1
|
McCaughey-Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. J Neurosci Res 2023; 101:1000-1028. [PMID: 36749877 DOI: 10.1002/jnr.25173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Dittmann NL, Torabi P, Watson AES, Yuzwa SA, Voronova A. Culture Protocol and Transcriptomic Analysis of Murine SVZ NPCs and OPCs. Stem Cell Rev Rep 2023; 19:983-1000. [PMID: 36617597 DOI: 10.1007/s12015-022-10492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life. Of particular importance is the generation and replacement of oligodendrocytes, the only myelinating cells of the central nervous system (CNS). SVZ NPCs contribute to myelination by regenerating the parenchymal oligodendrocyte precursor cell (OPC) pool and by differentiating into oligodendrocytes in the developing and demyelinated brain. The neurosphere assay has been widely adopted by the scientific community to facilitate the study of NPCs in vitro. Here, we present a streamlined protocol for culturing postnatal and adult SVZ NPCs and OPCs from primary neurosphere cells. We characterize the purity and differentiation potential as well as provide RNA-sequencing profiles of postnatal SVZ NPCs, postnatal SVZ OPCs and adult SVZ NPCs. We show that primary neurospheres cells generated from postnatal and adult SVZ differentiate into neurons, astrocytes and oligodendrocytes concurrently and at comparable levels. SVZ OPCs are generated by subjecting primary neurosphere cells to OPC growth factors fibroblast growth factor (FGF) and platelet-derived growth factor-AA (PDGF-AA). We further show SVZ OPCs can differentiate into oligodendrocytes in the absence and presence of thyroid hormone T3. Transcriptomic analysis confirmed the identities of each cell population and revealed novel immune and signalling pathways expressed in an age and cell type specific manner.
Collapse
Affiliation(s)
- Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Pouria Torabi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Women and Children's Health Research Institute5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, Alberta, T6G 1C9, Canada. .,Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Multiple Sclerosis Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
3
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
4
|
High Dose Pharmaceutical Grade Biotin (MD1003) Accelerates Differentiation of Murine and Grafted Human Oligodendrocyte Progenitor Cells In Vivo. Int J Mol Sci 2022; 23:ijms232415733. [PMID: 36555377 PMCID: PMC9778913 DOI: 10.3390/ijms232415733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidences suggest a strong correlation between metabolic changes and neurodegeneration in CNS demyelinating diseases such as multiple sclerosis (MS). Biotin, an essential cofactor for five carboxylases, is expressed by oligodendrocytes and involved in fatty acid synthesis and energy production. The metabolic effect of biotin or high-dose-biotin (MD1003) has been reported on rodent oligodendrocytes in vitro, and in neurodegenerative or demyelinating animal models. However, clinical studies, showed mild or no beneficial effect of MD1003 in amyotrophic lateral sclerosis (ALS) or MS. Here, we took advantage of a mouse model of myelin deficiency to study the effects of MD1003 on the behavior of murine and grafted human oligodendrocytes in vivo. We show that MD1003 increases the number and the differentiation potential of endogenous murine oligodendroglia over time. Moreover, the levels of MD1003 are increased in the plasma and brain of pups born to treated mothers, indicating that MD1003 can pass through the mother's milk. The histological analysis of the grafted animals shows that MD1003 increased proliferation and accelerates differentiation of human oligodendroglia, but without enhancing their myelination potential. These findings provide important insights into the role of MD1003 on murine and human oligodendrocyte maturation/myelination that may explain the mitigated outcome of ALS/MS clinical trials.
Collapse
|
5
|
Khalaf G, Mattern C, Begou M, Boespflug-Tanguy O, Massaad C, Massaad-Massade L. Mutation of Proteolipid Protein 1 Gene: From Severe Hypomyelinating Leukodystrophy to Inherited Spastic Paraplegia. Biomedicines 2022; 10:1709. [PMID: 35885014 PMCID: PMC9313024 DOI: 10.3390/biomedicines10071709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/17/2023] Open
Abstract
Pelizaeus-Merzbacher Disease (PMD) is an inherited leukodystrophy affecting the central nervous system (CNS)-a rare disorder that especially concerns males. Its estimated prevalence is 1.45-1.9 per 100,000 individuals in the general population. Patients affected by PMD exhibit a drastic reduction or absence of myelin sheaths in the white matter areas of the CNS. The Proteolipid Protein 1 (PLP1) gene encodes a transmembrane proteolipid protein. PLP1 is the major protein of myelin, and it plays a key role in the compaction, stabilization, and maintenance of myelin sheaths. Its function is predominant in oligodendrocyte development and axonal survival. Mutations in the PLP1 gene cause the development of a wide continuum spectrum of leukopathies from the most severe form of PMD for whom patients exhibit severe CNS hypomyelination to the relatively mild late-onset type 2 spastic paraplegia, leading to the concept of PLP1-related disorders. The genetic diversity and the biochemical complexity, along with other aspects of PMD, are discussed to reveal the obstacles that hinder the development of treatments. This review aims to provide a clinical and mechanistic overview of this spectrum of rare diseases.
