1
|
Lim D, Kim I, Song Q, Kim JH, Atala A, Jackson JD, Yoo JJ. Development and intra-renal delivery of renal progenitor organoids for effective integration in vivo. Stem Cells Transl Med 2025; 14:szae078. [PMID: 39468757 PMCID: PMC11832275 DOI: 10.1093/stcltm/szae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Renal progenitor organoids have been proposed as a source of tissue for kidney regeneration; however, their clinical translatability has not been demonstrated due to an inability to mass-produce comprehensive renal progenitor organoids and the lack of an effective intra-renal delivery platform that facilitates rapid integration into functionally meaningful sites. This study addresses these shortcomings. Human-induced pluripotent stem cells were differentiated into renal progenitor cells using an established protocol and aggregated using a novel assembly method to produce high yields of organoids. Organoids were encapsulated in collagen-based scaffolds for in vitro study and in vivo implantation into mouse renal cortex. In vitro, the organoids demonstrated sustained cell viability and renal structure maturation over time. In vivo delivered organoids showed rapid integration into host renal parenchyma while showing tubular and glomerular-like structure development and maturity markers. This proof-of-concept study presents many promising results, providing a system of renal organoid formation and delivery that may support the development of clinically translatable therapies and the advancement of in vitro renal organoid studies.
Collapse
Affiliation(s)
- Diana Lim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Ickhee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Qianqian Song
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| |
Collapse
|
2
|
Ning N, Liu Z, Li X, Liu Y, Song W. Progress of Induced Pluripotent Stem Cell-Derived Renal Organoids in Clinical Application. KIDNEY DISEASES (BASEL, SWITZERLAND) 2025; 11:1-10. [PMID: 40093027 PMCID: PMC11908814 DOI: 10.1159/000541919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/03/2024] [Indexed: 03/19/2025]
Abstract
Background Kidney disease has become a growing public health problem worldwide, and there is an urgent need to develop reliable models for investigating novel and effective treatment strategies. In recent years, kidney organoids, as novel models different from traditional two-dimensional cells and model animals, have attracted more and more attention. Current advances have allowed the generation of kidney organoids from the directed differentiation of induced pluripotent stem cells (iPSCs), which possess similar characteristics to embryonic stem cells, but bypass ethical constraints and have a wide range of sources. Summary Herein, the methods of generating renal organoids from iPSCs, the applications of iPSC-derived renal organoids in disease modeling, drug effectiveness detection, and regenerative medicine as well as the challenges were reviewed. Key Messages iPSC-derived renal organoids can be used to model kidney diseases and are great models for studying kidney injury and toxicity. Many efforts are needed to finally apply organoids into clinical application.
Collapse
Affiliation(s)
- Na Ning
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
- Fuwei Biotechnology (Shandong) Co., LTD, Jinan, China
| | - Zhiting Liu
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Fuwei Biotechnology (Shandong) Co., LTD, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Manskikh VN. Organ Frame Elements or Free Intercellular Gel-Like Matrix as Necessary Conditions for Building Organ Structures during Regeneration. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:269-278. [PMID: 38622095 DOI: 10.1134/s000629792402007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 04/17/2024]
Abstract
Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as "guide rails" for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free "morphogenetic space" containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a "morphogenetic space" could radically improve the results of organ regeneration using both local and exogenous stem cells.
Collapse
Affiliation(s)
- Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Mboni-Johnston IM, Kouidrat NMZ, Hirsch C, Weber AG, Meißner A, Adjaye J, Schupp N. Sensitivity of Human Induced Pluripotent Stem Cells and Thereof Differentiated Kidney Proximal Tubular Cells towards Selected Nephrotoxins. Int J Mol Sci 2023; 25:81. [PMID: 38203251 PMCID: PMC10779191 DOI: 10.3390/ijms25010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Proximal tubular epithelial cells (PTEC) are constantly exposed to potentially toxic metabolites and xenobiotics. The regenerative potential of the kidney enables the replacement of damaged cells either via the differentiation of stem cells or the re-acquisition of proliferative properties of the PTEC. Nevertheless, it is known that renal function declines, suggesting that the deteriorated cells are not replaced by fully functional cells. To understand the possible causes of this loss of kidney cell function, it is crucial to understand the role of toxins during the regeneration process. Therefore, we investigated the sensitivity and function of human induced pluripotent stem cells (hiPSC), hiPSC differentiating, and hiPSC differentiated into proximal tubular epithelial-like cells (PTELC) to known nephrotoxins. hiPSC were differentiated into PTELC, which exhibited similar morphology to PTEC, expressed prototypical PTEC markers, and were able to undergo albumin endocytosis. When treated with two nephrotoxins, hiPSC and differentiating hiPSC were more sensitive to cisplatin than differentiated PTELC, whereas all stages were equally sensitive to cyclosporin A. Both toxins also had an inhibitory effect on albumin uptake. Our results suggest a high sensitivity of differentiating cells towards toxins, which could have an unfavorable effect on regenerative processes. To study this, our model of hiPSC differentiating into PTELC appears suitable.
Collapse
Affiliation(s)
- Isaac Musong Mboni-Johnston
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Nazih Mohamed Zakari Kouidrat
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Cornelia Hirsch
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Andreas Georg Weber
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - Alexander Meißner
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany;
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty and University Hospital, University of Düsseldorf, 40225 Düsseldorf, Germany; (I.M.M.-J.); (N.M.Z.K.); (C.H.); (A.M.)
| |
Collapse
|
6
|
Susa K, Kobayashi K, Galichon P, Matsumoto T, Tamura A, Hiratsuka K, Gupta NR, Yazdi IK, Bonventre JV, Morizane R. ATP/ADP biosensor organoids for drug nephrotoxicity assessment. Front Cell Dev Biol 2023; 11:1138504. [PMID: 36936695 PMCID: PMC10017499 DOI: 10.3389/fcell.2023.1138504] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Drug nephrotoxicity is a common healthcare problem in hospitalized patients and a major limitation during drug development. Multi-segmented kidney organoids derived from human pluripotent stem cells may complement traditional cell culture and animal experiments for nephrotoxicity assessment. Here we evaluate the capability of kidney organoids to investigate drug toxicity in vitro. Kidney organoids express renal drug transporters, OAT1, OAT3, and OCT2, while a human proximal tubular cell line shows the absence of OAT1 and OAT3. Tenofovir and aristolochic acid (AA) induce proximal tubular injury in organoids which is ameliorated by an OAT inhibitor, probenecid, without damage to podocytes. Similarly, cisplatin causes proximal tubular damage that can be relieved by an OCT inhibitor, cimetidine, collectively suggesting the presence of functional OATs and OCTs in organoid proximal tubules. Puromycin aminonucleoside (PAN) induced segment-specific injury in glomerular podocytes in kidney organoids in the absence of tubular injury. Reporter organoids were generated with an ATP/ADP biosensor, which may be applicable to high-throughput screening in the future. In conclusion, the kidney organoid is a useful tool for toxicity assessment in the multicellular context and may contribute to nephrotoxicity assessment during drug development.
