1
|
Machiela MN, Hovey RC. Intramammary Labeling of Epithelial Cell Division. J Mammary Gland Biol Neoplasia 2024; 29:17. [PMID: 39412532 PMCID: PMC11485144 DOI: 10.1007/s10911-024-09570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Thymidine analogs such as ethynyl deoxyuridine (EdU) or bromodeoxyuridine (BrdU) can be used to label mitosis of mammary epithelial cells (MEC) and to quantify their proliferation. However, labeling cells in larger animals requires considerable amounts of chemical that can be costly and hazardous. We developed a strategy to infuse EdU into the mammary glands of ewes to directly label mitotic MEC. First, each udder half of nulliparous ewes (n = 2) received an intramammary infusion of one of four different concentrations of EdU (0, 0.1, 1.0 or 10 mM) which was compared to BrdU IV (5 mg/kg) 24 h later. Tissues were analyzed by immunofluorescent histochemistry to detect EdU, BrdU, and total MEC. Of the EdU doses tested, 10 mM EdU yielded the greatest labeling index, while a proportion of MEC were labeled by both EdU and BrdU. We next sought to establish whether intramammary labeling could detect the induction of mitosis after exposure to exogenous estrogen and progesterone (E + P). We first infused EdU (10 mM) into the right udder half of ewes (n = 6) at t 0, followed by thymidine (100 mM) 24 h later to prevent further labeling. Three ewes were then administered E + P for 5 d, while n = 3 ewes served as controls. On d 5, EdU was infused into the left udder half of all mammary glands alongside BrdU IV (5 mg/kg). By the time of necropsy 24 h later an average MEC labeling index of 2.9% resulted from EdU delivered at t 0. In the left half of the udder on d 5, CON glands had a final EdU labeling index of 3.4% while glands exposed to E + P had a labeling index of 4.6% (p = 0.05). The corresponding degree of labeling with BrdU was 5.6% in CON glands, and 12% following E + P (p < 0.001). Our findings reveal that intramammary labeling is an efficient and cost-effective method for single- and dual-labeling of cell division in the mammary glands.
Collapse
Affiliation(s)
- Maia N Machiela
- Department of Animal Science, University of California, Davis One Shields Avenue, Davis, CA, 95616-8521, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis One Shields Avenue, Davis, CA, 95616-8521, USA.
| |
Collapse
|
2
|
Al Bakir I, Curtius K, Graham TA. From Colitis to Cancer: An Evolutionary Trajectory That Merges Maths and Biology. Front Immunol 2018; 9:2368. [PMID: 30386335 PMCID: PMC6198656 DOI: 10.3389/fimmu.2018.02368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with inflammatory bowel disease have an increased risk of developing colorectal cancer, and this risk is related to disease duration, extent, and cumulative inflammation burden. Carcinogenesis follows the principles of Darwinian evolution, whereby somatic cells acquire genomic alterations that provide them with a survival and/or growth advantage. Colitis represents a unique situation whereby routine surveillance endoscopy provides a serendipitous opportunity to observe somatic evolution over space and time in vivo in a human organ. Moreover, somatic evolution in colitis is evolution in the ‘fast lane': the repeated rounds of inflammation and mucosal healing that are characteristic of the disease accelerate the evolutionary process and likely provide a strong selective pressure for inflammation-adapted phenotypic traits. In this review, we discuss the evolutionary dynamics of pre-neoplastic clones in colitis with a focus on how measuring their evolutionary trajectories could deliver a powerful way to predict future cancer occurrence. Measurements of somatic evolution require an interdisciplinary approach that combines quantitative measurement of the genotype, phenotype and the microenvironment of somatic cells–paying particular attention to spatial heterogeneity across the colon–together with mathematical modeling to interpret these data within an evolutionary framework. Here we take a practical approach in discussing how and why the different “evolutionary ingredients” can and should be measured, together with our viewpoint on subsequent translation into clinical practice. We highlight the open questions in the evolution of colitis-associated cancer as a stimulus for future work.
Collapse
Affiliation(s)
- Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.,Inflammatory Bowel Disease Unit, St Mark's Hospital, Harrow, United Kingdom
| | - Kit Curtius
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| |
Collapse
|
3
|
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5 + intestinal stem cells reside in an unlicensed G 1 phase. J Cell Biol 2018; 217:1667-1685. [PMID: 29599208 PMCID: PMC5940300 DOI: 10.1083/jcb.201708023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and the early G1 phase, the origins of replication are licensed by binding to double hexamers of MCM2-7. In this study, we investigated how licensing and proliferative commitment are coupled in the epithelium of the small intestine. We developed a method for identifying cells in intact tissue containing DNA-bound MCM2-7. Interphase cells above the transit-amplifying compartment had no DNA-bound MCM2-7, but still expressed the MCM2-7 protein, suggesting that licensing is inhibited immediately upon differentiation. Strikingly, we found most proliferative Lgr5+ stem cells are in an unlicensed state. This suggests that the elongated cell-cycle of intestinal stem cells is caused by an increased G1 length, characterized by dormant periods with unlicensed origins. Significantly, the unlicensed state is lost in Apc-mutant epithelium, which lacks a functional restriction point, causing licensing immediately upon G1 entry. We propose that the unlicensed G1 phase of intestinal stem cells creates a temporal window when proliferative fate decisions can be made.
