1
|
Ortiz-Álvarez G, Fortoul A, Srivastava A, Moreau MX, Bouloudi B, Mailhes-Hamon C, Delgehyr N, Faucourt M, Bahin M, Blugeon C, Breau M, Géli V, Causeret F, Meunier A, Spassky N. p53/p21 pathway activation contributes to the ependymal fate decision downstream of GemC1. Cell Rep 2022; 41:111810. [PMID: 36516767 DOI: 10.1016/j.celrep.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France.
| |
Collapse
|
2
|
Sharma V, Nehra S, Do LH, Ghosh A, Deshpande AJ, Singhal N. Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Front Genet 2022; 13:1007519. [PMID: 36313423 PMCID: PMC9596798 DOI: 10.3389/fgene.2022.1007519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the “neurogenic stage” of neurogenesis. Upon neural induction, DS cells showed reduced proliferation during the early phase followed by increased proliferation in the late phase of the neurogenic stage compared to control cells. While reduced proliferation in the early phase causes reduced neural progenitor pool, increased proliferation in the late phase leads to delayed post mitotic neuron generation in DS. RNAseq analysis of late-phase DS progenitor cells revealed upregulation of S phase-promoting regulators, Notch, Wnt, Interferon pathways, and REST, and downregulation of several genes of the BAF chromatin remodeling complex. NFIB and POU3F4, neurogenic genes activated by the interaction of PAX6 and the BAF complex, were downregulated in DS cells. ChIPseq analysis of late-phase neural progenitors revealed aberrant PAX6 binding with reduced promoter occupancy in DS cells. Together, these data indicate that impaired neurogenesis in DS is due to biphasic cell cycle dysregulation during the neurogenic stage of neurogenesis.
Collapse
Affiliation(s)
| | | | - Long H. Do
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Anwesha Ghosh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Nishant Singhal
- National Centre for Cell Science, Pune, India
- *Correspondence: Nishant Singhal,
| |
Collapse
|
3
|
Kalogeropoulou A, Mougkogianni M, Iliadou M, Nikolopoulou E, Flordelis S, Kanellou A, Arbi M, Nikou S, Nieminuszczy J, Niedzwiedz W, Kardamakis D, Bravou V, Lygerou Z, Taraviras S. Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress. Stem Cell Reports 2022; 17:1395-1410. [PMID: 35623353 PMCID: PMC9214316 DOI: 10.1016/j.stemcr.2022.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Impaired replication has been previously linked to growth retardation and microcephaly; however, why the brain is critically affected compared with other organs remains elusive. Here, we report the differential response between early neural progenitors (neuroepithelial cells [NECs]) and fate-committed neural progenitors (NPs) to replication licensing defects. Our results show that, while NPs can tolerate altered expression of licensing factors, NECs undergo excessive replication stress, identified by impaired replication, increased DNA damage, and defective cell-cycle progression, leading eventually to NEC attrition and microcephaly. NECs that possess a short G1 phase license and activate more origins than NPs, by acquiring higher levels of DNA-bound MCMs. In vivo G1 shortening in NPs induces DNA damage upon impaired licensing, suggesting that G1 length correlates with replication stress hypersensitivity. Our findings propose that NECs possess distinct cell-cycle characteristics to ensure fast proliferation, although these inherent features render them susceptible to genotoxic stress.
Collapse
Affiliation(s)
- Argyro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Maria Mougkogianni
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Marianna Iliadou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Eleni Nikolopoulou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Stefanos Flordelis
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Alexandra Kanellou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Marina Arbi
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | | | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece.
| |
Collapse
|
4
|
Khalil BD, Sanchez R, Rahman T, Rodriguez-Tirado C, Moritsch S, Martinez AR, Miles B, Farias E, Mezei M, Nobre AR, Singh D, Kale N, Sproll KC, Sosa MS, Aguirre-Ghiso JA. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J Exp Med 2022; 219:e20210836. [PMID: 34812843 PMCID: PMC8614154 DOI: 10.1084/jem.20210836] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023] Open
Abstract
We describe the discovery of an agonist of the nuclear receptor NR2F1 that specifically activates dormancy programs in malignant cells. The agonist led to a self-regulated increase in NR2F1 mRNA and protein and downstream transcription of a novel dormancy program. This program led to growth arrest of an HNSCC PDX line, human cell lines, and patient-derived organoids in 3D cultures and in vivo. This effect was lost when NR2F1 was knocked out by CRISPR-Cas9. RNA sequencing revealed that agonist treatment induces transcriptional changes associated with inhibition of cell cycle progression and mTOR signaling, metastasis suppression, and induction of a neural crest lineage program. In mice, agonist treatment resulted in inhibition of lung HNSCC metastasis, even after cessation of the treatment, where disseminated tumor cells displayed an NR2F1hi/p27hi/Ki-67lo/p-S6lo phenotype and remained in a dormant single-cell state. Our work provides proof of principle supporting the use of NR2F1 agonists to induce dormancy as a therapeutic strategy to prevent metastasis.