Collapse
Affiliation(s)
- Guy Khalaf
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| | | | - Mélina Begou
- Neuro-Dol, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Odile Boespflug-Tanguy
- UMR 1141, INSERM, NeuroDiderot Université Paris Cité and APH-P, Neuropédiatrie, French Reference Center for Leukodystrophies, LEUKOFRANCE, Hôpital Robert Debré, 75019 Paris, France;
| | - Charbel Massaad
- UMRS 1124, INSERM, Université Paris Cité, 75006 Paris, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM and Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
6
|
Brousse B, Mercier O, Magalon K, Daian F, Durbec P, Cayre M. Endogenous neural stem cells modulate microglia and protect against demyelination. Stem Cell Reports 2021; 16:1792-1804. [PMID: 34087164 PMCID: PMC8282429 DOI: 10.1016/j.stemcr.2021.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023] Open
Abstract
In response to corpus callosum (CC) demyelination, subventricular zone-derived neural progenitors (SVZdNPs) are mobilized and generate new myelinating oligodendrocytes (OLG). Here, we examine the putative immunomodulatory properties of endogenous SVZdNPs during demyelination in the cuprizone model. SVZdNP density was higher in the lateral and rostral CC regions, and demyelination was inversely correlated with activated microglial density and pro-inflammatory cytokine levels. Single-cell RNA sequencing showed that CC areas with high levels of SVZdNP mobilization were enriched in a microglial cell subpopulation with an immunomodulatory signature. We propose MFGE8 (milk fat globule-epidermal growth factor-8) and β3 integrin as a ligand/receptor pair involved in dialogue between SVZdNPs and microglia. Immature SVZdNPs mobilized to the demyelinated CC were found highly enriched in MFGE8, which promoted the phagocytosis of myelin debris in vitro. Overall, these results demonstrate that, in addition to their cell replacement capacity, endogenous progenitors have immunomodulatory properties, highlighting a new role for endogenous SVZdNPs in myelin regeneration. Demyelination is limited in corpus callosum areas rich in subventricular zone–derived progenitors In these areas microglial cells adopt an immunomodulatory phenotype Mobilized SVZ progenitors secrete MFGE8, which promotes myelin debris phagocytosis SVZ-derived progenitors minimize demyelination by modulating microglial activity
Collapse
Affiliation(s)
- Béatrice Brousse
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Océane Mercier
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Karine Magalon
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Fabrice Daian
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Pascale Durbec
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), IBDM-UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France.
| |
Collapse
|
7
|
Microglia: A Potential Drug Target for Traumatic Axonal Injury. Neural Plast 2021; 2021:5554824. [PMID: 34093701 PMCID: PMC8163545 DOI: 10.1155/2021/5554824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic axonal injury (TAI) is a major cause of death and disability among patients with severe traumatic brain injury (TBI); however, no effective therapies have been developed to treat this disorder. Neuroinflammation accompanying microglial activation after TBI is likely to be an important factor in TAI. In this review, we summarize the current research in this field, and recent studies suggest that microglial activation plays an important role in TAI development. We discuss several drugs and therapies that may aid TAI recovery by modulating the microglial phenotype following TBI. Based on the findings of recent studies, we conclude that the promotion of active microglia to the M2 phenotype is a potential drug target for the treatment of TAI.
