Added to this fact, the preadipocytes, on which the adipogenesis mechanisms are mostly explored, possess some serious limitations (e.g., time of initial subculture and adipogenic differentiation time), which, perhaps, can efficiently be replaced with progenitor cells such as adipose tissue-derived stem cells (ASCs). With the objective of developing a better in vitro model for adipose developmental biology, this project involves gene expression profiling of human ASCs (hASCs) during their differentiation to adipocytes in a 2D versus 3D culture model. This transcriptional-level analysis revealed that gene expression patterns of adipogenesis-induced hASCs in a 3D self-assembled polypeptide hydrogel are relatively different from the 2D monolayered cells on plastic hard substrate. Moreover, analysis of adipogenic lineage progression 9 days after adipogenic induction shows earlier differentiation of hASCs in 2D over their 3D counterparts. However, differentiation in 2D shows some unexpected behavior in terms of gene expression, which does not seem to be related to adipogenic lineage specification. Since hASCs are already being used in clinical trials due to their therapeutic potential, it is important to have a clear understanding of the molecular mechanisms in an in vivo model microenvironment like the one presented here.
Collapse
Affiliation(s)
- Fatema Tuj Zohora
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, Ohio, USA
| | - Alyaa Isam Aldebs
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, Ohio, USA
| | - Nasim Nosoudi
- Biomedical Engineering Program,Marshall University, Huntington, West Virginia, USA
| | - Surinder Pal Singh
- CSIR-National Physical Laboratory, Dr. K.S. Krishanan Marg, New Delhi, India
| | - Jaime Eduardo Ramirez-Vick
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, Ohio, USA,
| |
Collapse
|
28
|
Jung YJ, Kim HK, Cho Y, Choi JS, Woo CH, Lee KS, Sul JH, Lee CM, Han J, Park JH, Jo DG, Cho YW. Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. SCIENCE ADVANCES 2020; 6:eaay6721. [PMID: 32232152 PMCID: PMC7096171 DOI: 10.1126/sciadv.aay6721] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/03/2020] [Indexed: 05/18/2023]
Abstract
Stem cell-derived extracellular vesicles (EVs) offer alternative approaches to stem cell-based therapy for regenerative medicine. In this study, stem cell EVs derived during differentiation are developed to use as cell-free therapeutic systems by inducing tissue-specific differentiation. EVs are isolated from human adipose-derived stem cells (HASCs) during white and beige adipogenic differentiation (D-EV and BD-EV, respectively) via tangential flow filtration. D-EV and BD-EV can successfully differentiate HASCs into white and beige adipocytes, respectively. D-EV are transplanted with collagen/methylcellulose hydrogels on the backs of BALB/c mice, and they produce numerous lipid droplets in injected sites. Treatments of BD-EV attenuate diet-induced obesity through browning of adipose tissue in mice. Furthermore, high-fat diet-induced hepatic steatosis and glucose tolerance are improved by BD-EV treatment. miRNAs are responsible for the observed effects of BD-EV. These results reveal that secreted EVs during stem cell differentiation into white adipocytes or beige adipocytes can promote cell reprogramming.
Collapse
Affiliation(s)
- Youn Jae Jung
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Suk Choi
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Chang Hee Woo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Kyoung Soo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Jae Hoon Sul
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Mi Lee
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- ExoStemTech Inc., Ansan 15588, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- ExoStemTech Inc., Ansan 15588, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Corresponding author. (D.-G.J.); (Y.W.C.)
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
- Corresponding author. (D.-G.J.); (Y.W.C.)