Collapse
Affiliation(s)
- Thomas D Carroll
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Ian P Newton
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Yu Chen
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Inke Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
4
|
Ren J, Tang CZ, Li XD, Niu ZB, Zhang BY, Zhang T, Gao MJ, Ran XZ, Su YP, Wang FC. Identification of G2/M phase transition by sequential nuclear and cytoplasmic changes and molecular markers in mice intestinal epithelial cells. Cell Cycle 2018; 17:780-791. [PMID: 29338545 DOI: 10.1080/15384101.2018.1426416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Although the regulatory network of G2/M phase transition has been intensively studied in mammalian cell lines, the identification of morphological and molecular markers to identify G2/M phase transition in vivo remains elusive. In this study, we found no obvious morphological changes between the S phase and G2 phase in mice intestinal epithelial cells. The G2 phase could be identified by Brdu incorporation resistance, marginal and scattered foci of histone H3 phosphorylated at Ser10 (pHH3), and relatively intact Golgi ribbon. Prophase starts with nuclear transformation in situ, which was identified by a series of prophase markers including nuclear translocation of cyclinB1, fragmentation of the Golgi complex, and a significant increase in pHH3. The nucleus started to move upwards in the late prophase and finally rounded up at the apical surface. Then, metaphase was initiated as the level of pHH3 peaked. During anaphase and telophase, pHH3 sharply decreased, while Ki67 was obviously bound to chromosomes, and PCNA was distributed throughout the whole cell. Based on the aforementioned markers and Brdu pulse labeling, it was estimated to take about one hour for most crypt cells to go through the G2 phase and about two hours to go through the G2-M phase. It took much longer for crypt base columnar (CBC) stem cells to undergo G2-prophase than rapid transit amplifying cells. In summary, a series of sequentially presenting markers could be used to indicate the progress of G2/M events in intestinal epithelial cells and other epithelial systems in vivo.
Collapse
Affiliation(s)
- Jiong Ren
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Cai-Zhi Tang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Xu-Dong Li
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Zhi-Bin Niu
- b Batallion 2 of Student Brigade , Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Bo-Yang Zhang
- b Batallion 2 of Student Brigade , Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Tao Zhang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Mei-Jiao Gao
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Xin-Ze Ran
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Yong-Ping Su
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Feng-Chao Wang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| |
Collapse
|
5
|
Abstract
Optimizing the management of colorectal cancer (CRC) risk in IBD requires a fundamental understanding of the evolutionary process underpinning tumorigenesis. In IBD, clonal evolution begins long before the development of overt neoplasia, and is probably accelerated by the repeated cycles of epithelial wounding and repair that are characteristic of the condition. Here, we review the biological drivers of mutant clone selection in IBD with particular reference to the unique histological architecture of the intestinal epithelium coupled with the inflammatory microenvironment in IBD, and the unique mutation patterns seen in IBD-driven neoplasia when compared with sporadic adenomas and CRC. How these data can be leveraged as evolutionary-based biomarkers to predict cancer risk is discussed, as well as how the efficacy of CRC surveillance programmes and the management of dysplasia can be improved. From a research perspective, the longitudinal surveillance of patients with IBD provides an under-exploited opportunity to investigate the biology of the human gastrointestinal tract over space and time.
Collapse
Affiliation(s)
- Chang-Ho R Choi
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Ailsa L Hart
- Inflammatory Bowel Disease Unit, Level 4 St Mark's Hospital, Watford Road, London HA1 3UJ, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
6
|
Bajar BT, Lam AJ, Badiee RK, Oh YH, Chu J, Zhou XX, Kim N, Kim BB, Chung M, Yablonovitch AL, Cruz BF, Kulalert K, Tao JJ, Meyer T, Su XD, Lin MZ. Fluorescent indicators for simultaneous reporting of all four cell cycle phases. Nat Methods 2016; 13:993-996. [PMID: 27798610 PMCID: PMC5548384 DOI: 10.1038/nmeth.4045] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/21/2016] [Indexed: 12/23/2022]
Abstract
A robust method for simultaneous visualization of all four cell cycle phases in living cells is highly desirable. We developed an intensiometric reporter of the transition from S to G2 phase and engineered a far-red fluorescent protein, mMaroon1, to visualize chromatin condensation in mitosis. We combined these new reporters with the previously described Fucci system to create Fucci4, a set of four orthogonal fluorescent indicators that together resolve all cell cycle phases.