Collapse
Affiliation(s)
- Bassem D. Khalil
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Western Atlantic University School of Medicine, Plantation, FL
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tasrina Rahman
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stefan Moritsch
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alba Rodriguez Martinez
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brett Miles
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eduardo Farias
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mihaly Mezei
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deepak Singh
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Karl Christoph Sproll
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Champeris Tsaniras S, Delinasios GJ, Petropoulos M, Panagopoulos A, Anagnostopoulos AK, Villiou M, Vlachakis D, Bravou V, Stathopoulos GT, Taraviras S. DNA Replication Inhibitor Geminin and Retinoic Acid Signaling Participate in Complex Interactions Associated With Pluripotency. Cancer Genomics Proteomics 2019; 16:593-601. [PMID: 31659113 PMCID: PMC6885373 DOI: 10.21873/cgp.20162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Several links between DNA replication, pluripotency and development have been recently identified. The involvement of miRNA in the regulation of cell cycle events and pluripotency factors has also gained attention. MATERIALS AND METHODS In the present study, we used the g:Profiler platform to analyze transcription factor binding sites, miRNA networks and protein-protein interactions to identify novel links among the aforementioned processes. RESULTS AND CONCLUSION A complex circuitry between retinoic acid signaling, SWI/SNF components, pluripotency factors including Oct4, Sox2 and Nanog and cell cycle regulators was identified. It is suggested that the DNA replication inhibitor geminin plays a central role in this circuitry.
Collapse
Affiliation(s)
- Spyridon Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | | | | | | | - Athanasios K Anagnostopoulos
- International Institute of Anticancer Research, Kapandriti, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Villiou
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Lalioti ME, Kaplani K, Lokka G, Georgomanolis T, Kyrousi C, Dong W, Dunbar A, Parlapani E, Damianidou E, Spassky N, Kahle KT, Papantonis A, Lygerou Z, Taraviras S. GemC1 is a critical switch for neural stem cell generation in the postnatal brain. Glia 2019; 67:2360-2373. [PMID: 31328313 DOI: 10.1002/glia.23690] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The subventricular zone (SVZ) is one of two main niches where neurogenesis persists during adulthood, as it retains neural stem cells (NSCs) with self-renewal capacity and multi-lineage potency. Another critical cellular component of the niche is the population of postmitotic multiciliated ependymal cells. Both cell types are derived from radial glial cells that become specified to each lineage during embryogenesis. We show here that GemC1, encoding Geminin coiled-coil domain-containing protein 1, is associated with congenital hydrocephalus in humans and mice. Our results show that GemC1 deficiency drives cells toward a NSC phenotype, at the expense of multiciliated ependymal cell generation. The increased number of NSCs is accompanied by increased levels of proliferation and neurogenesis in the postnatal SVZ. Finally, GemC1-knockout cells display altered chromatin organization at multiple loci, further supporting a NSC identity. Together, these findings suggest that GemC1 regulates the balance between NSC generation and ependymal cell differentiation, with implications for the pathogenesis of human congenital hydrocephalus.
Collapse
Affiliation(s)
- Maria-Eleni Lalioti
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Lokka
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | | | - Christina Kyrousi
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Weilai Dong
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Ashley Dunbar
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Evangelia Parlapani
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Eleni Damianidou
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Nathalie Spassky
- Cilia biology and neurogenesis, Institut de biologie de l' Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Kristopher T Kahle
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
7
|
Antonopoulos I, Daoussis D, Lalioti ME, Markatseli TE, Drosos AA, Taraviras S, Andonopoulos AP, Liossis SNC. B cell depletion treatment decreases CD4+IL4+ and CD4+CD40L+ T cells in patients with systemic sclerosis. Rheumatol Int 2019; 39:1889-1898. [PMID: 31227855 DOI: 10.1007/s00296-019-04350-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/15/2019] [Indexed: 01/29/2023]
Abstract
Recent data suggests that rituximab may favorably affect skin fibrosis and lung function in patients with systemic sclerosis. Based on experimental data suggesting a key role of B and T cells in scleroderma we aimed to explore the effect(s) of rituximab treatment on T cell subpopulations. Fifteen patients with scleroderma who received rituximab treatment and six who received standard treatment alone were recruited. Peripheral CD4+IL4+, CD4+INFγ+, CD4+IL17+ and CD4+CD40L+ T cells were assessed using flow cytometry. Using ELISA, serum levels of IL4 were assessed. Skin CD4+IL4+ T cells were assessed with confocal microscopy from skin biopsies. Following rituximab treatment skin CD4+IL4+ T cells obviously decreased as seen with confocal microscopy. Moreover, peripheral CD4+IL4+ T cells decreased significantly compared to those from patients who received standard treatment alone: median (IQR): 14.9 (22.63-12.88) vs 7.87 (12.81-4.9)%, p = 0.005 and 9.43 (19.53-7.50)% vs 14.86 (21.96-6.75)%, p = NS at baseline and 6 months later respectively, whereas there was no difference in serum IL4 levels. Peripheral CD4+CD40L+ T cells also decreased significantly following rituximab treatment compared to those from patients who received standard treatment alone: median (IQR): 17.78 (25.64-14.44)% vs 8.15 (22.85-3.08)%, p = 0.04 and 22.13 (58.77-8.20)% vs 72.11 (73.05-20.45)%, p = NS at baseline and 6 months later respectively. Furthermore, peripheral CD4+INFγ+ and CD4+IL17+ T cells revealed no differences following rituximab treatment. Our study demonstrates a link between rituximab treatment and CD4+IL4+ T cell decrease both in the skin and peripheral blood of patients with SSc.