Collapse
Affiliation(s)
- Koichiro Susa
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Kobayashi
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Pierre Galichon
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Takuya Matsumoto
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Akitoshi Tamura
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Ken Hiratsuka
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Navin R. Gupta
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Iman K. Yazdi
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Sciences &Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph V. Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Sciences &Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ryuji Morizane
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
7
|
Miranda CC, Gomes MR, Moço M, Cabral JMS, Ferreira FC, Sanjuan-Alberte P. A Concise Review on Electrospun Scaffolds for Kidney Tissue Engineering. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100554. [PMID: 36290522 PMCID: PMC9598616 DOI: 10.3390/bioengineering9100554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease is one of the deadliest diseases globally and treatment methods are still insufficient, relying mostly on transplantation and dialysis. Engineering of kidney tissues in vitro from induced pluripotent stem cells (iPSCs) could provide a solution to this medical need by restoring the function of damaged kidneys. However, implementation of such approaches is still challenging to achieve due to the complexity of mature kidneys in vivo. Several strategies have been defined to obtain kidney progenitor endothelial and epithelial cells that could form nephrons and proximal tube cells, but these lack tissue maturity and vascularisation to be further implemented. Electrospinning is a technique that has shown promise in the development of physiological microenvironments of several tissues and could be applied in the engineering of kidney tissues. Synthetic polymers such as polycaprolactone, polylactic acid, and poly(vinyl alcohol) have been explored in the manufacturing of fibres that align and promote the proliferation and cell-to-cell interactions of kidney cells. Natural polymers including silk fibroin and decellularised extracellular matrix have also been explored alone and in combination with synthetic polymers promoting the differentiation of podocytes and tubular-specific cells. Despite these attempts, further work is still required to advance the applications of electrospun fibres in kidney tissue engineering and explore this technique in combination with other manufacturing methods such as bioprinting to develop more organised, mature and reproducible kidney organoids.
Collapse
Affiliation(s)
- Cláudia C. Miranda
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (C.C.M.); (P.S.-A.)
| | - Mariana Ramalho Gomes
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mariana Moço
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (C.C.M.); (P.S.-A.)
| |
Collapse
|
8
|
Nishiya Y, Kawaguchi K, Kudo K, Kawaguchi T, Obayashi J, Tanaka K, Ohyama K, Furuta S, Seki Y, Koike J, Pringle KC, Kitagawa H. Factors influencing the development of Multicystic Dysplastic Kidney (MCDK) following urinary tract obstruction in the fetal lamb. Pediatr Surg Int 2022; 38:913-918. [PMID: 35394167 DOI: 10.1007/s00383-022-05116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Creating obstructive uropathy (OU) during glomerulogenesis in the fetal lamb results in multicystic dysplastic kidney (MCDK) at term. We explored this using immunohistochemical techniques. METHOD OU was created in fetal lambs at 60-day gestation, ligating the urethra and urachus. The kidneys of MCDK lambs, 60-day gestation fetal lambs, full-term lamb (145 days), term sham-operated lambs, and adult ewes were evaluated by HE staining, and immunohistochemistry with paired box genes 2 (PAX2) and CD10. RESULTS Multiple cysts were found in the MCDK model. CD10 was expressed in proximal tubular epithelial cells, glomerular epithelial cells, and medullary stromal cells in the kidneys of 60-day gestation fetal lambs and full-term lambs and adult ewes. PAX2 expression was found in ureteric buds, C- and S-shaped bodies, epithelial cells of collecting ducts, and Bowman's capsule of fetal kidneys at 60-day gestation, but only in the collecting ducts of full-term fetal lambs and adult ewes. Both CD10 and PAX2 were expressed in the cystic epithelial cells of the MCDK model. DISCUSSION PAX2 expression in cystic epithelial cells suggests that cyst formation is associated with disturbed down-regulation of PAX2 in the nephrogenic zone epithelial cells during the renal development in the OU model.
Collapse
Affiliation(s)
- Yuri Nishiya
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kohei Kawaguchi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kosuke Kudo
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Takuya Kawaguchi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Juma Obayashi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kunihide Tanaka
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kei Ohyama
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Shigeyuki Furuta
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Yasuji Seki
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Junki Koike
- Department of Pathology, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511
| | - Kevin C Pringle
- Department of Obstetrics and Gynecology, University of Otago, Lambton Centre, 117 Lambton Quay, Wellington Central, Wellington, 6011, New Zealand
| | - Hiroaki Kitagawa
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan, 216-8511.
| |
Collapse
|
9
|
Nishiya Y, Kawaguchi K, Kudo K, Kawaguchi T, Obayashi J, Tanaka K, Ohyama K, Nagae H, Furuta S, Seki Y, Koike J, Pringle KC, Kitagawa H. The Expression of Transcription Factors in Fetal Lamb Kidney. J Dev Biol 2021; 9:jdb9020022. [PMID: 34205452 PMCID: PMC8293116 DOI: 10.3390/jdb9020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Renal development involves frequent expression and loss of transcription factors, resulting in the activation of genes. Wilms’ tumor 1 (WT1), hepatocyte nuclear factor-1-beta (HNF1β), and paired box genes 2 and 8 (Pax2 and Pax8) play an important role in renal development. With this in vivo study, we examined the period and location of expression of these factors in renal development. (2) Methods: Fetal lamb kidneys (50 days from gestation to term) and adult ewe kidneys were evaluated by hematoxylin and eosin staining. Serial sections were subjected to immunohistochemistry for WT1, HNF1β, Pax2, and Pax8. (3) Results: Pax2, Pax8, and HNF1β expression was observed in the ureteric bud and collecting duct epithelial cells. We observed expression of WT1 alone in metanephric mesenchymal cells, glomerular epithelial cells, and interstitial cells in the medullary rays and Pax8 and HNF1β expression in tubular epithelial cells. WT1 was highly expressed in cells more proximal to the medulla in renal vesicles and in C- and S-shaped bodies. Pax2 was expressed in the middle and peripheral regions, and HNF1β in cells in the region in the middle of these. (4) Conclusions: WT1 is involved in nephron development. Pax2, Pax8, and HNF1β are involved in nephron maturation and the formation of peripheral collecting ducts from the Wolffian duct.