| |
Collapse
|
29
|
Guerra-Cantera S, Frago LM, Díaz F, Ros P, Jiménez-Hernaiz M, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Short-Term Diet Induced Changes in the Central and Circulating IGF Systems Are Sex Specific. Front Endocrinol (Lausanne) 2020; 11:513. [PMID: 32849298 PMCID: PMC7431666 DOI: 10.3389/fendo.2020.00513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor (IGF) 1 exerts a wide range of functions in mammalians participating not only in the control of growth and metabolism, but also in other actions such as neuroprotection. Nutritional status modifies the IGF system, although little is known regarding how diet affects the newest members of this system including pregnancy-associated plasma protein-A (PAPP-A) and PAPP-A2, proteases that liberate IGF from the IGF-binding proteins (IGFBPs), and stanniocalcins (STCs) that inhibit PAPP-A and PAPP-A2 activity. Here we explored if a 1-week dietary change to either a high-fat diet (HFD) or a low-fat diet (LFD) modifies the central and peripheral IGF systems in both male and female Wistar rats. The circulating IGF system showed sex differences in most of its members at baseline. Males had higher levels of both free (p < 0.001) and total IGF1 (p < 0.001), as well as IGFBP3 (p < 0.001), IGFBP5 (p < 0.001), and insulin (p < 0.01). In contrast, females had higher serum levels of PAPP-A2 (p < 0.05) and IGFBP2 (p < 0.001). The responses to a short-term dietary change were both diet and sex specific. Circulating levels of IGF2 increased in response to LFD intake in females (p < 0.001) and decreased in response to HFD intake in males (p < 0.001). In females, LFD intake also decreased circulating IGFBP2 levels (p < 0.001). In the hypothalamus LFD intake increased IGF2 (p < 0.01) and IGFBP2 mRNA (p < 0.001) levels, as well as the expression of NPY (p < 0.001) and AgRP (p < 0.01), but only in males. In conclusion, short-term LFD intake induced more changes in the peripheral and central IGF system than did short-term HFD intake. Moreover, these changes were sex-specific, with IGF2 and IGFBP2 being more highly affected than the other members of the IGF system. One of the main differences between the commercial LFD employed and the HFD or normal rodent chow is that the LFD has a significantly higher sucrose content, suggesting that this nutrient could be involved in the observed responses.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Purificacion Ros
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Maria Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- Julie A. Chowen
| |
Collapse
|
30
|
Increased BMPR1A Expression Enhances the Adipogenic Differentiation of Mesenchymal Stem Cells in Patients with Ankylosing Spondylitis. Stem Cells Int 2019; 2019:4143167. [PMID: 31827527 PMCID: PMC6885782 DOI: 10.1155/2019/4143167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the adipogenic differentiation capacity of mesenchymal stem cells (MSCs) from ankylosing spondylitis (AS) patients and explore the mechanism of abnormal MSC adipogenesis in AS. Methods MSCs from patients with AS (ASMSCs) and healthy donors (HDMSCs) were cultured in adipogenic differentiation medium for up to 21 days. Adipogenic differentiation was determined using oil red O (ORO) staining and quantification and was confirmed by assessing adipogenic marker expression (PPAR-γ, FABP4, and adiponectin). Gene expression of adipogenic markers was detected using qRT-PCR. Protein levels of adipogenic markers and signaling pathway-related molecules were assessed via Western blotting. Levels of bone morphogenetic proteins 4, 6, 7, and 9 were determined using enzyme-linked immunosorbent assays. Lentiviruses encoding short hairpin RNAs (shRNAs) were constructed to reverse abnormal bone morphogenetic protein receptor 1A (BMPR1A) expression and evaluate its role in abnormal ASMSC adipogenic differentiation. Bone marrow fat content was assessed using hematoxylin and eosin (HE) staining. BMPR1A expression in bone marrow MSCs was measured using immunofluorescence staining. Results ASMSCs exhibited a greater adipogenic differentiation capacity than HDMSCs. During adipogenesis, ASMSCs expressed BMPR1A at higher levels, which activated the BMP-pSmad1/5/8 signaling pathway and increased adipogenesis. BMPR1A silencing using an shRNA eliminated the difference in adipogenic differentiation between HDMSCs and ASMSCs. Moreover, HE and immunofluorescence staining showed higher bone marrow fat content and BMPR1A expression in patients with AS than in healthy donors. Conclusion Increased BMPR1A expression induces abnormal ASMSC adipogenic differentiation, potentially contributing to fat metaplasia and thus new bone formation in patients with AS.
Collapse
|
31
|
Wang W, Huang D, Ren J, Li R, Feng Z, Guan C, Bao B, Cai B, Ling J, Zhou C. Optogenetic control of mesenchymal cell fate towards precise bone regeneration. Am J Cancer Res 2019; 9:8196-8205. [PMID: 31754390 PMCID: PMC6857041 DOI: 10.7150/thno.36455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Spatial-temporal control of cell fate in vivo is of great importance for regenerative medicine. Currently, there remain no practical strategies to tune cell-fate spatial-temporally. Optogenetics is a biological technique that widely used to control cell activity in genetically defined neurons in a spatiotemporal-specific manner by light. In this study, optogenetics was repurposed for precise bone tissue regeneration. Methods: Lhx8 and BMP2 genes, which are considered as the master genes for mesenchymal stem cell proliferation and differentiation respectively, were recombined into a customized optogenetic control system. In the system, Lhx8 was constitutively expressed, while BMP2 together with shLhx8 expression was driven by blue light. Results: As expected, blue light induced BMP2 expression and inactivated Lhx8 expression in cells infected with the optogenetic control system. Optogenetic control of BMP2 and Lhx8 expression inversely regulates MSC fate in vitro. By animal study, we found that blue light could fine-tune the regeneration in vivo. Blue light illumination significantly promotes bone regeneration when the scaffold was loaded with MSCs infected with adeno-Lhx8, GI-Gal4DBD, LOV-VP16, and BMP2-shLhx8. Conclusions: Together, our study revealed that optogenetic control of the master genes for mesenchymal stem cell proliferation and differentiation would be such a candidate strategy for precise regenerative medicine.