Collapse
|
8
|
Wang R, Chu C, Wei Z, Chen L, Xu J, Liang Y, Janowski M, Stevens RD, Walczak P. Traumatic brain injury does not disrupt costimulatory blockade-induced immunological tolerance to glial-restricted progenitor allografts. J Neuroinflammation 2021; 18:104. [PMID: 33931070 PMCID: PMC8088005 DOI: 10.1186/s12974-021-02152-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell transplantation-based treatments for neurological disease are promising, yet graft rejection remains a major barrier to successful regenerative therapies. Our group and others have shown that long-lasting tolerance of transplanted stem cells can be achieved in the brain with systemic application of monoclonal antibodies blocking co-stimulation signaling. However, it is unknown if subsequent injury and the blood-brain barrier breach could expose the transplanted cells to systemic immune system spurring fulminant rejection and fatal encephalitis. Therefore, we investigated whether delayed traumatic brain injury (TBI) could trigger graft rejection. METHODS Glial-restricted precursor cells (GRPs) were intracerebroventricularly transplanted in immunocompetent neonatal mice and co-stimulation blockade (CoB) was applied 0, 2, 4, and 6 days post-grafting. Bioluminescence imaging (BLI) was performed to monitor the grafted cell survival. Mice were subjected to TBI 12 weeks post-transplantation. MRI and open-field test were performed to assess the brain damage and behavioral change, respectively. The animals were decapitated at week 16 post-transplantation, and the brains were harvested. The survival and distribution of grafted cells were verified from brain sections. Hematoxylin and eosin staining (HE) was performed to observe TBI-induced brain legion, and neuroinflammation was evaluated immunohistochemically. RESULTS BLI showed that grafted GRPs were rejected within 4 weeks after transplantation without CoB, while CoB administration resulted in long-term survival of allografts. BLI signal had a steep rise following TBI and subsequently declined but remained higher than the preinjury level. Open-field test showed TBI-induced anxiety for all animals but neither CoB nor GRP transplantation intensified the symptom. HE and MRI demonstrated a reduction in TBI-induced lesion volume in GRP-transplanted mice compared with non-transplanted mice. Brain sections further validated the survival of grafted GRPs and showed more GRPs surrounding the injured tissue. Furthermore, the brains of post-TBI shiverer mice had increased activation of microglia and astrocytes compared to post-TBI wildtype mice, but infiltration of CD45+ leukocytes remained low. CONCLUSIONS CoB induces sustained immunological tolerance towards allografted cerebral GRPs which is not disrupted following TBI, and unexpectedly TBI may enhance GRPs engraftment and contribute to post-injury brain tissue repair.
Collapse
Affiliation(s)
- Rui Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA.,Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110006, Liaoning, China
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Yajie Liang
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA
| | - Miroslaw Janowski
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA
| | - Robert D Stevens
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21205, USA.,Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, 21205, USA
| | - Piotr Walczak
- Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, 670 W. Baltimore St., HSF III rm 1176, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Perrier S, Michell-Robinson MA, Bernard G. POLR3-Related Leukodystrophy: Exploring Potential Therapeutic Approaches. Front Cell Neurosci 2021; 14:631802. [PMID: 33633543 PMCID: PMC7902007 DOI: 10.3389/fncel.2020.631802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Leukodystrophies are a class of rare inherited central nervous system (CNS) disorders that affect the white matter of the brain, typically leading to progressive neurodegeneration and early death. Hypomyelinating leukodystrophies are characterized by the abnormal formation of the myelin sheath during development. POLR3-related or 4H (hypomyelination, hypodontia, and hypogonadotropic hypogonadism) leukodystrophy is one of the most common types of hypomyelinating leukodystrophy for which no curative treatment or disease-modifying therapy is available. This review aims to describe potential therapies that could be further studied for effectiveness in pre-clinical studies, for an eventual translation to the clinic to treat the neurological manifestations associated with POLR3-related leukodystrophy. Here, we discuss the therapeutic approaches that have shown promise in other leukodystrophies, as well as other genetic diseases, and consider their use in treating POLR3-related leukodystrophy. More specifically, we explore the approaches of using stem cell transplantation, gene replacement therapy, and gene editing as potential treatment options, and discuss their possible benefits and limitations as future therapeutic directions.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, Montréal Children’s Hospital and McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
10
|
Gruenenfelder FI, McLaughlin M, Griffiths IR, Garbern J, Thomson G, Kuzman P, Barrie JA, McCulloch ML, Penderis J, Stassart R, Nave KA, Edgar JM. Neural stem cells restore myelin in a demyelinating model of Pelizaeus-Merzbacher disease. Brain 2020; 143:1383-1399. [PMID: 32419025 PMCID: PMC7462093 DOI: 10.1093/brain/awaa080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI. In patients with a PLP1 duplication mutation, the most common cause of Pelizaeus-Merzbacher disease, the pathology is poorly defined because of a paucity of autopsy material. To address this, we examined two elderly patients with duplication of PLP1 in whom the overall syndrome, including end-stage pathology, indicated a complex disease involving dysmyelination, demyelination and axonal degeneration. Using the corresponding Plp1 transgenic mouse model, we then tested the capacity of transplanted neural stem cells to restore myelin in the context of PLP overexpression. Although developmental myelination and axonal coverage by endogenous oligodendrocytes was extensive, as assessed using electron microscopy (n = 3 at each of four end points) and immunostaining (n = 3 at each of four end points), wild-type neural precursors, transplanted into the brains of the newborn mutants, were able to effectively compete and replace the defective myelin (n = 2 at each of four end points). These data demonstrate the potential of neural stem cell therapies to restore normal myelination and protect axons in patients with PLP1 gene duplication mutation and further, provide proof of principle for the benefits of stem cell transplantation for other fatal leukodystrophies with 'normal' developmental myelination.