Collapse
Affiliation(s)
- Ioannis Antonopoulos
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Rion, 26504, Patras, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Rion, 26504, Patras, Greece
| | - Maria-Eleni Lalioti
- Department of Physiology, School of Medicine, University of Patras, Rion, 26504, Patras, Greece
| | - Theodora E Markatseli
- Department of Rheumatology, Ioannina University Hospital, University of Ioannina Medical School, Ioannina, Greece
| | - Alexandros A Drosos
- Department of Rheumatology, Ioannina University Hospital, University of Ioannina Medical School, Ioannina, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Rion, 26504, Patras, Greece
| | - Andrew P Andonopoulos
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Rion, 26504, Patras, Greece
| | - Stamatis-Nick C Liossis
- Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Rion, 26504, Patras, Greece.
| |
Collapse
|
8
|
Lalioti ME, Arbi M, Loukas I, Kaplani K, Kalogeropoulou A, Lokka G, Kyrousi C, Mizi A, Georgomanolis T, Josipovic N, Gkikas D, Benes V, Politis PK, Papantonis A, Lygerou Z, Taraviras S. GemC1 governs multiciliogenesis through direct interaction with and transcriptional regulation of p73. J Cell Sci 2019; 132:jcs.228684. [PMID: 31028178 DOI: 10.1242/jcs.228684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj 1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maria-Eleni Lalioti
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Marina Arbi
- Department of General Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Ioannis Loukas
- Department of General Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Konstantina Kaplani
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Argyro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Georgia Lokka
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Christina Kyrousi
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasia Mizi
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany.,Department of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Theodore Georgomanolis
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Natasa Josipovic
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany.,Department of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Dimitrios Gkikas
- Department of Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27 Athens, Greece
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Panagiotis K Politis
- Department of Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Street, 115 27 Athens, Greece
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany.,Department of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
9
|
Petropoulos M, Champeris Tsaniras S, Taraviras S, Lygerou Z. Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends Biochem Sci 2019; 44:752-764. [PMID: 31054805 DOI: 10.1016/j.tibs.2019.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023]
Abstract
Strict regulation of DNA replication is of fundamental significance for the maintenance of genome stability. Licensing of origins of DNA replication is a critical event for timely genome duplication. Errors in replication licensing control lead to genomic instability across evolution. Here, we present accumulating evidence that aberrant replication licensing is linked to oncogene-induced replication stress and poses a major threat to genome stability, promoting tumorigenesis. Oncogene activation can lead to defects in where along the genome and when during the cell cycle licensing takes place, resulting in replication stress. We also discuss the potential of replication licensing as a specific target for novel anticancer therapies.
Collapse
Affiliation(s)
- Michalis Petropoulos
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
10
|
Ortiz-Álvarez G, Daclin M, Shihavuddin A, Lansade P, Fortoul A, Faucourt M, Clavreul S, Lalioti ME, Taraviras S, Hippenmeyer S, Livet J, Meunier A, Genovesio A, Spassky N. Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members. Neuron 2019; 102:159-172.e7. [PMID: 30824354 PMCID: PMC6449116 DOI: 10.1016/j.neuron.2019.01.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Adult neural stem cells and multiciliated ependymal cells are glial cells essential for neurological functions. Together, they make up the adult neurogenic niche. Using both high-throughput clonal analysis and single-cell resolution of progenitor division patterns and fate, we show that these two components of the neurogenic niche are lineally related: adult neural stem cells are sister cells to ependymal cells, whereas most ependymal cells arise from the terminal symmetric divisions of the lineage. Unexpectedly, we found that the antagonist regulators of DNA replication, GemC1 and Geminin, can tune the proportion of neural stem cells and ependymal cells. Our findings reveal the controlled dynamic of the neurogenic niche ontogeny and identify the Geminin family members as key regulators of the initial pool of adult neural stem cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Marie Daclin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Asm Shihavuddin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Pauline Lansade
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Solène Clavreul
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Maria-Eleni Lalioti
- Department of Physiology, Medical School, University of Patras, 26504 Rio, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, 26504 Rio, Patras, Greece
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France.
| |
Collapse
|
11
|
Sankar S, Patterson E, Lewis EM, Waller LE, Tong C, Dearborn J, Wozniak D, Rubin JB, Kroll KL. Geminin deficiency enhances survival in a murine medulloblastoma model by inducing apoptosis of preneoplastic granule neuron precursors. Genes Cancer 2017; 8:725-744. [PMID: 29234490 PMCID: PMC5724806 DOI: 10.18632/genesandcancer.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ethan Patterson
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emily M Lewis
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua Dearborn
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - David Wozniak
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
12
|
Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2017; 127:151-174. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Dafni-Eleftheria Pefani
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.,CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.