Collapse
Affiliation(s)
- Bryce T Bajar
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- School of Life Sciences, Peking University, Beijing, China
| | - Amy J Lam
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Ryan K Badiee
- Department of Biological Sciences, Stanford University, Stanford, California, USA
| | - Young-Hee Oh
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Jun Chu
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Namdoo Kim
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Benjamin B Kim
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | | | - Barney F Cruz
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Kanokwan Kulalert
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Jacqueline J Tao
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - Xiao-Dong Su
- School of Life Sciences, Peking University, Beijing, China
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Richmond CA, Shah MS, Carlone DL, Breault DT. Factors regulating quiescent stem cells: insights from the intestine and other self-renewing tissues. J Physiol 2016; 594:4805-13. [PMID: 26670741 DOI: 10.1113/jp271653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023] Open
Abstract
Long-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self-renewing tissues.
Collapse
|
8
|
|
9
|
Cdkn1b overexpression in adult mice alters the balance between genome and tissue ageing. Nat Commun 2014; 4:2626. [PMID: 24149709 PMCID: PMC3825507 DOI: 10.1038/ncomms3626] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/17/2013] [Indexed: 12/02/2022] Open
Abstract
Insufficient cell proliferation has been suggested as a potential cause of age related tissue dysgenesis in mammals. However, genetic manipulation of cell cycle regulators in the germ lines of mice results in changes in animal size but not progeroid phenotypes. Here we increase levels of the cyclin dependent kinase inhibitor Cdkn1b (p27kip1) in adult mice through doxycycline inducible expression and show this results in reduced cell proliferation in multiple tissues. The mice undergo changes resembling aging even in the absence of an elevated DNA damage response or evidence of senescent cells suggesting an altered balance between genetic and tissue aging. In contrast, suppressing cell proliferation by doxycycline treatment of neonates retards growth, but the onset of degenerative changes is delayed during the period of reduced body mass. These results support the hypothesis that many of the most recognizable features of mammalian aging can result from an imbalance between cell production and the mass of tissue that must be maintained.
Collapse
|
10
|
Moossavi S. Heterogeneity of the level of activity of lgr5+ intestinal stem cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:216-24. [PMID: 25635248 PMCID: PMC4293609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Intestinal stem cells (ISCs) are a group of rare cells located in the intestinal crypts which are responsible for the maintenance of the intestinal epithelial homeostasis and regeneration following injury or inflammation. Lineage tracing experiments in mice have proven that ISCs can repopulate the entire intestinal crypt. It is noteworthy that in such experiments, only a subset of intestinal crypts is marked by the specific marker. This is suggestive of different levels of activity of stem cells in different crypts i.e. intracryptal variation. Niche succession i.e. dominating the entire crypt by the progenies of one stem cell is also suggestive of the intercryptal stem cell heterogeneity. Regional differences in crypt size, proliferative index, and distribution of proliferative cells along the crypt axis have been reported. It is conceivable that ISCs are heterogeneous in terms of their levels of activity. Appreciation of such heterogeneity will significantly challenge the way in which ISCs are investigated. A better understanding of ISC biology will in turn improve our mechanistic understanding of major intestinal disease including inflammatory bowel disease and colorectal cancer.
Collapse
Affiliation(s)
- Shirin Moossavi
- Corresponding author: Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences - - Shariati Hospital, North Amirabad Ave., Tehran 14117, Iran.
| |
Collapse
|
11
|
Gonzalez LM, Williamson I, Piedrahita JA, Blikslager AT, Magness ST. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration. PLoS One 2013; 8:e66465. [PMID: 23840480 PMCID: PMC3696067 DOI: 10.1371/journal.pone.0066465] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/05/2013] [Indexed: 01/22/2023] Open
Abstract
Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC) driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM) and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA), Minichromosome Maintenance Complex 2 (MCM2), Bromodeoxyuridine (BrdU) and phosphorylated Histone H3 (pH3) distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/‘reserve’ stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2); enteroendocrine cells by Chromogranin A (CGA), Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII) and sucrase isomaltase (SIM). Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.