Collapse
Affiliation(s)
- Fredrik I Gruenenfelder
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark McLaughlin
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ian R Griffiths
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Garbern
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Gemma Thomson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Peter Kuzman
- Department of Neuropathology, University Clinic Leipzig, D-04103 Leipzig, Germany
| | - Jennifer A Barrie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Maj-Lis McCulloch
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jacques Penderis
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Ruth Stassart
- Department of Neuropathology, University Clinic Leipzig, D-04103 Leipzig, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany
| | - Julia M Edgar
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.,Max Planck Institute for Experimental Medicine, D-37075 Goettingen, Germany
| |
Collapse
|
11
|
Mozafari S, Deboux C, Laterza C, Ehrlich M, Kuhlmann T, Martino G, Baron-Van Evercooren A. Beneficial contribution of induced pluripotent stem cell-progeny to Connexin 47 dynamics during demyelination-remyelination. Glia 2020; 69:1094-1109. [PMID: 33301181 PMCID: PMC7984339 DOI: 10.1002/glia.23950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes are extensively coupled to astrocytes, a phenomenon ensuring glial homeostasis and maintenance of central nervous system myelin. Molecular disruption of this communication occurs in demyelinating diseases such as multiple sclerosis. Less is known about the vulnerability and reconstruction of the panglial network during adult demyelination‐remyelination. Here, we took advantage of lysolcithin‐induced demyelination to investigate the expression dynamics of the oligodendrocyte specific connexin 47 (Cx47) and to some extent that of astrocyte Cx43, and whether this dynamic could be modulated by grafted induced pluripotent stem cell (iPSC)‐neural progeny. Our data show that disruption of Cx43‐Cx47 mediated hetero‐cellular gap‐junction intercellular communication following demyelination is larger in size than demyelination. Loss of Cx47 expression is timely rescued during remyelination and accelerated by the grafted neural precursors. Moreover, mouse and human iPSC‐derived oligodendrocytes express Cx47, which co‐labels with astrocyte Cx43, indicating their integration into the panglial network. These data suggest that in rodents, full lesion repair following transplantation occurs by panglial reconstruction in addition to remyelination. Targeting panglial elements by cell therapy or pharmacological compounds may help accelerating or stabilizing re/myelination in myelin disorders.
Collapse
Affiliation(s)
- Sabah Mozafari
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| | - Cyrille Deboux
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| | - Cecilia Laterza
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy.,Industrial Engineering Department, University of Padova, Padova, Italy
| | - Marc Ehrlich
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Gianvito Martino
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy
| | - Anne Baron-Van Evercooren
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Mozafari S, Starost L, Manot-Saillet B, Garcia-Diaz B, Xu YKT, Roussel D, Levy MJF, Ottoboni L, Kim KP, Schöler HR, Kennedy TE, Antel JP, Martino G, Angulo MC, Kuhlmann T, Baron-Van Evercooren A. Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. SCIENCE ADVANCES 2020; 6:6/49/eabc6983. [PMID: 33277253 PMCID: PMC7821889 DOI: 10.1126/sciadv.abc6983] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Remyelination failure in multiple sclerosis (MS) is associated with a migration/differentiation block of oligodendroglia. The reason for this block is highly debated. It could result from disease-related extrinsic or intrinsic regulators in oligodendroglial biology. To avoid confounding immune-mediated extrinsic effect, we used an immune-deficient mouse model to compare induced pluripotent stem cell-derived oligodendroglia from MS and healthy donors following engraftment in the developing CNS. We show that the MS-progeny behaves and differentiates into oligodendrocytes to the same extent as controls. They generate equal amounts of myelin, with bona fide nodes of Ranvier, and promote equal restoration of their host slow conduction. MS-progeny expressed oligodendrocyte- and astrocyte-specific connexins and established functional connections with donor and host glia. Thus, MS oligodendroglia, regardless of major immune manipulators, are intrinsically capable of myelination and making functional axo-glia/glia-glia connections, reinforcing the view that the MS oligodendrocyte differentiation block is not from major intrinsic oligodendroglial deficits.