| |
Collapse
|
13
|
Taouki I, Tasiudi E, Lalioti ME, Kyrousi C, Skavatsou E, Kaplani K, Lygerou Z, Kouvelas ED, Mitsacos A, Giompres P, Taraviras S. Geminin Participates in Differentiation Decisions of Adult Neural Stem Cells Transplanted in the Hemiparkinsonian Mouse Brain. Stem Cells Dev 2017; 26:1214-1222. [PMID: 28557659 DOI: 10.1089/scd.2016.0335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model. Our results indicate that, in the absence of Geminin, grafted cells differentiating into dopaminergic neurons were decreased, while an increased number of oligodendrocytes were detected. The number of proliferating multipotent cells was not modified by the absence of Geminin. These findings encourage research related to the impact of Geminin on transplantations for neurodegenerative disorders, as an important molecule in influencing differentiation decisions of the cells composing the graft.
Collapse
Affiliation(s)
- Ioanna Taouki
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Eve Tasiudi
- 2 Department of Physiology, School of Biology, University of Patras , Patras, Greece
| | - Maria-Eleni Lalioti
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Christina Kyrousi
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Eleni Skavatsou
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Konstantina Kaplani
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Zoi Lygerou
- 3 Department of General Biology, School of Medicine, University of Patras , Patras, Greece
| | - Elias D Kouvelas
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Adamantia Mitsacos
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Panagiotis Giompres
- 2 Department of Physiology, School of Biology, University of Patras , Patras, Greece
| | - Stavros Taraviras
- 1 Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| |
Collapse
|
14
|
Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM. Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Genesis 2017; 55. [PMID: 28316121 DOI: 10.1002/dvg.23031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/21/2023]
Abstract
Many molecular factors required for later stages of neuronal differentiation have been identified; however, much less is known about the early events that regulate the initial establishment of the neuroectoderm. We have used an in vitro embryonic stem cell (ESC) differentiation model to investigate early events of neuronal differentiation and to define the role of mouse Foxd4, an ortholog of a forkhead-family transcription factor central to Xenopus neural plate/neuroectodermal precursor development. We found that Foxd4 is a necessary regulator of the transition from pluripotent ESC to neuroectodermal stem cell, and its expression is necessary for neuronal differentiation. Mouse Foxd4 expression is not only limited to the neural plate but it is also expressed and apparently functions to regulate neurogenesis in the olfactory placode. These in vitro results suggest that mouse Foxd4 has a similar function to its Xenopus ortholog; this was confirmed by successfully substituting murine Foxd4 for its amphibian counterpart in overexpression experiments. Thus, Foxd4 appears to regulate the initial steps in establishing neuroectodermal precursors during initial development of the nervous system.
Collapse
Affiliation(s)
- Jonathan H Sherman
- Department of Neurological Surgery, George Washington University Hospital, Washington, District of Columbia.,Institute for Neuroscience, George Washington University, Washington, District of Columbia
| | - Beverly A Karpinski
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Matthew S Fralish
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | | | | | - Arielle G Thal
- George Washington University SMHS, Washington, District of Columbia
| | - Sally A Moody
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Anatomy and Regenerative Biology, George Washington University SMHS, Washington, District of Columbia
| | - Anthony S LaMantia
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| | - Thomas M Maynard
- Institute for Neuroscience, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University SMHS, Washington, District of Columbia
| |
Collapse
|
15
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
16
|
Links between DNA Replication, Stem Cells and Cancer. Genes (Basel) 2017; 8:genes8020045. [PMID: 28125050 PMCID: PMC5333035 DOI: 10.3390/genes8020045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.
Collapse
|
17
|
Patmanidi AL, Champeris Tsaniras S, Karamitros D, Kyrousi C, Lygerou Z, Taraviras S. Concise Review: Geminin-A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells. Stem Cells 2016; 35:299-310. [DOI: 10.1002/stem.2529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/18/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Dimitris Karamitros
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Christina Kyrousi
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Zoi Lygerou
- Department of Biology; Medical School, University of Patras; Rio Patras Greece
| | - Stavros Taraviras
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| |
Collapse
|
18
|
Adler-Wailes DC, Kramer JA, DePamphilis ML. Geminin Is Essential for Pluripotent Cell Viability During Teratoma Formation, but Not for Differentiated Cell Viability During Teratoma Expansion. Stem Cells Dev 2016; 26:285-302. [PMID: 27821018 DOI: 10.1089/scd.2016.0260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are unusual in that geminin has been reported to be essential either to prevent differentiation by maintaining expression of pluripotency genes or to prevent DNA rereplication-dependent apoptosis. To distinguish between these two incompatible hypotheses, immune-compromised mice were inoculated subcutaneously with ESCs harboring conditional Gmnn alleles alone or together with a tamoxifen-dependent Cre recombinase gene. Mice were then injected with tamoxifen at various times during which the ESCs proliferated and differentiated into a teratoma. For comparison, the same ESCs were cultured in vitro in the presence of monohydroxytamoxifen. The results revealed that geminin is a haplosufficient gene that is essential for ESC viability before they differentiate into a teratoma, but once a teratoma is established, the differentiated cells can continue to proliferate in the absence of Gmnn alleles, geminin protein, and pluripotent stem cells. Thus, differentiated cells did not require geminin for efficient proliferation within the context of a solid tissue, although they did when teratoma cells were cultured in vitro. These results provide proof-of-principle that preventing geminin function could prevent malignancy in tumors derived from pluripotent cells by selectively eliminating the progenitor cells with little harm to normal cells.