Collapse
Affiliation(s)
- Yuri Nishiya
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Kohei Kawaguchi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Kosuke Kudo
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Takuya Kawaguchi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Juma Obayashi
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Kunihide Tanaka
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Kei Ohyama
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Hideki Nagae
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Shigeyuki Furuta
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Yasuji Seki
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
| | - Junki Koike
- Department of Pathology, School of Medicine, St. Marianna University, Kawasaki 216-8511, Kanagawa, Japan;
| | - Kevin C. Pringle
- Department of Obstetrics and Gynecology, School of Medicine & Health Science, University of Otago, North Dunedin, Dunedin 9016, New Zealand;
| | - Hiroaki Kitagawa
- Division of Pediatric Surgery, School of Medicine, St. Marianna University, 2-16-1, Sugao, Kawasaki 216-8511, Kanagawa, Japan; (Y.N.); (K.K.); (K.K.); (T.K.); (J.O.); (K.T.); (K.O.); (H.N.); (S.F.); (Y.S.)
- Correspondence: ; Tel.: +81-44-977-8111
| |
Collapse
|
10
|
Harari-Steinberg O, Omer D, Gnatek Y, Pleniceanu O, Goldberg S, Cohen-Zontag O, Pri-Chen S, Kanter I, Ben Haim N, Becker E, Ankawa R, Fuchs Y, Kalisky T, Dotan Z, Dekel B. Ex Vivo Expanded 3D Human Kidney Spheres Engraft Long Term and Repair Chronic Renal Injury in Mice. Cell Rep 2021; 30:852-869.e4. [PMID: 31968258 DOI: 10.1016/j.celrep.2019.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.
Collapse
Affiliation(s)
- Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Cohen-Zontag
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sara Pri-Chen
- The Maurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center, Ramat-Gan, Israel
| | - Itamar Kanter
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben Haim
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Eli Becker
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zohar Dotan
- Department of Urology, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Sara Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Pediatric Research Center for Genetics, Development and Environment, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Nephrology, Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
11
|
Ding B, Sun G, Liu S, Peng E, Wan M, Chen L, Jackson J, Atala A. Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro. Cell Transplant 2021; 29:963689719897066. [PMID: 32166969 PMCID: PMC7504083 DOI: 10.1177/0963689719897066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The kidney function of patients with chronic kidney disease (CKD) is impaired
irreversibly. Organ transplantation is the only treatment to restore kidney function in
CKD patients. The assessment of new potential therapeutic procedures relies heavily on
experimental animal models, but it is limited by its human predictive capacity. In
addition, the frequently used two-dimensional in vitro human renal cell
models cannot replicate all the features of the in vivo situation. In this study, we
developed a three-dimensional (3D) in vitro human renal organoid model
from whole kidney cells as a promising drug screening tool. At present, the renal tissue
generated from human pluripotent stem cells (hPSCs) exhibits intrinsic tumorigenicity
properties. Here we first developed a 3D renal organoid culture system that originated
from adult differentiated cells without gene modification. Renal organoids composed of
multiple cell types were created under optimal experimental conditions and evaluated for
morphology, viability and erythropoietin production. As a novel screening tool for renal
toxicity, 3D organoids were exposed to three widely used drugs: aspirin, penicillin G and
cisplatin. The study results showed this 3D renal organoid model can be used as a drug
screening tool, a new in vitro 3D human kidney model, and provide hope
for potential regenerative therapies for CKD.
Collapse
Affiliation(s)
- Beichen Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China.,Department of Urinary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, HLJ, China
| | - Guoliang Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China
| | - Shiliang Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China
| | - Ejun Peng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China
| | - Meimei Wan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Liang Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HB, China.,Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Mihevc M, Petreski T, Maver U, Bevc S. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 2020; 47:9865-9882. [PMID: 33170426 DOI: 10.1007/s11033-020-05977-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The kidney is a complex organ, comprised primarily of glomerular, tubular, mesangial, and endothelial cells, and podocytes. The fact that renal cells are terminally differentiated at 34 weeks of gestation is the main obstacle in regeneration and treatment of acute kidney injury or chronic kidney disease. Furthermore, the number of chronic kidney disease patients is ever increasing and with it the medical community should aim to improve existing and develop new methods of renal replacement therapy. On the other hand, as polypharmacy is on the rise, thought should be given into developing new ways of testing drug safety. A possible way to tackle these issues is with isolation and culture of renal cells. Several protocols are currently described to isolate the desired cells, of which the most isolated are the proximal tubular epithelial cells. They play a major role in water homeostasis, acid-base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When exposed to ischemic, toxic, septic, or obstructive conditions their death results in what we clinically perceive as acute kidney injury. Additionally, due to renal cells' limited regenerative potential, the profibrotic environment inevitably leads to chronic kidney disease. In this review we will focus on human proximal tubular epithelial cells. We will cover human kidney culture models, cell sources, isolation, culture, immortalization, and characterization subdivided into morphological, phenotypical, and functional characterization.
Collapse
Affiliation(s)
- Matic Mihevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
13
|
Gupta✉ N, Dilmen E, Morizane R. 3D kidney organoids for bench-to-bedside translation. J Mol Med (Berl) 2020; 99:477-487. [PMID: 33034708 PMCID: PMC8026465 DOI: 10.1007/s00109-020-01983-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022]
Abstract
The kidneys are essential organs that filter the blood, removing urinary waste while maintaining fluid and electrolyte homeostasis. Current conventional research models such as static cell cultures and animal models are insufficient to grasp the complex human in vivo situation or lack translational value. To accelerate kidney research, novel research tools are required. Recent developments have allowed the directed differentiation of induced pluripotent stem cells to generate kidney organoids. Kidney organoids resemble the human kidney in vitro and can be applied in regenerative medicine and as developmental, toxicity, and disease models. Although current studies have shown great promise, challenges remain including the immaturity, limited reproducibility, and lack of perfusable vascular and collecting duct systems. This review gives an overview of our current understanding of nephrogenesis that enabled the generation of kidney organoids. Next, the potential applications of kidney organoids are discussed followed by future perspectives. This review proposes that advancement in kidney organoid research will be facilitated through our increasing knowledge on nephrogenesis and combining promising techniques such as organ-on-a-chip models.