Collapse
Affiliation(s)
- Sabah Mozafari
- INSERM, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Sorbonne Université UPMC Paris 06, UM-75, F-75005, Paris, France
- ICM-GH Pitié-Salpêtrière, F-75013, Paris, France
| | - Laura Starost
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Blandine Manot-Saillet
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Université de Paris, U1266, F-75014 Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Beatriz Garcia-Diaz
- INSERM, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Sorbonne Université UPMC Paris 06, UM-75, F-75005, Paris, France
- ICM-GH Pitié-Salpêtrière, F-75013, Paris, France
| | - Yu Kang T Xu
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Delphine Roussel
- INSERM, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Sorbonne Université UPMC Paris 06, UM-75, F-75005, Paris, France
- ICM-GH Pitié-Salpêtrière, F-75013, Paris, France
| | - Marion J F Levy
- INSERM, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Sorbonne Université UPMC Paris 06, UM-75, F-75005, Paris, France
- ICM-GH Pitié-Salpêtrière, F-75013, Paris, France
| | - Linda Ottoboni
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Gianvito Martino
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy
| | - Maria Cecilia Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Université de Paris, U1266, F-75014 Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anne Baron-Van Evercooren
- INSERM, U1127, F-75013 Paris, France.
- CNRS, UMR 7225, F-75013 Paris, France
- Sorbonne Université UPMC Paris 06, UM-75, F-75005, Paris, France
- ICM-GH Pitié-Salpêtrière, F-75013, Paris, France
| |
Collapse
|
13
|
Mozafari S, Baron-Van Evercooren A. Human stem cell-derived oligodendrocytes: From humanized animal models to cell therapy in myelin diseases. Semin Cell Dev Biol 2020; 116:53-61. [PMID: 33082116 DOI: 10.1016/j.semcdb.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes are main targets in demyelinating and dysmyelinating diseases of the central nervous system (CNS), but are also involved in accidental, neurodegenerative and psychiatric disorders. The underlying pathology of these diseases is not fully understood and treatments are still lacking. The recent discovery of the induced pluripotent stem cell (iPSC) technology has open the possibility to address the biology of human oligodendroglial cells both in the dish and in vivo via engraftment in animal models, and paves the way for the development of treatment for myelin disorders. In this review, we make a short overview of the different sources human oligodendroglial cells, and animal models available for pre-clinical cell therapy. We discuss the anatomical and functional benefit of grafted iPSC-progenitors over their brain counterparts, their use in disease modeling and the missing gaps that still prevent to study their biology in the most integrated way, and to translate iPSC-stem cell based therapy to the clinic.
Collapse
Affiliation(s)
- Sabah Mozafari
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, UMR 7225, Sorbonne Université UM75, F-75013 Paris, France; CNRS, UMR 7225, Paris, France; Sorbonne Universités, Université Pierre et MarieCurie Paris 06, UM-75, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127, CNRS, UMR 7225, Sorbonne Université UM75, F-75013 Paris, France; CNRS, UMR 7225, Paris, France; Sorbonne Universités, Université Pierre et MarieCurie Paris 06, UM-75, Paris, France.
| |
Collapse
|
14
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
15
|
Wang SS, Bi HZ, Chu SF, Dong YX, He WB, Tian YJ, Zang YD, Zhang DM, Zhang Z, Chen NH. CZ-7, a new derivative of Claulansine F, promotes remyelination induced by cuprizone by enhancing myelin debris clearance. Brain Res Bull 2020; 159:67-78. [PMID: 32289743 DOI: 10.1016/j.brainresbull.2020.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
Abstract
The mechanism of demyelinating diseases is controversial, while demyelination and remyeliantion disorder is the acknowledged etiology and therapeutic target. Untill now, there is no efficient therapy for these diseases. CZ-7, a new derivative of Claulansine F, which has been reported before, were investigated its pro-remyelination effect and its associated mechanism in cuprizone (CPZ)-induced demyelination model. In this study, male C57BL/6 mice were subjected to CPZ (300 mg/kg) through intragastric gavage and were orally administered CZ-7 (20 mg/kg) meanwhile. The results of weight monitoring and behavioral testing showed that CZ-7 can significantly improve behavior dysfunction in the demyelinating mice. Luxol-fast blue (LFB) staining, myelin basic protein (MBP) immunostaining, transmission electron microscopy (TEM) and QPCR results indicated the therapeutic effect of CZ-7 on CPZ mice model. Furthermore, degraded myelin basic protein (dMBP) immunofluorescent staining and oil red O staining showed that CZ-7 contributed to the clearance of degraded myelin debris. More microglia displayed phagocytic shape assembled in corpus callosum (CC) and there was an active process of phagocytosis in microglia after CZ-7 treatment. Immunofluorescent staining and QPCR analysis revealed the M2-polarized phenotype switch of microglia in the process of myelin debris removel, which demostrated the microenvironment improvement of CZ-7. Moreover, immunofluorescent staining of NG2 and O4 demonstated that more oligodendrocyte precursor cells (OPCs) existed in CC after CZ-7 treatment. In conclusion, our results demonstrated CZ-7 has a potential therapeutic effect for MS and other demyelinating diseases through enhancing myelin debris clearance to improve the microenvironment.