Collapse
|
32
|
Buso G, Depairon M, Tomson D, Raffoul W, Vettor R, Mazzolai L. Lipedema: A Call to Action! Obesity (Silver Spring) 2019; 27:1567-1576. [PMID: 31544340 PMCID: PMC6790573 DOI: 10.1002/oby.22597] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/30/2019] [Indexed: 01/31/2023]
Abstract
Lipedema is a chronic progressive disease characterized by abnormal fat distribution resulting in disproportionate, painful limbs. It almost exclusively affects women, leading to considerable disability, daily functioning impairment, and psychosocial distress. Literature shows both scarce and conflicting data regarding its prevalence. Lipedema has been considered a rare entity by several authors, though it may be a far more frequent condition than thought. Despite the clinical impact on women's health, lipedema is in fact mostly unknown, underdiagnosed, and too often misdiagnosed with other similarly presenting diseases. Polygenic susceptibility combined with hormonal, microvascular, and lymphatic disorders may be partly responsible for its development. Furthermore, consistent information on lipedema pathophysiology is still lacking, and an etiological treatment is not yet available. Weight loss measures exhibit minimal effect on the abnormal body fat distribution, resulting in eating disorders, increased obesity risk, depression, and other psychological complaints. Surgical techniques, such as liposuction and excisional lipectomy, represent therapeutic options in selected cases. This review aims to outline current evidence regarding lipedema epidemiology, pathophysiology, clinical presentation, differential diagnosis, and management. Increased awareness and a better understanding of its clinical presentation and pathophysiology are warranted to enable clinicians to diagnose and treat affected patients at an earlier stage.
Collapse
Affiliation(s)
- Giacomo Buso
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| | - Michele Depairon
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| | - Didier Tomson
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| | - Wassim Raffoul
- Plastic Surgery Division, Locomotor System DepartmentLausanne University HospitalLausanneSwitzerland
| | - Roberto Vettor
- Department of Medicine, Center for the Study and the Integrated Management of Obesity (EASO COM)Padova University HospitalPadovaItaly
| | - Lucia Mazzolai
- Angiology Division, Heart and Vessel DepartmentLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
33
|
Yuan WX, Wang XX, Zheng DH, Ma D, Cui Q, Yang F, Zhang J. Muscone Promotes The Adipogenic Differentiation Of Human Gingival Mesenchymal Stem Cells By Inhibiting The Wnt/β-Catenin Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3291-3306. [PMID: 31571831 PMCID: PMC6756161 DOI: 10.2147/dddt.s220970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
Objectives This study was performed to evaluate the effects of muscone on the proliferation, migration and differentiation of human gingival mesenchymal stem cells (GMSCs) and to explore the relevant mechanisms. Materials and methods We performed studies to determine the effects and mechanisms of muscone on GMSC proliferation, migration and differentiation. We conducted CCK-8, colony formation, transwell chamber, scratch wound, alkaline phosphatase (ALP) staining and activity, and alizarin red and oil red O staining assays, as well as real-time quantitative polymerase chain reaction (qRT-PCR), to ascertain the effects of muscone on GMSC proliferation, migration and differentiation in vitro. The mechanism by which muscone influences the osteogenic and adipogenic differentiation of GMSCs was elucidated by qRT-PCR and Western blotting. Results We found that muscone significantly promoted GMSC proliferation, chemotaxis, wound healing and fat droplet formation and inhibited ALP activity and mineral deposition. Notably, we observed that the Wnt/β-catenin pathway was closely related to the ability of muscone to inhibit the osteogenic differentiation and promote the adipogenic differentiation of GMSCs. The effect of muscone on the multidirectional differentiation capacity of GMSCs was significantly reversed by the agonist lithium chloride through the Wnt/β-catenin signaling pathway. Conclusion Muscone effectively increased the proliferation and migration, promoted the adipogenic differentiation and inhibited the osteogenic differentiation of GMSCs by inhibiting the Wnt/β-catenin signaling pathway. These results may provide a theoretical basis for the application of GMSCs and muscone in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wen-Xiu Yuan
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Xu-Xia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - De-Hua Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Dan Ma
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Qun Cui
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Fan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
34
|
Bodle J, Hamouda MS, Cai S, Williams RB, Bernacki SH, Loboa EG. Primary Cilia Exhibit Mechanosensitivity to Cyclic Tensile Strain and Lineage-Dependent Expression in Adipose-Derived Stem Cells. Sci Rep 2019; 9:8009. [PMID: 31142808 PMCID: PMC6541635 DOI: 10.1038/s41598-019-43351-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Non-motile primary cilia are dynamic cellular sensory structures and are expressed in adipose-derived stem cells (ASCs). We have previously shown that primary cilia are involved in chemically-induced osteogenic differentiation of human ASC (hASCs) in vitro. Further, we have reported that 10% cyclic tensile strain (1 Hz, 4 hours/day) enhances hASC osteogenesis. We hypothesize that primary cilia respond to cyclic tensile strain in a lineage dependent manner and that their mechanosensitivity may regulate the dynamics of signaling pathways localized to the cilium. We found that hASC morphology, cilia length and cilia conformation varied in response to culture in complete growth, osteogenic differentiation, or adipogenic differentiation medium, with the longest cilia expressed in adipogenically differentiating cells. Further, we show that cyclic tensile strain both enhances osteogenic differentiation of hASCs while it suppresses adipogenic differentiation as evidenced by upregulation of RUNX2 gene expression and downregulation of PPARG and IGF-1, respectively. This study demonstrates that hASC primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression, which may in part regulate signaling pathways localized to the primary cilium during the differentiation process. We highlight the importance of the primary cilium structure in mechanosensing and lineage specification and surmise that this structure may be a novel target in manipulating hASC for in tissue engineering applications.