Collapse
Affiliation(s)
- Navin Gupta✉
- Nephrology Division, Massachusetts General Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
- The Wyss Institute, Harvard University, Cambridge, MA USA
| | - Emre Dilmen
- Nephrology Division, Massachusetts General Hospital, Boston, MA USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA USA
- Department of Medicine, Harvard Medical School, Boston, MA USA
- The Wyss Institute, Harvard University, Cambridge, MA USA
- Harvard Stem Cell Institute, Cambridge, MA USA
| |
Collapse
|
14
|
Sallam M, Palakkan AA, Mills CG, Tarnick J, Elhendawi M, Marson L, Davies JA. Differentiation of a Contractile, Ureter-Like Tissue, from Embryonic Stem Cell-Derived Ureteric Bud and Ex Fetu Mesenchyme. J Am Soc Nephrol 2020; 31:2253-2262. [PMID: 32826325 DOI: 10.1681/asn.2019101075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is intense interest in replacing kidneys from stem cells. It is now possible to produce, from embryonic or induced pluripotent stem cells, kidney organoids that represent immature kidneys and display some physiologic functions. However, current techniques have not yet resulted in renal tissue with a ureter, which would be needed for engineered kidneys to be clinically useful. METHODS We used a published sequence of growth factors and drugs to induce mouse embryonic stem cells to differentiate into ureteric bud tissue. We characterized isolated engineered ureteric buds differentiated from embryonic stem cells in three-dimensional culture and grafted them into ex fetu mouse kidney rudiments. RESULTS Engineered ureteric buds branched in three-dimensional culture and expressed Hoxb7, a transcription factor that is part of a developmental regulatory system and a ureteric bud marker. When grafted into the cortex of ex fetu kidney rudiments, engineered ureteric buds branched and induced nephron formation; when grafted into peri-Wolffian mesenchyme, still attached to a kidney rudiment or in isolation, they did not branch but instead differentiated into multilayer ureter-like epithelia displaying robust expression of the urothelial marker uroplakin. This engineered ureteric bud tissue also organized the mesenchyme into smooth muscle that spontaneously contracted, with a period a little slower than that of natural ureteric peristalsis. CONCLUSIONS Mouse embryonic stem cells can be differentiated into ureteric bud cells. Grafting those UB-like structures into peri-Wolffian mesenchyme of cultured kidney rudiments can induce production of urothelium and organize the mesenchyme to produce rhythmically contracting smooth muscle layers. This development may represent a significant step toward the goal of renal regeneration.
Collapse
Affiliation(s)
- May Sallam
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK .,Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Anwar A Palakkan
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | | | - Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | - Mona Elhendawi
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lorna Marson
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jamie A Davies
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Urine-Derived Induced Pluripotent Stem Cells in Cardiovascular Disease. Cardiol Res Pract 2020; 2020:3563519. [PMID: 32377426 PMCID: PMC7199581 DOI: 10.1155/2020/3563519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that stem cells are equipped with the potential to differentiate into various types of cells, including cardiomyocytes. Meanwhile, stem cells are highly promising in curing cardiovascular diseases. However, owing to the ethical challenges posed in stem cell acquisition and the complexity and invasive nature of the method, large-scale expansions and clinical applications in the laboratory have been limited. The current generation of cardiomyocytes is available from diverse sources; urine is one of the promising sources among them. Although advanced research was established in the generation of human urine cells as cardiomyocytes, the reprogramming of urine cells to cardiomyocytes remains unclear. In this context, it is necessary to develop a minimally invasive method to create induced pluripotent stem cells (iPSCs). This review focuses on the latest advances in research on urine-derived iPSCs and their application mechanisms in cardiovascular diseases.
Collapse
|
16
|
Al-Hasani K, Khurana I, Farhat T, Eid A, El-Osta A. Epigenetics of Diabetic Nephropathy: From Biology to Therapeutics. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/19-00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a lethal microvascular complication associated with Type 1 and Type 2 diabetes mellitus, and is the leading single cause of end-stage renal disease. Although genetic influences are important, epigenetic mechanisms have been implicated in several aspects of the disease. The current therapeutic methods to treat DN are limited to slowing disease progression without repair and regeneration of the damaged nephrons. Replacing dying or diseased kidney cells with new nephrons is an attractive strategy. This review considers the genetic and epigenetic control of nephrogenesis, together with the epigenetic mechanisms that accompany kidney development and recent advances in induced reprogramming and kidney cell regeneration in the context of DN.
Collapse
Affiliation(s)
- Keith Al-Hasani
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia
| | - Ishant Khurana
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia
| | - Theresa Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assam El-Osta
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Victoria, Australia; Faculty of Health, Department of Technology, Biomedical Laboratory Science, University College Copenhagen, Copenhagen, Denmark; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| |
Collapse
|
17
|
Abstract
Purpose of review Human kidney development and the mechanisms of many kidney diseases are incompletely understood partly due to the lack of appropriate models. Kidney organoids derived from human pluripotent stem cells (hPSCs) are a new and rapidly developing in-vitro system covering the window of early nephrogenesis and having the capacity for disease modelling. The application of global analytic tools such as RNA sequencing and proteomics is providing new and unexpected insights into kidney organoids with relevance for development and disease. In this review, we focus on the most significant advances in the field over the last 2 years. Recent findings There have been several protocol modifications for the differentiation of hPSCs into kidney organoids, including the additional step of implantation into mice. These changes have improved the vascularization and maturity of the major cell types in the organoids, increased the production scale, and reduced the cost and labour intensity of culturing organoids. Single-cell RNA sequencing and global proteomics of kidney organoids have provided important insights into the multiple cell populations, origin of cells, and regulatory relationships between genes. There has been an increase in research using patient-derived induced pluripotent stem cells (iPSCs), or combining gene editing with iPSC-derived kidney organoids as a novel disease-modelling platform for improving our understanding of disease mechanisms, drug testing and discovery, and the potential for personalized therapy. Finally, there has been progress in culturing hPSCs-derived kidney cells in microfluidic kidney-on-a-chip devices and this may provide a means of further improving the maturity of kidney organoids. Summary The review summarizes the latest progress on kidney organoids including differentiation protocols, analysis tools, and applications. Despite some limitations, hPSC-derived kidney organoids are authentic and practical models for investigating kidney development and disease and progressing understanding about tissue regeneration, drug screening, and disease modelling.