Collapse
Affiliation(s)
- Liara M. Gonzalez
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ian Williamson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC/NCSU Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jorge A. Piedrahita
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anthony T. Blikslager
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Scott T. Magness
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC/NCSU Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hormoz S. Stem cell population asymmetry can reduce rate of replicative aging. J Theor Biol 2013; 331:19-27. [PMID: 23623948 DOI: 10.1016/j.jtbi.2013.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
Cycling tissues such as the intestinal epithelium, germ line, and hair follicles, require a constant flux of differentiated cells. These tissues are maintained by a population of stem cells, which generate differentiated progenies and self-renew. Asymmetric division of each stem cell into one stem cell and one differentiated cell can accomplish both tasks. However, in mammalian cycling tissues, some stem cells divide symmetrically into two differentiated cells and are replaced by a neighbor that divides symmetrically into two stem cells. Besides this heterogeneity in fate (population asymmetry), stem cells also exhibit heterogenous proliferation-rates; in the long run, however, all stem cells proliferate at the same average rate (equipotency). We construct and simulate a mathematical model based on these experimental observations. We show that the complex steady-state dynamics of population-asymmetric stem cells reduces the rate of replicative aging of the tissue-potentially lowering the incidence of somatic mutations and genetics diseases such as cancer. Essentially, slow-dividing stem cells proliferate and purge the population of the fast-dividing - older - cells which had undertaken the majority of the tissue-generation burden. As the number of slow-dividing cells grows, their cycling-rate increases, eventually turning them into fast-dividers, which are themselves replaced by newly emerging slow-dividers. Going beyond current experiments, we propose a mechanism for equipotency that can potentially halve the rate of replicative aging. Our results highlight the importance of a population-level understanding of stem cells, and may explain the prevalence of population asymmetry in a wide variety of cycling tissues.
Collapse
Affiliation(s)
- Sahand Hormoz
- Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
13
|
MacVittie TJ, Farese AM, Bennett A, Gelfond D, Shea-Donohue T, Tudor G, Booth C, McFarland E, Jackson W. The acute gastrointestinal subsyndrome of the acute radiation syndrome: a rhesus macaque model. HEALTH PHYSICS 2012; 103:411-426. [PMID: 22929470 DOI: 10.1097/hp.0b013e31826525f0] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of medical countermeasures against the acute gastrointestinal subsyndrome of the acute radiation syndrome in humans requires well characterized and validated animal models. These models must adhere to the criteria of the U.S. Food and Drug Administration's Animal Rule and consider the natural history and clinical context of the human radiation response and treatment in the nuclear terrorist scenario. The models must define the radiation dose- and time-dependent relationships for mortality and major signs of morbidity, including concurrent damage in other organs, such as the bone marrow, that may contribute to the overall mortality and morbidity. There are no such models of the gastrointestinal syndrome in response to total-body irradiation in the nonhuman primate. Herein, these parameters are defined for the rhesus macaque exposed to potentially lethal doses of radiation and administered medical management. Rhesus macaques (n = 69) were exposed bilaterally to 6 MV linear accelerator-derived photon total body irradiation to midline tissue (thorax) doses ranging from 10.0 to 14.0 Gy at 0.80 Gy min(-1). Following irradiation, all animals were administered supportive care consisting of fluids, anti-emetics, anti-diarrheal medication, antibiotics, blood transfusions, analgesics, and nutrition. The primary endpoint was survival at 15 d post-irradiation. Secondary endpoints included indices of dehydration, diarrhea, weight loss, hematological parameters, cellular histology of the small and large intestine, and mean survival time of decedents. Mortality within the 15-d in vivo study defined the acute gastrointestinal syndrome and provided an LD30/15 of 10.76 Gy, LD50/15 of 11.33 Gy, and an LD70/15 of 11.90 Gy. Intestinal crypt and villus loss were dose- and time-dependent with an apparent nadir 7 d post-irradiation and recovery noted thereafter. Severe myelosuppression and thrombocytopenia were noted in all animals, requiring the administration of antibiotics and blood transfusions. The model defines the dose response relationship and time course of acute gastrointestinal syndrome-induced morbidity and mortality in the rhesus macaque.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Darzynkiewicz Z, Balazs EA. Genome integrity, stem cells and hyaluronan. Aging (Albany NY) 2012; 4:78-88. [PMID: 22383371 PMCID: PMC3314170 DOI: 10.18632/aging.100438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/24/2012] [Indexed: 12/12/2022]
Abstract
Faithful preservation of genome integrity is the critical mission of stem cells as well as of germ cells. Reviewed are the following mechanisms involved in protecting DNA in these cells: (a) The efflux machinery that can pump out variety of genotoxins in ATP-dependent manner; (b) the mechanisms maintaining minimal metabolic activity which reduces generation of reactive oxidants, by-products of aerobic respiration; (c) the role of hypoxic niche of stem cells providing a gradient of variable oxygen tension; (d)(e) the presence of hyaluronan (HA) and HA receptors on stem cells and in the niche; (f) the role of role of HA in protecting DNA from oxidative damage; (g) the specific role of HA that may play a role protecting DNA in stem cells; (h) the interactions of HA with sperm cells and oocytes that also may shield their DNA from oxidative damage, and (e) mechanisms by which HA exerts the anti-oxidant activity. While HA has multitude of functions its anti-oxidant capabilities are often overlooked but may be of significance in preservation of integrity of stem and germ cells genome.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute & Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|