Collapse
Affiliation(s)
- Josephine Bodle
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - Mehdi S Hamouda
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Shaobo Cai
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Ramey B Williams
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Susan H Bernacki
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA.
- College of Engineering at University of Missouri, W1051 Thomas & Nell Lafferre Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
35
|
Yi X, Wu P, Liu J, Gong Y, Xu X, Li W. Identification of the potential key genes for adipogenesis from human mesenchymal stem cells by RNA-Seq. J Cell Physiol 2019; 234:20217-20227. [PMID: 30989650 DOI: 10.1002/jcp.28621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/22/2019] [Indexed: 01/23/2023]
Abstract
Adipogenesis, a physiological process initiated with the committed preadipocytes expressing adipocyte-specific genes and terminated in mature, differentiated and functional adipocytes, mainly involved with energy homeostasis. Abnormal distribution-changes and dysfunctions in adipogenesis may lead to complex physiopathological disorders. However, it remains unclear for the key players working for the whole complex differentiating process of adipogenesis. Here, it investigated transcriptional profiling of adipogenesis from human mesenchymal stem cells (hMSCs) by RNA-Seq transcriptome technique. Oil Red O staining assays were performed to assess adipogenic potential. Quantitative real-time PCR (qRT-PCR) and lentivirus transfection assays by small interference RNA (siRNA) were conducted to confirm the function of the candidate genes. A total of 1,078 differentially expressed genes shared at 7, 14, 21, and 28 days during adipogenesis from hMSCs, and 706 genes were significantly differentially expressed. It identified 20 potential key genes responsible for adipogenesis with four genes downregulating. The candidate gene, coagulation factor II thrombin receptor (F2R), encoding coagulation factor II thrombin receptor involving with a 7-transmembrane receptor involved in the regulation of thrombotic response, also known as proteinase-activated receptor-1, contributed to adipogenesis, especially at Day 14, by Oil Red O staining, qRT-PCR, and western blot after siRNA. A unique discovery shed new light to understand the key players of the whole processes of adipogenesis from hMSCs. The gene F2R might be used as an adipogenic marker to provide a potential target for understanding the metabolic syndromes like obesity, type-2 diabetes, steatosis, atherosclerosis, and osteoporosis.
Collapse
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, China
| |
Collapse
|
36
|
Induction of Expression of CD271 and CD34 in Mesenchymal Stromal Cells Cultured as Spheroids. Stem Cells Int 2018; 2018:7357213. [PMID: 30154865 PMCID: PMC6091361 DOI: 10.1155/2018/7357213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cultured mesenchymal stromal cells (MSCs) are cells that can be used for tissue engineering or cell therapies owing to their multipotency and ability to secrete immunomodulatory and trophic molecules. Several studies suggest that MSCs can become pericytes when cocultured with endothelial cells (ECs) but failed to use pericyte markers not already expressed by MSCs. We hypothesized ECs could instruct MSCs to express the molecules CD271 or CD34, which are expressed by pericytes in situ but not by MSCs. CD271 is a marker of especial interest because it is associated with multipotency, a characteristic that wanes in MSCs as they are culture expanded. Consequently, surface expression of CD271 and CD34 was detected in roughly half of the MSCs cocultured with ECs as spheroids in the presence of insulin-like growth factor 1 (IGF-1). Conversely, expression of CD271 and CD34 was detected in a similar proportion of MSCs cultured under these conditions without ECs, and expression of these markers was low or absent when no IGF-1 was added. These findings indicate that specific culture conditions including IGF-1 can endow cultured MSCs with expression of CD271 and CD34, which may enhance the multipotency of these cells when they are used for therapeutic purposes.