Collapse
Affiliation(s)
- Diane C Adler-Wailes
- 1 Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda, Maryland
| | - Joshua A Kramer
- 2 Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. , Bethesda, Maryland
| | - Melvin L DePamphilis
- 1 Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda, Maryland
| |
Collapse
|
19
|
Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol 2016; 14:94. [PMID: 27776507 PMCID: PMC5075986 DOI: 10.1186/s12915-016-0314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background In vertebrate organisms, the neural crest (NC) gives rise to multipotential and highly migratory progenitors which are distributed throughout the embryo and generate, among other structures, the peripheral nervous system, including the intrinsic neuroglial networks of the gut, i.e. the enteric nervous system (ENS). The majority of enteric neurons and glia originate from vagal NC-derived progenitors which invade the foregut mesenchyme and migrate rostro-caudally to colonise the entire length of the gut. Although the migratory behaviour of NC cells has been studied extensively, it remains unclear how their properties and response to microenvironment change as they navigate through complex cellular terrains to reach their target embryonic sites. Results Using conditional gene inactivation in mice we demonstrate here that the cell cycle-dependent protein Geminin (Gem) is critical for the survival of ENS progenitors in a stage-dependent manner. Gem deletion in early ENS progenitors (prior to foregut invasion) resulted in cell-autonomous activation of DNA damage response and p53-dependent apoptosis, leading to severe intestinal aganglionosis. In contrast, ablation of Gem shortly after ENS progenitors had invaded the embryonic gut did not result in discernible survival or migratory deficits. In contrast to other developmental systems, we obtained no evidence for a role of Gem in commitment or differentiation of ENS lineages. The stage-dependent resistance of ENS progenitors to mutation-induced genotoxic stress was further supported by the enhanced survival of post gut invasion ENS lineages to γ-irradiation relative to their predecessors. Conclusions Our experiments demonstrate that, in mammals, NC-derived ENS lineages are sensitive to genotoxic stress in a stage-specific manner. Following gut invasion, ENS progenitors are distinctly resistant to Gem ablation and irradiation in comparison to their pre-enteric counterparts. These studies suggest that the microenvironment of the embryonic gut protects ENS progenitors and their progeny from genotoxic stress. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chrysoula Konstantinidou
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.,Present address: MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, GR 26 500, Greece.
| | - Vassilis Pachnis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
20
|
Kyrousi C, Lalioti ME, Skavatsou E, Lygerou Z, Taraviras S. Mcidas and GemC1/Lynkeas specify embryonic radial glial cells. NEUROGENESIS 2016; 3:e1172747. [PMID: 27606337 DOI: 10.1080/23262133.2016.1172747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023]
Abstract
Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1.
Collapse
Affiliation(s)
- Christina Kyrousi
- Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Maria-Eleni Lalioti
- Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Eleni Skavatsou
- Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras , Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras , Patras, Greece
| |
Collapse
|
21
|
Arbi M, Pefani DE, Kyrousi C, Lalioti ME, Kalogeropoulou A, Papanastasiou AD, Taraviras S, Lygerou Z. GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep 2016; 17:400-13. [PMID: 26882546 DOI: 10.15252/embr.201540882] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Multiciliated cells are terminally differentiated, post-mitotic cells that form hundreds of motile cilia on their apical surface. Defects in multiciliated cells lead to disease, including mucociliary clearance disorders that result from ciliated cell disfunction in airways. The pathway controlling multiciliogenesis, however, remains poorly characterized. We showed that GemC1, previously implicated in cell cycle control, is a central regulator of ciliogenesis. GemC1 is specifically expressed in ciliated epithelia. Ectopic expression of GemC1 is sufficient to induce early steps of multiciliogenesis in airway epithelial cells ex vivo, upregulating McIdas and FoxJ1, key transcriptional regulators of multiciliogenesis. GemC1 directly transactivates the McIdas and FoxJ1 upstream regulatory sequences, and its activity is enhanced by E2F5 and inhibited by Geminin. GemC1-knockout mice are born with airway epithelia devoid of multiciliated cells. Our results identify GemC1 as an essential regulator of ciliogenesis in the airway epithelium and a candidate gene for mucociliary disorders.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, Patras, Greece
| | | | - Christina Kyrousi
- Laboratory of Physiology, School of Medicine University of Patras, Patras, Greece
| | - Maria-Eleni Lalioti
- Laboratory of Physiology, School of Medicine University of Patras, Patras, Greece
| | | | | | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine University of Patras, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
22
|
Stathopoulou A, Natarajan D, Nikolopoulou P, Patmanidi AL, Lygerou Z, Pachnis V, Taraviras S. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Dev Biol 2015; 409:392-405. [PMID: 26658318 DOI: 10.1016/j.ydbio.2015.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
Abstract
Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells.