Collapse
|
18
|
Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential. Curr Top Dev Biol 2020; 138:175-208. [PMID: 32220297 DOI: 10.1016/bs.ctdb.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The pharyngeal apparatus, a transient embryological structure, includes diverse cells from all three germ layers that ultimately contribute to a variety of adult tissues. In particular, pharyngeal endoderm produces cells of the inner ear, palatine tonsils, the thymus, parathyroid and thyroid glands, and ultimobranchial bodies. Each of these structures and organs contribute to vital human physiological processes, including central immune tolerance (thymus) and metabolic homeostasis (parathyroid and thyroid glands, and ultimobranchial bodies). Thus, improper development or damage to pharyngeal endoderm derivatives leads to complicated and severe human maladies, such as autoimmunity, immunodeficiency, hypothyroidism, and/or hypoparathyroidism. To study and treat such diseases, we can utilize human pluripotent stem cells (hPSCs), which differentiate into functionally mature cells in vitro given the proper developmental signals. Here, we discuss current efforts regarding the directed differentiation of hPSCs toward pharyngeal endoderm derivatives. We further discuss model system and therapeutic applications of pharyngeal endoderm cell types produced from hPSCs. Finally, we provide suggestions for improving hPSC differentiation approaches to pharyngeal endoderm derivatives with emphasis on current single cell-omics and 3D culture system technologies.
Collapse
|
19
|
Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, Ramezani M, Hamblin MR. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 2020; 321:442-462. [PMID: 32067996 DOI: 10.1016/j.jconrel.2020.02.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
The application of nanotechnology in medicine has the potential to make a great impact on human health, ranging from prevention to diagnosis and treatment of disease. The kidneys are the main organ of the human urinary system, responsible for filtering the blood, and concentrating metabolic waste into urine by means of the renal glomerulus. The glomerular filtration apparatus presents a barrier against therapeutic agents based on charge and/or molecular size. Therefore, drug delivery to the kidneys faces significant difficulties resulting in treatment failure in several renal disorders. Accordingly, different strategies have recently being explored for enhancing the delivery of therapeutic agents across the filtration barrier of the glomerulus. Nanosystems with different physicochemical properties, including size, shape, surface, charge, and possessing biological features such as high cellular internalization, low cytotoxicity, controllable pharmacokinetics and biodistribution, have shown promising results for renal therapy. Different types of nanoparticles (NPs) have been used to deliver drugs to the kidney. In this review, we discuss nanotechnology-based drug delivery approaches for acute kidney injury, chronic kidney disease, renal fibrosis, renovascular hypertension and kidney cancer.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fahimeh Charbgoo
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Amani
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
20
|
Kishi S, Brooks CR, Taguchi K, Ichimura T, Mori Y, Akinfolarin A, Gupta N, Galichon P, Elias BC, Suzuki T, Wang Q, Gewin L, Morizane R, Bonventre JV. Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J Clin Invest 2019; 129:4797-4816. [PMID: 31589169 PMCID: PMC6819104 DOI: 10.1172/jci122313] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage. ATR was upregulated in approximately 70% of Lotus tetragonolobus lectin-positive (LTL+) PT cells in cisplatin-exposed human kidney organoids. Inhibition of ATR resulted in greater PT cell injury in organoids and cultured PT cells. PT-specific Atr-knockout (ATRRPTC-/-) mice exhibited greater kidney function impairment, DNA damage, and fibrosis than did WT mice in response to kidney injury induced by either cisplatin, bilateral ischemia-reperfusion, or unilateral ureteral obstruction. ATRRPTC-/- mice had more cells in the G2/M phase after injury than did WT mice after similar treatments. In conclusion, PT ATR activation is a key component of the DDR, which confers a protective effect mitigating the maladaptive repair and consequent fibrosis that follow kidney injury.
Collapse
Affiliation(s)
- Seiji Kishi
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Nephrology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
- Department of General Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Craig R. Brooks
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kensei Taguchi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Yutaro Mori
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Akinwande Akinfolarin
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Navin Gupta
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Pierre Galichon
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, INSERM UMR S1155, AP-HP, Hôpital Tenon, Paris, France
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomohisa Suzuki
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Qian Wang
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leslie Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryuji Morizane
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Joseph V. Bonventre
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Kim AD, Lake BB, Chen S, Wu Y, Guo J, Parvez RK, Tran T, Thornton ME, Grubbs B, McMahon JA, Zhang K, McMahon AP. Cellular Recruitment by Podocyte-Derived Pro-migratory Factors in Assembly of the Human Renal Filter. iScience 2019; 20:402-414. [PMID: 31622881 PMCID: PMC6817668 DOI: 10.1016/j.isci.2019.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of kidney disease-causing genes and pathology resulting from systemic diseases highlight the importance of the kidney's filtering system, the renal corpuscles. To elucidate the developmental processes that establish the renal corpuscle, we performed single-nucleus droplet-based sequencing of the human fetal kidney. This enabled the identification of nephron, interstitial, and vascular cell types that together generate the renal corpuscles. Trajectory analysis identified transient developmental gene expression, predicting precursors or mature podocytes express FBLN2, BMP4, or NTN4, in conjunction with recruitment, differentiation, and modeling of vascular and mesangial cell types into a functional filter. In vitro studies provide evidence that these factors exhibit angiogenic or mesangial recruiting and inductive properties consistent with a key organizing role for podocyte precursors in kidney development. Together these studies define a spatiotemporal developmental program for the primary filtration unit of the human kidney and provide novel insights into cell interactions regulating co-assembly of constituent cell types.
Collapse
Affiliation(s)
- Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Blue B Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Song Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Faraj R, Irizarry-Alfonzo A, Puri P. Molecular characterization of nephron progenitors and their early epithelial derivative structures in the nephrogenic zone of the canine fetal kidney. Eur J Histochem 2019; 63. [PMID: 31544449 PMCID: PMC6763752 DOI: 10.4081/ejh.2019.3049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Nephron progenitors (NPs) and nephrogenesis have been extensively studied in mice and humans and have provided insights into the mechanisms of renal development, disease and possibility of NP-based therapies. However, molecular features of NPs and their derivatives in the canine fetal kidney (CFK) remain unknown. This study was focused to characterize the expression of potential markers of canine NPs and their derivatives by immuno-fluorescence and western blot analysis. Transcription factors (TFs) SIX1 and SIX2, well-characterized human NP markers, were expressed in NPs surrounding the ureteric bud in the CFK. Canine NPs also expressed ITGA8 and NCAM1, surface markers previously used to isolate NPs from the mouse and human fetal kidneys. TF, PAX2 was detected in the ureteric bud, NPs and their derivative structures such as renal vesicle and S-shaped body. This study highlights the similarities in dog, mouse and human renal development and characterizes markers to identify canine NPs and their derivatives. These results will facilitate the isolation of canine NPs and their functional characterization to develop NP-based therapies for canine renal diseases.