Collapse
|
37
|
Sun G, Shen YI, Harmon JW. Engineering Pro-Regenerative Hydrogels for Scarless Wound Healing. Adv Healthc Mater 2018; 7:e1800016. [PMID: 29663707 DOI: 10.1002/adhm.201800016] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/17/2018] [Indexed: 12/21/2022]
Abstract
Skin and skin appendages protect the body from harmful environment and prevent internal organs from dehydration. Superficial epidermal wounds usually heal without scarring, however, deep dermal wound healing commonly ends up with nonfunctioning scar formation with substantial loss of skin appendage. Wound healing is one of the most complex dynamic biological processes, during which a cascade of biomolecules combine with stem cell influx and matrix synthesis and synergistically contribute to wound healing at all levels. Although many approaches have been investigated to restore complete skin, the clinically effective therapy is still unavailable and the regeneration of perfect skin still remains a significant challenge. The complete mechanism behind scarless skin regeneration still requires further investigation. Fortunately, recent advancement in regenerative medicine empowers us more than ever to restore tissue in a regenerative manner. Many studies have elucidated and reviewed the contribution of stem cells and growth factors to scarless wound healing. This article focuses on recent advances in scarless wound healing, especially strategies to engineer pro-regenerative scaffolds to restore damaged skin in a regenerative manner.
Collapse
Affiliation(s)
- Guoming Sun
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - Yu-I Shen
- Sunogel Biotechnologies Inc.; 9 W Ridgely Road Ste 270 Lutherville Timonium MD 21093 USA
| | - John W. Harmon
- Department of Surgery and the Hendrix Burn Lab; Johns Hopkins University School of Medicine; Baltimore MD 21224 USA
| |
Collapse
|
38
|
Jia D, Zheng W, Jiang H. Growth hormone facilitates 5'-azacytidine-induced myogenic but inhibits 5'-azacytidine-induced adipogenic commitment in C3H10T1/2 mesenchymal stem cells. Growth Horm IGF Res 2018; 40:9-16. [PMID: 29626795 DOI: 10.1016/j.ghir.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/19/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022]
Abstract
The C3H10T1/2 cells are considered mesenchymal stem cells (MSCs) because they can be induced to become the progenitor cells for myocytes, adipocytes, osteoblasts, and chondrocytes by the DNA methyltransferase inhibitor 5'-azacytidine. In this study, we determined the effect of growth hormone (GH) on the myogenic and adipogenic lineage commitment in C3H10T1/2 cells. The C3H10T1/2 cells were treated with recombinant bovine GH in the presence or absence of 5'-azacytidine for 4 days. The myogenic commitment in C3H10T1/2 cells was assessed by immunostaining them for MyoD, the marker for myoblasts, and by determining their capacity to differentiate into the multinucleated myotubes. The adipogenic commitment in C3H10T1/2 cells was assessed by determining their ability to differentiate into adipocytes. Myotubes and adipocyteswere identified by immunocytochemistry and Oil Red O staining, respectively. C3H10T1/2 cells treated with 5'-azacytidine and GH for 4 days contained a greater percentage of MyoD-positive cells than those treated with 5'-axacytidine alone (P < 0.05). The former generated more myotubes than the latter upon induced myoblast differentiation (P < 0.05). However, C3H10T1/2 cells treated with GH alone did not form any myotubes. C3H10T1/2 cells treated with 5'-azacytidine formed adipocytes upon adipocyte differentiation induction, whereas C3H10T1/2 cells treated with GH alone did not form any adipocytes. C3H10T1/2 cells treated with both 5'-azacytidine and GH formed fewer adipocytes than those treated with 5'-azacytidine alone (P < 0.05). Both GHR and IGF-I mRNA expression in C3H10T1/2 cells were increased by 5'-azacytidine (P < 0.05), but neither was affected by GH. Overall, this study showed that GH enhanced 5'-azacytidine-induced commitment in C3H10T1/2 cells to myoblasts but inhibited 5'-azacytidine-induced commitment to preadipocytes. These results support the possibility that GH stimulates skeletal muscle growth and inhibits adipose tissue growth in part by stimulating the myogenic commitment and inhibiting the adipogenic commitment, respectively, in mesenchymal stem cells.
Collapse
Affiliation(s)
- Dan Jia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Weijiang Zheng
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States; College of Animal Sciences, Nanjing Agricultural University, Nanjing, China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
39
|
Maurizi G, Petäistö T, Maurizi A, Della Guardia L. Key-genes regulating the liposecretion process of mature adipocytes. J Cell Physiol 2017; 233:3784-3793. [PMID: 28926092 DOI: 10.1002/jcp.26188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
White mature adipocytes (MAs) are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells maintaining stem cell gene signatures. The main morphologic aspect of this transdifferentiation process, called liposecretion, is the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion. There is a considerable interest in the adipocyte plastic properties involving liposecretion process, but the molecular details are incompletely explored. This review analyzes the gene expression of MAs isolated from human subcutaneous fat tissue with respect to bone marrow (BM)-derived mesenchymal stem cells (MSC) focusing on gene regulatory pathways involved into cellular morphology changes, cellular proliferation and transports of molecules through the membrane, suggesting potential ways to guide liposecretion. In particular, Wnt, MAPK/ERK, and AKT pathways were accurately described, studying up- and down-stream molecules involved. Moreover, adipogenic extra- and intra-cellular interactions were analyzed studying the role of CDH2, CDH11, ITGA5, E-Syt1, PAI-1, IGF1, and INHBB genes. Additionally, PLIN1 and PLIN2 could be key-genes of liposecretion process regulating molecules transport through the membrane. All together data demonstrated that liposecretion is regulated through a complex molecular networks that are able to respond to microenvironment signals, cytokines, and growth factors. Autocrine as well as external signaling molecules might activate liposecretion affecting adipocytes physiology.