Collapse
Affiliation(s)
- Sha-Sha Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hao-Zhi Bi
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Xiao Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wen-Bin He
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Ya-Juan Tian
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Ying-Da Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
16
|
Continuous Immune-Modulatory Effects of Human Olig2+ Precursor Cells Attenuating a Chronic-Active Model of Multiple Sclerosis. Mol Neurobiol 2019; 57:1021-1034. [DOI: 10.1007/s12035-019-01802-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/10/2019] [Indexed: 01/17/2023]
|
17
|
Chanoumidou K, Mozafari S, Baron-Van Evercooren A, Kuhlmann T. Stem cell derived oligodendrocytes to study myelin diseases. Glia 2019; 68:705-720. [PMID: 31633852 DOI: 10.1002/glia.23733] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Oligodendroglial pathology is central to de- and dysmyelinating, but also contributes to neurodegenerative and psychiatric diseases as well as brain injury. The understanding of oligodendroglial biology in health and disease has been significantly increased during recent years by experimental in vitro and in vivo preclinical studies as well as histological analyses of human tissue samples. However, for many of these diseases the underlying pathology is still not fully understood and treatment options are frequently lacking. This is at least partly caused by the limited access to human oligodendrocytes from patients to perform functional studies and drug screens. The induced pluripotent stem cell technology (iPSC) represents a possibility to circumvent this obstacle and paves new ways to study human disease and to develop new treatment options for so far incurable central nervous system (CNS) diseases. In this review, we summarize the differences between human and rodent oligodendrocytes, provide an overview of the different techniques to generate oligodendrocytes from human progenitor or stem cells and describe the results from studies using iPSC derived oligodendroglial lineage cells. Furthermore, we discuss future perspectives and challenges of the iPSC technology with respect to disease modeling, drug screen, and cell transplantation approaches.
Collapse
Affiliation(s)
| | - Sabah Mozafari
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127; CNRS, UMR 7225; Sorbonne Université UM-75, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127; CNRS, UMR 7225; Sorbonne Université UM-75, Paris, France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
18
|
Li H, Okada H, Suzuki S, Sakai K, Izumi H, Matsushima Y, Ichinohe N, Goto YI, Okada T, Inoue K. Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA. JCI Insight 2019; 4:125052. [PMID: 31092737 DOI: 10.1172/jci.insight.125052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
Copy number increase or decrease of certain dosage-sensitive genes may cause genetic diseases with distinct phenotypes, conceptually termed genomic disorders. The most common cause of Pelizaeus-Merzbacher disease (PMD), an X-linked hypomyelinating leukodystrophy, is genomic duplication encompassing the entire proteolipid protein 1 (PLP1) gene. Although the exact molecular and cellular mechanisms underlying PLP1 duplication, which causes severe hypomyelination in the central nervous system, remain largely elusive, PLP1 overexpression is likely the fundamental cause of this devastating disease. Here, we investigated if adeno-associated virus-mediated (AAV-mediated) gene-specific suppression may serve as a potential cure for PMD by correcting quantitative aberrations in gene products. We developed an oligodendrocyte-specific Plp1 gene suppression therapy using artificial microRNA under the control of human CNP promoter in a self-complementary AAV (scAAV) platform. A single direct brain injection achieved widespread oligodendrocyte-specific Plp1 suppression in the white matter of WT mice. AAV treatment in Plp1-transgenic mice, a PLP1 duplication model, ameliorated cytoplasmic accumulation of Plp1, preserved mature oligodendrocytes from degradation, restored myelin structure and gene expression, and improved survival and neurological phenotypes. Together, our results provide evidence that AAV-mediated gene suppression therapy can serve as a potential cure for PMD resulting from PLP1 duplication and possibly for other genomic disorders.