Collapse
Affiliation(s)
- Rawah Faraj
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee.
| | | | | |
Collapse
|
23
|
Sthijns MMJPE, LaPointe VLS, van Blitterswijk CA. Building Complex Life Through Self-Organization. Tissue Eng Part A 2019; 25:1341-1346. [PMID: 31411111 DOI: 10.1089/ten.tea.2019.0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells are inherently conferred with the ability to self-organize into the tissues and organs comprising the human body. Self-organization can be recapitulated in vitro and recent advances in the organoid field are just one example of how we can generate small functioning elements of organs. Tissue engineers can benefit from the power of self-organization and should consider how they can harness and enhance the process with their constructs. For example, aggregates of stem cells and tissue-specific cells benefit from the input of carefully selected biomolecules to guide their differentiation toward a mature phenotype. This can be further enhanced by the use of technologies to provide a physiological microenvironment for self-organization, enhance the size of the constructs, and enable the long-term culture of self-organized structures. Of importance, conducting self-organization should be limited to fine-tuning and should avoid over-engineering that could counteract the power of inherent cellular self-organization. Impact Statement Self-organization is a powerful innate feature of cells that can be fine-tuned but not over-engineered to create new tissues and organs.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
24
|
Dapkunas A, Rantanen V, Gui Y, Lalowski M, Sainio K, Kuure S, Sariola H. Simple 3D culture of dissociated kidney mesenchyme mimics nephron progenitor niche and facilitates nephrogenesis Wnt-independently. Sci Rep 2019; 9:13433. [PMID: 31530822 PMCID: PMC6748995 DOI: 10.1038/s41598-019-49526-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Kidney mesenchyme (KM) and nephron progenitors (NPs) depend on WNT activity, and their culture in vitro requires extensive repertoire of recombinant proteins and chemicals. Here we established a robust, simple culture of mouse KM using a combination of 3D Matrigel and growth media supplemented with Fibroblast Growth Factor 2 (FGF2) and Src inhibitor PP2. This allows dissociated KM to spontaneously self-organize into spheres. To reassess the requirement of WNT activity in KM self-organization and NPs maintenance, cells were cultured with short pulse of high-dose GSK3β inhibitor BIO, on a constant low-dose or without BIO. Robust proliferation at 48 hours and differentiation at 1 week were observed in cultures with high BIO pulse. Importantly, dissociated KM cultured without BIO, similarly to that exposed to constant low dose of BIO, maintained NPs up to one week and spontaneously differentiated into nephron tubules at 3 weeks of culture. Our results show that KM is maintained and induced to differentiate in a simple culture system. They also imply that GSK3β/WNT-independent pathways contribute to the maintenance and induction of mouse KM. The robust and easy 3D culture enables further characterization of NPs, and may facilitate disease modeling when applied to human cells.
Collapse
Affiliation(s)
- Arvydas Dapkunas
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland. .,Meilahti Clinical Proteomics Core Facility, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Ville Rantanen
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yujuan Gui
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Maciej Lalowski
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,Meilahti Clinical Proteomics Core Facility, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kirsi Sainio
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hannu Sariola
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
25
|
Greuel S, Freyer N, Hanci G, Böhme M, Miki T, Werner J, Schubert F, Sittinger M, Zeilinger K, Mandenius CF. Online measurement of oxygen enables continuous noninvasive evaluation of human-induced pluripotent stem cell (hiPSC) culture in a perfused 3D hollow-fiber bioreactor. J Tissue Eng Regen Med 2019; 13:1203-1216. [PMID: 31034735 DOI: 10.1002/term.2871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
For clinical and/or pharmaceutical use of human-induced pluripotent stem cells (hiPSCs), large cell quantities of high quality are demanded. Therefore, we combined the expansion of hiPSCs in closed, perfusion-based 3D bioreactors with noninvasive online monitoring of oxygen as culture control mechanism. Bioreactors with a cell compartment volume of 3 or 17 ml were inoculated with either 10 × 106 or 50 × 106 cells, and cells were expanded over 15 days with online oxygen and offline glucose and lactate measurements being performed. The CellTiter-Blue® Assay was performed at the end of the bioreactor experiments for indirect cell quantification. Model simulations enabled an estimation of cell numbers based on kinetic equations and experimental data during the 15-day bioreactor cultures. Calculated oxygen uptake rates (OUR), glucose consumption rates (GCR), and lactate production rates (LPR) revealed a highly significant correlation (p < 0.0001). Oxygen consumption, which was measured at the beginning and the end of the experiment, showed a strong culture growth in line with the OUR and GCR data. Furthermore, the yield coefficient of lactate from glucose and the OUR to GCR ratio revealed a shift from nonoxidative to oxidative metabolism. The presented results indicate that oxygen is equally as applicable as parameter for hiPSC expansion as glucose while providing an accurate real-time impression of hiPSC culture development. Additionally, oxygen measurements inform about the metabolic state of the cells. Thus, the use of oxygen online monitoring for culture control facilitates the translation of hiPSC use to the clinical setting.
Collapse
Affiliation(s)
- Selina Greuel
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Freyer
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Güngör Hanci
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mike Böhme
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael Sittinger
- Tissue Engineering, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
26
|
Melis N, Thuillier R, Steichen C, Giraud S, Sauvageon Y, Kaminski J, Pelé T, Badet L, Richer JP, Barrera-Chimal J, Jaisser F, Tauc M, Hauet T. Emerging therapeutic strategies for transplantation-induced acute kidney injury: protecting the organelles and the vascular bed. Expert Opin Ther Targets 2019; 23:495-509. [PMID: 31022355 DOI: 10.1080/14728222.2019.1609451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Renal ischemia-reperfusion injury (IRI) is a significant clinical challenge faced by clinicians in a broad variety of clinical settings such as perioperative and intensive care. Renal IRI induced acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and health-care costs. Areas covered: This paper focuses on the pathophysiology of transplantation-related AKI and recent findings on cellular stress responses at the intersection of 1. The Unfolded protein response; 2. Mitochondrial dysfunction; 3. The benefits of mineralocorticoid receptor antagonists. Lastly, perspectives are offered to the readers. Expert opinion: Renal IRI is caused by a sudden and temporary impairment of blood flow to the organ. Defining the underlying cellular cascades involved in IRI will assist us in the identification of novel interventional targets to attenuate IRI with the potential to improve transplantation outcomes. Targeting mitochondrial function and cellular bioenergetics upstream of cellular damage may offer several advantages compared to targeting downstream inflammatory and fibrosis processes. An improved understanding of the cellular pathophysiological mechanisms leading to kidney injury will hopefully offer improved targeted therapies to prevent and treat the injury in the future.