Collapse
Affiliation(s)
| | - Tiina Petäistö
- Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Angela Maurizi
- Chirurgia Generale, ASUR Regione Marche, Ospedale "Carlo Urbani", Jesi, Italy
| | - Lucio Della Guardia
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Unità di Scienza dell'Alimentazione, Università degli stui di Pavia, Pavia, Italy
| |
Collapse
|
40
|
Priglinger E, Sandhofer M, Peterbauer A, Wurzer C, Steffenhagen C, Maier J, Holnthoner W, Nuernberger S, Redl H, Wolbank S. Extracorporeal shock wave therapy in situ - novel approach to obtain an activated fat graft. J Tissue Eng Regen Med 2017; 12:416-426. [PMID: 28486783 DOI: 10.1002/term.2467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/27/2017] [Accepted: 05/04/2017] [Indexed: 01/23/2023]
Abstract
One of the mainstays of facial rejuvenation strategies is volume restoration, which can be achieved by autologous fat grafting. In our novel approach, we treated the adipose tissue harvest site with extracorporeal shock wave therapy (ESWT) in order to improve the quality of the regenerative cells in situ. The latter was demonstrated by characterizing the cells of the stromal vascular fraction (SVF) in the harvested liposuction material regarding cell yield, adenosine triphosphate (ATP) content, proliferative capacity, surface marker profile, differentiation potential and secretory protein profile. Although the SVF cell yield was only slightly enhanced, viability and ATP concentration of freshly isolated cells as well as proliferation doublings after 3 weeks in culture were significantly increased in the ESWT compared with the untreated group. Likewise, cells expressing mesenchymal and endothelial/pericytic markers were significantly elevated concomitant with an improved differentiation capacity towards the adipogenic lineage and enhancement in specific angiogenic proteins. Hence, in situ ESWT might be applied in the future to promote cell fitness, adipogenesis and angiogenesis within the fat graft for successful facial rejuvenation strategies with potential long-term graft survival.
Collapse
Affiliation(s)
- E Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - M Sandhofer
- Austrian Academy of Cosmetic Surgery and Aesthetic Medicine, Linz, Austria
| | - A Peterbauer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - C Wurzer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Liporegena GmbH, Austria
| | - C Steffenhagen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - J Maier
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - W Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - S Nuernberger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Bernhard Gottlieb University Clinic of Dentistry, Universitätsklinik für Zahn-, Mund- und Kieferheilkunde Ges.m.b.H, Vienna, Austria.,Medical University of Vienna, Department of Trauma Surgery, Vienna, Austria
| | - H Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - S Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
41
|
Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, Blumberg B. Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology 2017; 158:3109-3125. [PMID: 28977589 PMCID: PMC5659689 DOI: 10.1210/en.2017-00348] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Developmental exposure to environmental factors has been linked to obesity risk later in life. Nuclear receptors are molecular sensors that play critical roles during development and, as such, are prime candidates to explain the developmental programming of disease risk by environmental chemicals. We have previously characterized the obesogen tributyltin (TBT), which activates the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor (RXR) to increase adiposity in mice exposed in utero. Mesenchymal stem cells (MSCs) from these mice are biased toward the adipose lineage at the expense of the osteoblast lineage, and MSCs exposed to TBT in vitro are shunted toward the adipose fate in a PPARγ-dependent fashion. To address where in the adipogenic cascade TBT acts, we developed an in vitro commitment assay that permitted us to distinguish early commitment to the adipose lineage from subsequent differentiation. TBT and RXR activators (rexinoids) had potent effects in committing MSCs to the adipose lineage, whereas the strong PPARγ activator rosiglitazone was inactive. We show that activation of RXR is sufficient for adipogenic commitment and that rexinoids act through RXR to alter the transcriptome in a manner favoring adipogenic commitment. RXR activation alters expression of enhancer of zeste homolog 2 (EZH2) and modifies genome-wide histone 3 lysine 27 trimethylation (H3K27me3) in promoting adipose commitment and programming subsequent differentiation. These data offer insights into the roles of RXR and EZH2 in MSC lineage specification and shed light on how endocrine-disrupting chemicals such as TBT can reprogram stem cell fate.