Collapse
Affiliation(s)
- Heng Li
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hironori Okada
- Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hitomi Izumi
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukiko Matsushima
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
19
|
Cell Replacement Therapy Improves Pathological Hallmarks in a Mouse Model of Leukodystrophy Vanishing White Matter. Stem Cell Reports 2019; 12:441-450. [PMID: 30799272 PMCID: PMC6411482 DOI: 10.1016/j.stemcr.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Stem cell therapy has great prospects for brain white matter disorders, including the genetically determined disorders called leukodystrophies. We focus on the devastating leukodystrophy vanishing white matter (VWM). Patients with VWM show severe disability and early death, and treatment options are lacking. Previous studies showed successful cell replacement therapy in rodent models for myelin defects. However, proof-of-concept studies of allogeneic cell replacement in models representative of human leukodystrophies are lacking. We tested cell replacement in a mouse model representative of VWM. We transplanted different murine glial progenitor cell populations and showed improved pathological hallmarks and motor function. Improved mice showed a higher percentage of transplanted cells that differentiated into GFAP+ astrocytes, suggesting best therapeutic prospects for replacement of astroglial lineage cells. This is a proof-of-concept study for cell transplantation in VWM and suggests that glial cell replacement therapy is a promising therapeutic strategy for leukodystrophy patients. Cell therapy improved pathology and motor skills in vanishing white matter mice Astrocyte differentiation of donor cells was associated with recovery of VWM symptoms
Collapse
|
20
|
Magnani D, Chandran S, Wyllie DJA, Livesey MR. In Vitro Generation and Electrophysiological Characterization of OPCs and Oligodendrocytes from Human Pluripotent Stem Cells. Methods Mol Biol 2019; 1936:65-77. [PMID: 30820893 DOI: 10.1007/978-1-4939-9072-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The in vitro generation of defined cellular populations from induced human pluripotent stem cells (iPSCs) provides the opportunity to work routinely with human material and, importantly, allows examination of material derived from patients with clinically and genetically diagnosed disorders. In this regard, the ability to derive oligodendrocytes in vitro represents an important resource to examine human oligodendrocyte-lineage cell biology in normal and disease contexts. Oligodendrocytes undergo characteristic physiological maturation during differentiation in vitro, and patch-clamp electrophysiology allows a detailed examination of maturation state and, potentially, pathologically related variations of ion channel expression and regulation. Here, we detail our methodology to generate oligodendrocyte precursor cells and oligodendrocytes and characterize them electrophysiologically.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,Euan MacDonald Centre, The University of Edinburgh, Edinburgh, UK.
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre, The University of Edinburgh, Edinburgh, UK
| | - David J A Wyllie
- Centre For Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Matthew R Livesey
- Centre For Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
22
|
Leferink PS, Heine VM. The Healthy and Diseased Microenvironments Regulate Oligodendrocyte Properties: Implications for Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:39-52. [PMID: 29024633 DOI: 10.1016/j.ajpath.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
White matter disorders are characterized by deficient myelin or myelin loss, lead to a range of neurologic dysfunctions, and can result in early death. Oligodendrocytes, which are responsible for white matter formation, are the first targets for treatment. However, many studies indicate that failure of white matter repair goes beyond the intrinsic incapacity of oligodendrocytes to (re)generate myelin and that failed interactions with neighboring cells or factors in the diseased microenvironment can underlie white matter defects. Moreover, most of the white matter disorders show specific white matter pathology caused by different disease mechanisms. Herein, we review the factors within the cellular and the extracellular microenvironment regulating oligodendrocyte properties and discuss stem cell tools to identify microenvironmental factors of importance to the development of improved regenerative medicine for patients with white matter disorders.
Collapse
Affiliation(s)
- Prisca S Leferink
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vivi M Heine
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Lüders KA, Patzig J, Simons M, Nave KA, Werner HB. Genetic dissection of oligodendroglial and neuronalPlp1function in a novel mouse model of spastic paraplegia type 2. Glia 2017; 65:1762-1776. [DOI: 10.1002/glia.23193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Katja A. Lüders
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Julia Patzig
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Mikael Simons
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| | - Hauke B. Werner
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
| |
Collapse
|
25
|
Groh J, Martini R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Glia 2017; 65:1407-1422. [PMID: 28568966 DOI: 10.1002/glia.23162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| |
Collapse
|
26
|
Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A 2017; 114:E2243-E2252. [PMID: 28246330 DOI: 10.1073/pnas.1614412114] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.