Collapse
Affiliation(s)
| | - Dipa Natarajan
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | | | | | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
23
|
Kyrousi C, Arbi M, Pilz GA, Pefani DE, Lalioti ME, Ninkovic J, Götz M, Lygerou Z, Taraviras S. Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 2015; 142:3661-74. [PMID: 26395491 DOI: 10.1242/dev.126342] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
Abstract
Multiciliated cells are abundant in the epithelial surface of different tissues, including cells lining the walls of the lateral ventricles in the brain and the airway epithelium. Their main role is to control fluid flow and defects in their differentiation are implicated in many human disorders, such as hydrocephalus, accompanied by defects in adult neurogenesis and mucociliary disorder in the airway system. Here we show that Mcidas, which is mutated in human mucociliary clearance disorder, and GemC1 (Gmnc or Lynkeas), previously implicated in cell cycle progression, are key regulators of multiciliated ependymal cell generation in the mouse brain. Overexpression and knockdown experiments show that Mcidas and GemC1 are sufficient and necessary for cell fate commitment and differentiation of radial glial cells to multiciliated ependymal cells. Furthermore, we show that GemC1 and Mcidas operate in hierarchical order, upstream of Foxj1 and c-Myb transcription factors, which are known regulators of ependymal cell generation, and that Notch signaling inhibits GemC1 and Mcidas function. Our results suggest that Mcidas and GemC1 are key players in the generation of multiciliated ependymal cells of the adult neurogenic niche.
Collapse
Affiliation(s)
- Christina Kyrousi
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Gregor-Alexander Pilz
- Institute of Stem Cell Research, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Dafni-Eleftheria Pefani
- Department of General Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Maria-Eleni Lalioti
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Jovica Ninkovic
- Institute of Stem Cell Research, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg 85764, Germany Physiological Genomics, Ludwig Maximilians University, Munich 80336, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg 85764, Germany Physiological Genomics, Ludwig Maximilians University, Munich 80336, Germany
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| |
Collapse
|
24
|
Huang YY, Kaneko KJ, Pan H, DePamphilis ML. Geminin is Essential to Prevent DNA Re-Replication-Dependent Apoptosis in Pluripotent Cells, but not in Differentiated Cells. Stem Cells 2015; 33:3239-53. [PMID: 26140583 DOI: 10.1002/stem.2092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 01/17/2023]
Abstract
Geminin is a dual-function protein unique to multicellular animals with roles in modulating gene expression and preventing DNA re-replication. Here, we show that geminin is essential at the beginning of mammalian development to prevent DNA re-replication in pluripotent cells, exemplified by embryonic stem cells, as they undergo self-renewal and differentiation. Embryonic stem cells, embryonic fibroblasts, and immortalized fibroblasts were characterized before and after geminin was depleted either by gene ablation or siRNA. Depletion of geminin under conditions that promote either self-renewal or differentiation rapidly induced DNA re-replication, followed by DNA damage, then a DNA damage response, and finally apoptosis. Once differentiation had occurred, geminin was no longer essential for viability, although it continued to contribute to preventing DNA re-replication induced DNA damage. No relationship was detected between expression of geminin and genes associated with either pluripotency or differentiation. Thus, the primary role of geminin at the beginning of mammalian development is to prevent DNA re-replication-dependent apoptosis, a role previously believed essential only in cancer cells. These results suggest that regulation of gene expression by geminin occurs only after pluripotent cells differentiate into cells in which geminin is not essential for viability.
Collapse
Affiliation(s)
- Yi-Yuan Huang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kotaro J Kaneko
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Haiyan Pan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melvin L DePamphilis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Karamitros D, Patmanidi AL, Kotantaki P, Potocnik AJ, Bähr-Ivacevic T, Benes V, Lygerou Z, Kioussis D, Taraviras S. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development 2015; 142:70-81. [PMID: 25516969 DOI: 10.1242/dev.109454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.
Collapse
Affiliation(s)
- Dimitris Karamitros
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Alexandra L Patmanidi
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Panoraia Kotantaki
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Alexandre J Potocnik
- Division of Molecular Immunology, MRC/National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Tomi Bähr-Ivacevic
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Rio, Patras 26504, Greece
| | - Dimitris Kioussis
- Division of Molecular Immunology, MRC/National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, Patras 26504, Greece
| |
Collapse
|
26
|
Lee HK, Lee HS, Moody SA. Neural transcription factors: from embryos to neural stem cells. Mol Cells 2014; 37:705-12. [PMID: 25234468 PMCID: PMC4213760 DOI: 10.14348/molcells.2014.0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 01/01/2023] Open
Abstract
The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | - Hyun-Shik Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | | |
Collapse
|
27
|
Patterson ES, Waller LE, Kroll KL. Geminin loss causes neural tube defects through disrupted progenitor specification and neuronal differentiation. Dev Biol 2014; 393:44-56. [PMID: 24995796 DOI: 10.1016/j.ydbio.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023]
Abstract
Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.