Collapse
Affiliation(s)
- Nicolas Melis
- a Laboratory of Cellular and Molecular Biology , Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Raphael Thuillier
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France
| | - Clara Steichen
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Sebastien Giraud
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France
| | - Yse Sauvageon
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Jacques Kaminski
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Thomas Pelé
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Lionel Badet
- f Faculté de Médecine , Université Claude Bernard Lyon 1 , Villeurbanne , France.,g Hospices Civiles de Lyon , Service d'urologie et de chirurgie de la transplantation , Lyon , France
| | - Jean Pierre Richer
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,h CHU de Poitiers , Service de chirurgie générale et endocrinienne , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France
| | - Jonatan Barrera-Chimal
- j Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Traslacional , Instituto de Investigaciones Biomédicas, UNAM and Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| | - Frédéric Jaisser
- k INSERM, UMRS 1138, Team 1 , Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris, Descartes University , Paris , France
| | - Michel Tauc
- l LP2M CNRS-UMR7370, LabEx ICST , Medical Faculty, Université Côte d'Azur , Nice , France
| | - Thierry Hauet
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France.,m IBiSA Plateforme 'plate-forme MOdélisation Préclinique - Innovation Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud , Surgères , France
| |
Collapse
|
27
|
Howden SE, Vanslambrouck JM, Wilson SB, Tan KS, Little MH. Reporter-based fate mapping in human kidney organoids confirms nephron lineage relationships and reveals synchronous nephron formation. EMBO Rep 2019; 20:embr.201847483. [PMID: 30858339 DOI: 10.15252/embr.201847483] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 01/15/2023] Open
Abstract
Nephron formation continues throughout kidney morphogenesis in both mice and humans. Lineage tracing studies in mice identified a self-renewing Six2-expressing nephron progenitor population able to give rise to the full complement of nephrons throughout kidney morphogenesis. To investigate the origin of nephrons within human pluripotent stem cell-derived kidney organoids, we performed a similar fate-mapping analysis of the SIX2-expressing lineage in induced pluripotent stem cell (iPSC)-derived kidney organoids to explore the feasibility of investigating lineage relationships in differentiating iPSCs in vitro Using CRISPR/Cas9 gene-edited lineage reporter lines, we show that SIX2-expressing cells give rise to nephron epithelial cell types but not to presumptive ureteric epithelium. The use of an inducible (CreERT2) line revealed a declining capacity for SIX2+ cells to contribute to nephron formation over time, but retention of nephron-forming capacity if provided an exogenous WNT signal. Hence, while human iPSC-derived kidney tissue appears to maintain lineage relationships previously identified in developing mouse kidney, unlike the developing kidney in vivo, kidney organoids lack a nephron progenitor niche capable of both self-renewal and ongoing nephrogenesis.
Collapse
Affiliation(s)
- Sara E Howden
- Murdoch Children's Research Institute, Parkville, Vic., Australia .,Department of Paediatrics, The University of Melbourne, Melbourne, Vic., Australia
| | - Jessica M Vanslambrouck
- Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Vic., Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Parkville, Vic., Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Parkville, Vic., Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Vic., Australia .,Department of Paediatrics, The University of Melbourne, Melbourne, Vic., Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
28
|
Hiratsuka K, Monkawa T, Akiyama T, Nakatake Y, Oda M, Goparaju SK, Kimura H, Chikazawa-Nohtomi N, Sato S, Ishiguro K, Yamaguchi S, Suzuki S, Morizane R, Ko SBH, Itoh H, Ko MSH. Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Sci Rep 2019; 9:913. [PMID: 30696889 PMCID: PMC6351687 DOI: 10.1038/s41598-018-37485-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
The derivation of kidney tissues from human pluripotent stem cells (hPSCs) and its application for replacement therapy in end-stage renal disease have been widely discussed. Here we report that consecutive transfections of two sets of synthetic mRNAs encoding transcription factors can induce rapid and efficient differentiation of hPSCs into kidney tissues, termed induced nephron-like organoids (iNephLOs). The first set - FIGLA, PITX2, ASCL1 and TFAP2C, differentiated hPSCs into SIX2+SALL1+ nephron progenitor cells with 92% efficiency within 2 days. Subsequently, the second set - HNF1A, GATA3, GATA1 and EMX2, differentiated these cells into PAX8+LHX1+ pretubular aggregates in another 2 days. Further culture in both 2-dimensional and 3-dimensional conditions produced iNephLOs containing cells characterized as podocytes, proximal tubules, and distal tubules in an additional 10 days. Global gene expression profiles showed similarities between iNephLOs and the human adult kidney, suggesting possible uses of iNephLOs as in vitro models for kidneys.
Collapse
Affiliation(s)
- Ken Hiratsuka
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Toshiaki Monkawa
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuhki Nakatake
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sravan Kumar Goparaju
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiromi Kimura
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Nana Chikazawa-Nohtomi
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Saeko Sato
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichiro Ishiguro
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shintaro Yamaguchi
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Sayuri Suzuki
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Morizane
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Nephrology, Endocrinology, and Metabolism, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
29
|
Wang T, Gao Y, Wang X, Shi Y, Xu J, Wu B, He J, Li Y. Calpain-10 drives podocyte apoptosis and renal injury in diabetic nephropathy. Diabetes Metab Syndr Obes 2019; 12:1811-1820. [PMID: 31571956 PMCID: PMC6750010 DOI: 10.2147/dmso.s217924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a progressive microvascular complication of diabetes mellitus (DM), driven largely by podocyte apoptosis. The cysteine protease Calpain 10 is known to augment apoptosis and necrosis, and is a potential therapeutic target in DN. METHODS Type 2 diabetes was induced in SD rats by high-fat diet (HFD) feeding and streptozotocin (STZ) injections, and simulated in vitro by culturing conditionally immortalized mouse podocytes in hyperlipidemic (PA, 100 μM) conditions. The rate of apoptosis in the renal tissues and cultured podocytes was determined by TUNEL assay. The expression of Calpain 10 and its biological effects were assayed by real-time PCR, Western blotting, immunofluorescence and electron microscopy. RESULTS Calpain 10 was up-regulated in the kidneys of DN rats, as well as immortalized mouse podocytes. High levels of Calpain 10 was associated with renal dysfunction and tissue destruction, and podocyte injury and apoptosis. Knockdown of Calpain 10 protected podocytes by decreasing apoptosis rate, and upregulated nephrin. CONCLUSION Calpain 10 is a pro-apoptotic factor in DN, and can be targeted for treating glomerular diseases.