Collapse
Affiliation(s)
- Bassem M. Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Medical Scientist Training Program, University of California, Irvine, Irvine, California 92697
| | - Eric S. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Timothy J. Abreo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Victor T. Hung
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Zdena Moosova
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Masaryk University, Faculty of Science, RECETOX, 625 00 Brno, Czech Republic
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
42
|
Priglinger E, Wurzer C, Steffenhagen C, Maier J, Hofer V, Peterbauer A, Nuernberger S, Redl H, Wolbank S, Sandhofer M. The adipose tissue-derived stromal vascular fraction cells from lipedema patients: Are they different? Cytotherapy 2017; 19:849-860. [PMID: 28454682 DOI: 10.1016/j.jcyt.2017.03.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND AIMS Lipedema is a hormone-related disease of women characterized by enlargement of the extremities caused by subcutaneous deposition of adipose tissue. In healthy patients application of autologous adipose tissue-derived cells has shown great potential in several clinical studies for engrafting of soft tissue reconstruction in recent decades. The majority of these studies have used the stromal vascular fraction (SVF), a heterogeneous cell population containing adipose-derived stromal/stem cells (ASC), among others. Because cell identity and regenerative properties might be affected by the health condition of patients, we characterized the SVF cells of 30 lipedema patients in comparison to 22 healthy patients. METHODS SVF cells were analyzed regarding cell yield, viability, adenosine triphosphate content, colony forming units and proliferative capacity, as well as surface marker profile and differentiation potential in vitro. RESULTS Our results demonstrated a significantly enhanced SVF cell yield isolated from lipedema compared with healthy patients. In contrast, the adipogenic differentiation potential of SVF cells isolated from lipedema patients was significantly reduced compared with healthy patients. Interestingly, expression of the mesenchymal marker CD90 and the endothelial/pericytic marker CD146 was significantly enhanced when isolated from lipedema patients. DISCUSSION The enhanced number of CD90+ and CD146+ cells could explain the increased cell yield because the other tested surface marker were not reduced in lipedema patients. Because the cellular mechanism and composition in lipedema is largely unknown, our findings might contribute to a better understanding of its etiology.
Collapse
Affiliation(s)
- Eleni Priglinger
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Christoph Wurzer
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Liporegena GmbH, Breitenfurt, Austria
| | - Carolin Steffenhagen
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Julia Maier
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Victoria Hofer
- Faculty of Medicine/Dental Medicine, Danube Private University, Krems-Stein, Austria; Austrian Academy of Cosmetic Surgery and Aesthetic Medicine, Linz, Austria
| | - Anja Peterbauer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Sylvia Nuernberger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Bernhard Gottlieb University Clinic of Dentistry, Universitätsklinik für Zahn-, Mund- und Kieferheilkunde Ges.m.b.H, Vienna, Austria; Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Redl
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- AUVA Research Center, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Matthias Sandhofer
- Austrian Academy of Cosmetic Surgery and Aesthetic Medicine, Linz, Austria
| |
Collapse
|
43
|
Lu X, Bai D, Liu X, Zhou C, Yang G. Sedentary lifestyle related exosomal release of Hotair from gluteal-femoral fat promotes intestinal cell proliferation. Sci Rep 2017; 7:45648. [PMID: 28361920 PMCID: PMC5374500 DOI: 10.1038/srep45648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Pioneering epidemiological work has established strong association of sedentary lifestyle and obesity with the risk of colorectal cancer, while the detailed underlying mechanism remains unknown. Here we show that Hotair (HOX transcript antisense RNA) is a pro-adipogenic long non-coding RNA highly expressed in gluteal-femoral fat over other fat depots. Hotair knockout in adipose tissue results in gluteal-femoral fat defect. Squeeze of the gluteal-femoral fat induces intestinal proliferation in wildtype mice, while not in Hotair knockout mice. Mechanistically, squeeze of the gluteal-femoral fat induces exosomal Hotair secretion mainly by transcriptional upregulation of Hotair via NFκB. And increased exosomal Hotair in turn circulates in the blood and is partially endocytosed by the intestine, finally promoting the stemness and proliferation of intestinal stem/progenitor cells via Wnt activation. Clinically, obese subjects with sedentary lifestyle have much higher exosomal HOTAIR expression in the serum. These findings establish that sedentary lifestyle promotes exosomal Hotair release from the gluteal-femoral fat, which in turn facilitates intestinal stem and/or progenitor proliferation, raising a possible link between sedentary lifestyle with colorectal tumorigenesis.