Collapse
Affiliation(s)
- Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Hardwick LJA, Philpott A. Nervous decision-making: to divide or differentiate. Trends Genet 2014; 30:254-61. [PMID: 24791612 PMCID: PMC4046230 DOI: 10.1016/j.tig.2014.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 01/07/2023]
Abstract
Multiple mechanisms coordinate the cell cycle and neuronal differentiation. Lengthening of G1 phase is functionally important for differentiation. Cell cycle components can directly and independently affect neurogenesis. Differentiation factors can directly affect the cell cycle structure and machinery.
The intricate balance between proliferation and differentiation is of fundamental importance in the development of the central nervous system (CNS). The division versus differentiation decision influences both the number and identity of daughter cells produced, thus critically shaping the overall microstructure and function of the CNS. During the past decade, significant advances have been made to characterise the changes in the cell cycle during differentiation, and to uncover the multiple bidirectional links that coordinate these two processes. Here, we explore the nature and mechanistic basis of these links in the context of the developing CNS, highlighting new insights into transcriptional, post-translational, and epigenetic levels of interaction.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
29
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
30
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
31
|
Bao YY, Zhou SH, Fan J, Wang QY. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. Future Oncol 2014; 9:1353-64. [PMID: 23980682 DOI: 10.2217/fon.13.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apigenin, a natural phytoestrogen flavonoid, has potential biological effects, including antioxidative, anti-inflammatory and anticancer activities. The mechanisms of anticancer activities of apigenin are unknown. Some studies have found that apigenin inhibits GLUT-1 mRNA and protein expression in cancer cells. Thus, we hypothesized that apigenin exerts similar effects on head and neck cancers through its inhibition of GLUT-1 expression. In this article, we review the anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. In addition, we describe the current state of knowledge about the relationship between apigenin and GLUT-1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, Zhejiang Province, China
| | | | | | | |
Collapse
|
32
|
Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A. The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing. J Biol Chem 2013; 288:31624-34. [PMID: 24064211 PMCID: PMC3814758 DOI: 10.1074/jbc.m113.491928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Indexed: 01/03/2023] Open
Abstract
Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.
Collapse
Affiliation(s)
- Christophe Caillat
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
33
|
Tabrizi GA, Böse K, Reimann Y, Kessel M. Geminin is required for the maintenance of pluripotency. PLoS One 2013; 8:e73826. [PMID: 24069236 PMCID: PMC3777968 DOI: 10.1371/journal.pone.0073826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 12/28/2022] Open
Abstract
Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and the early neural ectoderm, and also in pluripotent embryonic stem cells. The genetic inactivation of geminin resulted in lethality after the first few cell divisions, and thus prohibited the outgrowth of pluripotent cells. We established embryonic stem cells allowing the deletion of the geminin gene by induction of of Cre-recombinase with tamoxifen. Here, we show that geminin deficiency quickly leads to a loss of pluripotency, and to differentiation into the mesendodermal direction with high Oct4/low Sox2 levels. Simultaneous loss of geminin and induction of the neural lineage resulted in immediate apoptosis. These results suggested that in early development geminin functions via the co-expressed Sox2 gene. We found that the stem cell enhancer SRR2 of Sox2 is occupied by the activating esBAF complex in the presence of geminin, but becomes epigenetically repressed in its absence by the Polycomb repressive complex PRC2. The importance of geminin for Sox2 expression also explains the absolute requirement for geminin during the induction of pluripotency by OSKM viruses. In summary, geminin is required for Sox2 expression, and thus for the maintenance of totipotency, pluripotency and the early neural lineage.
Collapse
Affiliation(s)
| | - Kerstin Böse
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yvonne Reimann
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Kessel
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
34
|
Hennig AK, Peng GH, Chen S. Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. PLoS One 2013; 8:e69721. [PMID: 23922782 PMCID: PMC3724885 DOI: 10.1371/journal.pone.0069721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/12/2013] [Indexed: 12/12/2022] Open
Abstract
Rod and cone photoreceptor neurons in the mammalian retina possess specialized cellular architecture and functional features for converting light to a neuronal signal. Establishing and maintaining these characteristics requires appropriate expression of a specific set of genes, which is tightly regulated by a network of photoreceptor transcription factors centered on the cone-rod homeobox protein CRX. CRX recruits transcription coactivators p300 and CBP to acetylate promoter-bound histones and activate transcription of target genes. To further elucidate the role of these two coactivators, we conditionally knocked out Ep300 and/or CrebBP in differentiating rods or cones, using opsin-driven Cre recombinase. Knockout of either factor alone exerted minimal effects, but loss of both factors severely disrupted target cell morphology and function: the unique nuclear chromatin organization seen in mouse rods was reversed, accompanied by redistribution of nuclear territories associated with repressive and active histone marks. Transcription of many genes including CRX targets was severely impaired, correlating with reduced histone H3/H4 acetylation (the products of p300/CBP) on target gene promoters. Interestingly, the presence of a single wild-type allele of either coactivator prevented many of these defects, with Ep300 more effective than Cbp. These results suggest that p300 and CBP play essential roles in maintaining photoreceptor-specific structure, function and gene expression.