Collapse
Affiliation(s)
- Tao Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
- Correspondence: Yanbin GaoSchool of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing100069, People’s Republic of ChinaTel +86 108 391 1720Email
| | - Xiaolei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yimin Shi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Jiayi Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Bingjie Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Jiaxin He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yimeng Li
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Zambon JP, Ko IK, Abolbashari M, Huling J, Clouse C, Kim TH, Smith C, Atala A, Yoo JJ. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater 2018; 75:226-234. [PMID: 29883813 DOI: 10.1016/j.actbio.2018.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
Kidney transplantation is currently the only definitive solution for the treatment of end-stage renal disease (ESRD), however transplantation is severely limited by the shortage of available donor kidneys. Recent progress in whole organ engineering based on decellularization/recellularization techniques has enabled pre-clinical in vivo studies using small animal models; however, these in vivo studies have been limited to short-term assessments. We previously developed a decellularization system that effectively removes cellular components from porcine kidneys. While functional re-endothelialization on the porcine whole kidney scaffold was able to improve vascular patency, as compared to the kidney scaffold only, the duration of patency lasted only a few hours. In this study, we hypothesized that significant damage in the microvasculatures within the kidney scaffold resulted in the cessation of blood flow, and that thorough investigation is necessary to accurately evaluate the vascular integrity of the kidney scaffolds. Two decellularization protocols [sodium dodecyl sulfate (SDS) with DNase (SDS + DNase) or Triton X-100 with SDS (TRX + SDS)] were used to evaluate and optimize the levels of vascular integrity within the kidney scaffold. Results from vascular analysis studies using vascular corrosion casting and angiograms demonstrated that the TRX + SDS method was able to better maintain intact and functional microvascular architectures such as glomeruli within the acellular matrices than that by the SDS + DNase treatment. Importantly, in vitro blood perfusion of the re-endothelialized kidney construct revealed improved vascular function of the scaffold by TRX + SDS treatment compared with the SDS + DNase. Our results suggest that the optimized TRX + SDS decellularization method preserves kidney-specific microvasculatures and may contribute to long-term vascular patency following implantation. STATEMENT OF SIGNIFICANCE Kidney transplantation is the only curative therapy for patients with end-stage renal disease (ESRD). However, in the United States, the supply of donor kidneys meets less than one-fifth of the demand; and those patients that receive a donor kidney need life-long immunosuppressive therapy to avoid organ rejection. In the last two decades, regenerative medicine and tissue engineering have emerged as an attractive alternative to overcome these limitations. In 2013, Song et al. published the first experimental orthotopic transplantation of a bioengineering kidney in rodents. In this study, they demonstrated evidences of kidney tissue regeneration and partial function restoration. Despite these initial promising results, there are still many challenges to achieve long-term blood perfusion without graft thrombosis. In this paper, we demonstrated that perfusion of detergents through the renal artery of porcine kidneys damages the glomeruli microarchitecture as well as peritubular capillaries. Modifying dynamic parameters such as flow rate, detergent concentration, and decellularization time, we were able to establish an optimized decellularization protocol with no evidences of disruption of glomeruli microarchitecture. As a proof of concept, we recellularized the kidney scaffolds with endothelial cells and in vitro perfused whole porcine blood successfully for 24 h with no evidences of thrombosis.
Collapse
|
31
|
Vigneau C, Guebre-Egziabher F. [The future of kidney failure treatments]. SOINS; LA REVUE DE RÉFÉRENCE INFIRMIÈRE 2018; 63:49-51. [PMID: 29958584 DOI: 10.1016/j.soin.2018.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The future of nephrology lies in the miniaturisation of renal replacement techniques, the development of the use of stem cells and xenotransplants. Moreover, medicine must be personalised, from screening and throughout the care pathway of the patient with chronic kidney failure. Thereby, the risk of morbidity can be reduced and the quality of life improved, with the help of connected tools. The role of the patients themselves and all healthcare professionals is essential.
Collapse
Affiliation(s)
- Cécile Vigneau
- Service de néphrologie, CHU Pontchaillou, 2, rue Henri-Le Guilloux, 35033 Rennes, France.
| | | |
Collapse
|
32
|
Gomes SA, Hare JM, Rangel EB. Kidney-Derived c-Kit + Cells Possess Regenerative Potential. Stem Cells Transl Med 2018; 7:317-324. [PMID: 29575816 PMCID: PMC5866938 DOI: 10.1002/sctm.17-0232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 01/14/2018] [Indexed: 12/27/2022] Open
Abstract
Kidney-derived c-Kit+ cells exhibit progenitor/stem cell properties in vitro (self-renewal capacity, clonogenicity, and multipotentiality). These cells can regenerate epithelial tubular cells following ischemia-reperfusion injury and accelerate foot processes effacement reversal in a model of acute proteinuria in rats. Several mechanisms are involved in kidney regeneration by kidney-derived c-Kit+ cells, including cell engraftment and differentiation into renal-like structures, such as tubules, vessels, and podocytes. Moreover, paracrine mechanisms could also account for kidney regeneration, either by stimulating proliferation of surviving cells or modulating autophagy and podocyte cytoskeleton rearrangement through mTOR-Raptor and -Rictor signaling, which ultimately lead to morphological and functional improvement. To gain insights into the functional properties of c-Kit+ cells during kidney development, homeostasis, and disease, studies on lineage tracing using transgenic mice will unveil their fate. The results obtained from these studies will set the basis for establishing further investigation on the therapeutic potential of c-Kit+ cells for treatment of kidney disease in preclinical and clinical studies. Stem Cells Translational Medicine 2018;7:317-324.
Collapse
Affiliation(s)
- Samirah A. Gomes
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal DivisionUniversity of São PauloSão PauloSão PauloBrazil
| | - Joshua M. Hare
- Interdisciplinary Stem Cell InstituteLeonard M Miller School of Medicine, University of MiamiMiamiFloridaUSA
- Department of Molecular and Cellular PharmacologyLeonard M Miller School of Medicine, University of MiamiMiamiFloridaUSA
- Division of CardiologyLeonard M Miller School of Medicine, University of MiamiMiamiFloridaUSA
| | - Erika B. Rangel
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert EinsteinSão PauloSão PauloBrazil
- Division of NephrologyFederal University of São PauloSão PauloSão PauloBrazil
| |
Collapse
|