Collapse
|
27
|
Zhu K, Sun J, Kang Z, Zou Z, Wu G, Wang J. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance. Front Neurosci 2017; 10:613. [PMID: 28119561 PMCID: PMC5222794 DOI: 10.3389/fnins.2016.00613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. In this study, we examined the remyelinating properties and mechanisms of EA in cuprizone-induced demyelinating model, a CNS demyelinating murine model of multiple sclerosis. By feeding C57BL/6 mice with chow containing 0.2% cuprizone for 5 weeks, we successfully induce demyelination as proved by weight change, beam test, pole test, histomorphology, and Western Blot. EA treatment significantly improves the neurobehavioral performance at week 7 (2 weeks after withdrawing cuprizone chow). RNA-seq and RT-PCR results reveal up-regulated expression of myelin-related genes, and the expression of myelin associated protein (MBP, CNPase, and O4) are also increased after EA treatment, indicating therapeutic effect of EA on cuprizone model. It is widely acknowledged that microglia exert phagocytic effect on degraded myelin debris and clear these detrimental debris, which is a necessary process for subsequent remyelination. We found the remyelinating effect of EA is associated with enhanced clearance of degraded myelin debris as detected by dMBP staining and red oil O staining. Our further studies suggest that more microglia assemble in demyelinating area (corpus callosum) during the process of EA treatment, and cells inside corpus callosum are mostly in a plump, ameboid, and phagocytic shape, quite different from the ramified cells outside corpus callosum. RNA-seq result also unravels that most genes relating to positive regulation of phagocytosis (GO:0050766) are up-regulated, indicating enhanced phagocytic process after EA treatment. During the process of myelin debris clearance, microglia tend to change their phenotype toward M2 phenotype. Thus, we also probed into the phenotype of microglia in our study. Immuno-staining results show increased expression of CD206 and Arg1, and the ratio of CD206/CD16/32 are also higher in EA group. In conclusion, these results demonstrate for the first time that EA enhances myelin debris removal from activated microglia after demyelination, and promotes remyelination.
Collapse
Affiliation(s)
- Keying Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jingxian Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zheng Kang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zaofeng Zou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| |
Collapse
|
28
|
Marteyn A, Baron-Van Evercooren A. Is involvement of inflammation underestimated in Pelizaeus-Merzbacher disease? J Neurosci Res 2016; 94:1572-1578. [PMID: 27661457 DOI: 10.1002/jnr.23931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 11/11/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating leukodystrophy resulting from proteolipid protein 1 gene (PLP1) mutations leading to oligodendrocyte loss. While neuroinflammation has recently become a common feature and actor in neurodegenerative diseases, the involvement of inflammation in PMD physiopathology is still highly debated despite evidence for strong astrogliosis and microglial cell activation. Activation of the innate immune system, and more particularly, of microglia and astrocytes, is mostly associated with the deleterious role of neuroinflammation. However, in diseases such as multiple sclerosis, microglia appear beneficial for repair based on their role in myelin debris removal or recruitment and differentiation of oligodendrocyte progenitor cells. In this review, we will discuss recent published data in terms of their relevance to the role of microglia in PMD evolution, and of their impact on the improvement of therapeutic approaches combining immunomodulation and cell therapy to promote optimal recovery. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antoine Marteyn
- INSERM, U1127, F-75013, Paris, France.,CNRS, UMR 7225, F-75013, Paris, France.,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, F-75013, Paris, France.,Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Anne Baron-Van Evercooren
- INSERM, U1127, F-75013, Paris, France. .,CNRS, UMR 7225, F-75013, Paris, France. .,Université Pierre et Marie Curie-Paris 6, UMR_S 1127, F-75013, Paris, France. .,Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France.
| |
Collapse
|
29
|
Kondo Y, Duncan ID. Myelin repair by transplantation of myelin-forming cells in globoid cell leukodystrophy. J Neurosci Res 2016; 94:1195-202. [PMID: 27557886 DOI: 10.1002/jnr.23909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a devastating demyelinating disease that affects both the central and peripheral nervous systems. It is caused by genetic deficiency in the activity of a lysosomal enzyme, galactocerebrosidase (GALC), which is necessary for the maintenance of myelin. Hematopoietic stem cell transplantation (HSCT) including umbilical cord stem cell transplantation is the only effective therapy available to date. HSCT significantly prolongs the life span of patients with GLD when performed before disease onset, although it is not curative. In HSCT, infiltrating donor-derived macrophages are thought to indirectly supply the enzyme (called "cross-correction") to the host's myelinating cells. Given the limitation in treating GLD, it is hypothesized that remyelinating demyelinated axons with GALC-competent myelinating cells by transplantation will result in more stable myelination than endogenous myelin repair supported by GALC cross-correction. Transplantation of myelin-forming cells in a variety of animal models of dysmyelinating and demyelinating disorders suggests that this approach is promising in restoring saltatory conduction and protecting neurons by providing new healthy myelin. However, GLD is one of the most challenging diseases in terms of the aggressiveness of the disease and widespread pathology. Experimental transplantation of myelin-forming cells in the brain of a mouse model of GLD has been only modestly effective to date. Thus, a practical strategy for myelin repair in GLD would be to combine the rapid and widespread cross-correction of GALC by HSCT with the robust, stable myelination provided by transplanted GALC-producing myelin-forming cells. This short review will discuss such possibilities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan.
| | - Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|