Collapse
Affiliation(s)
- Xiaozhao Lu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,The 323rd Hospital, PLA, Xi'an, 710043, China
| | - Danna Bai
- The 323rd Hospital, PLA, Xi'an, 710043, China.,Department of Physiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiangwei Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
44
|
Kim JS, Choi JS, Cho YW. Cell-Free Hydrogel System Based on a Tissue-Specific Extracellular Matrix for In Situ Adipose Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8581-8588. [PMID: 28233976 DOI: 10.1021/acsami.6b16783] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Well-designed scaffolds provide appropriate niches that can effectively recruit host cells and induce differentiation of recruited cells into the desired cell types, facilitating in situ tissue regeneration. Here we report a tissue-specific extracellular matrix (ECM) hydrogel composed of adipose-derived soluble ECM (sECM) and methylcellulose (MC) as a cell-free scaffold system for adipose tissue regeneration. The sECM-MC hydrogels showed a thermosensitive sol-gel phase transition and rapidly formed a soft hydrogel with a stiffness of 3.8 kPa at body temperature. An in vivo study showed that the sECM-MC hydrogel facilitated the infiltration of host cell populations, particularly adipose-derived stem cells (ASCs) and adipose tissue macrophages (ATMs) that directly contribute to the adipose tissue regeneration. Moreover, the hydrogel significantly enhanced host-derived adipogenesis and angiogenesis without exogenous cells or bioactive molecules. Our results indicate that the sECM-MC hydrogels provide mechanical and biochemical cues for host-derived adipose regeneration. Overall, the sECM-MC hydrogels are a highly promising cell-free therapeutic approach for in situ adipose tissue regeneration.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University , Ansan, Gyeonggi-do 426-791, Republic of Korea
| |
Collapse
|
45
|
The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int 2017; 2017:9453108. [PMID: 28298931 PMCID: PMC5337393 DOI: 10.1155/2017/9453108] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Many tissues contain adult mesenchymal stem cells (MSCs), which may be used in tissue regeneration therapies. However, the MSC availability in most tissues is limited which demands expansion in vitro following isolation. Like many developing cells, the state of MSCs is affected by the surrounding microenvironment, and mimicking this natural microenvironment that supports multipotent or differentiated state in vivo is essential to understand for the successful use of MSC in regenerative therapies. Many researchers are, therefore, optimizing cell culture conditions in vitro by altering growth factors, extracellular matrices, chemicals, oxygen tension, and surrounding pH to enhance stem cells self-renewal or differentiation. Insulin-like growth factors (IGFs) system has been demonstrated to play an important role in stem cell biology to either promote proliferation and self-renewal or enhance differentiation onset and outcome, depending on the cell culture conditions. In this review, we will describe the importance of IGFs, IGF-1 and IGF-2, in development and in the MSC niche and how they affect the pluripotency or differentiation towards multiple lineages of the three germ layers.
Collapse
|
46
|
Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells. Sci Rep 2017; 7:36402. [PMID: 28128224 PMCID: PMC5269584 DOI: 10.1038/srep36402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Abstract
Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded in 3D-bioprinted biomaterial scaffolds yielded newly formed adipose tissue that expressed human PPARγ, when transplanted into the dorsum of athymic mice. Remarkably, Ptn-adsorbed 3D scaffolds implanted in the inguinal fat pad had enhanced adipose tissue formation, suggesting Ptn’s ability to induce in situ adipogenesis of endogenous cells. Ptn promoted adipogenesis by upregulating PPARγ and C/EBPα not only in adipogenesis induction medium, but also in chemically defined medium specifically for osteogenesis, and concurrently attenuated Runx2 and Osx via BMP-mediated SMAD1/5 phosphorylation. These findings suggest Ptn’s novel role as an adipogenesis inducer with a therapeutic potential in soft tissue reconstruction and augmentation.
Collapse
|
47
|
da Silva Meirelles L, de Deus Wagatsuma VM, Malta TM, Bonini Palma PV, Araújo AG, Panepucci RA, Silva WA, Kashima S, Covas DT. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue. Exp Cell Res 2016; 349:239-254. [PMID: 27789253 DOI: 10.1016/j.yexcr.2016.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022]
Abstract
Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil; Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil.
| | - Virgínia Mara de Deus Wagatsuma
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil
| | - Tathiane Maistro Malta
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil
| | - Patrícia Viana Bonini Palma
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil
| | - Amélia Goes Araújo
- Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil; Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
48
|
Wu Y, Huang F, Zhou X, Yu S, Tang Q, Li S, Wang J, Chen L. Hypoxic Preconditioning Enhances Dental Pulp Stem Cell Therapy for Infection-Caused Bone Destruction. Tissue Eng Part A 2016; 22:1191-1203. [DOI: 10.1089/ten.tea.2016.0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yan Wu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fang Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Juan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
49
|
Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo. Stem Cells Int 2016; 2016:2545214. [PMID: 27721834 PMCID: PMC5046026 DOI: 10.1155/2016/2545214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid) (PLGA) scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair.
Collapse
|
50
|
Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules. Sci Rep 2016; 6:28851. [PMID: 27385551 PMCID: PMC4935943 DOI: 10.1038/srep28851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 06/10/2016] [Indexed: 12/18/2022] Open
Abstract
The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.
Collapse
|