Collapse
Affiliation(s)
- Anne K. Hennig
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
35
|
Slawny N, O'Shea KS. Geminin promotes an epithelial-to-mesenchymal transition in an embryonic stem cell model of gastrulation. Stem Cells Dev 2013; 22:1177-89. [PMID: 23249188 DOI: 10.1089/scd.2012.0050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geminin is a nuclear protein that performs the related functions of modulating cell cycle progression by binding Cdt1, and controlling differentiation by binding transcription factors. Since embryonic stem cells (ESC) and the epiblast share a similar gene expression profile and an attenuated cell cycle, ESC form an accessible and tractable model system to study lineage choice at gastrulation. We derived several ESC lines in which Geminin can be inducibly expressed, and employed short hairpin RNAs targeting Geminin. As in the embryo, a lack of Geminin protein resulted in DNA damage and cell death. In monolayer culture, in defined medium, Geminin supported neural differentiation; however, in three-dimensional culture, overexpression of Geminin promoted mesendodermal differentiation and epithelial-to-mesenchymal transition. In vitro, ESC overexpressing Geminin rapidly recolonized a wound, downregulated E-cadherin expression, and activated Wnt signaling. We suggest that Geminin may promote differentiation via binding Groucho/TLE proteins and upregulating canonical Wnt signaling.
Collapse
Affiliation(s)
- Nicole Slawny
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
36
|
Xu JC, Xiao MF, Jakovcevski I, Sivukhina E, Hargus G, Cui YF, Irintchev A, Schachner M, Bernreuther C. The extracellular matrix glycoprotein tenascin-R regulates neurogenesis during development and in the adult dentate gyrus of mice. J Cell Sci 2013; 127:641-52. [DOI: 10.1242/jcs.137612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal generation of inhibitory γ-aminobutyric acid synthesizing (GABAergic) neurons is characteristic of neuropsychological disorders. We provide evidence that the extracellular matrix molecule tenascin-R (TNR) – being predominantly expressed, among neurons, by subpopulation of interneurons - plays a role in the generation of GABAergic and granule neurons in the murine dentate gyrus by regulating fate determination of neural stem/progenitor cells (NSCs). During development, absence of TNR in constitutively TNR-deficient (TNR−/−) mice results in increased numbers of dentate gyrus GABAergic neurons, being associated with decreased expression of its receptor β1 integrin, increased activation of p38 MAPK, and increased expression of the GABAergic specification gene ASCL1. Postnatally, increased GABAergic input to adult hippocampal NSCs in TNR−/− mice is associated not only with increased numbers of GABAergic and, particularly, parvalbumin-immunoreactive neurons, as seen during development, but also with increased numbers of granule neurons, thus contributing to the increased differentiation of NSCs into granule cells. These findings indicate the importance of TNR in the regulation of hippocampal neurogenesis and suggest that TNR acts through distinct direct and indirect mechanisms during development and in the adult.
Collapse
|
37
|
Geminin regulates the transcriptional and epigenetic status of neuronal fate-promoting genes during mammalian neurogenesis. Mol Cell Biol 2012; 32:4549-60. [PMID: 22949506 DOI: 10.1128/mcb.00737-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized neural cells derived from embryonic stem and embryonal carcinoma cells in vitro and neural stem cells from mouse forebrain. In all of these contexts, geminin antagonized the ability of neural basic helix-loop-helix (bHLH) transcription factors to activate transcriptional programs promoting neurogenesis. Furthermore, geminin promoted a bivalent chromatin state, characterized by the presence of both activating and repressive histone modifications, at genes encoding transcription factors that promote neurogenesis. This epigenetic state restrains the expression of genes that regulate commitment of undifferentiated stem and neuronal precursor cells to neuronal lineages. However, maintaining geminin at high levels was not sufficient to prevent terminal neuronal differentiation. Therefore, these data support a model whereby geminin promotes the neuronal precursor cell state by modulating both the epigenetic status and expression of genes encoding neurogenesis-promoting factors. Additional developmental signals acting in these cells can then control their transition toward terminal neuronal or glial differentiation during mammalian neurogenesis.
Collapse
|
38
|
Barry KA, Schultz KM, Payne CJ, McGarry TJ. Geminin is required for mitotic proliferation of spermatogonia. Dev Biol 2012; 371:35-46. [PMID: 22898305 DOI: 10.1016/j.ydbio.2012.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells divide throughout life, maintaining their own population and giving rise to differentiated gametes. The unstable regulatory protein Geminin is thought to be one of the factors that determine whether stem cells continue to divide or terminally differentiate. Geminin regulates the extent of DNA replication and is thought to maintain cells in an undifferentiated state by inhibiting various transcription factors and chromatin remodeling proteins. To examine how Geminin might regulate spermatogenesis, we developed two conditional mouse models in which the Geminin gene (Gmnn) is deleted from either spermatogonia or meiotic spermatocytes. Deleting Geminin from spermatogonia causes complete sterility in male mice. Gmnn(-/-) spermatogonia disappear during the initial wave of mitotic proliferation that occurs during the first week of life. Gmnn(-/-) spermatogonia exhibit more double-stranded DNA breaks than control cells, consistent with a defect in DNA replication. They maintain expression of genes associated with the undifferentiated state and do not prematurely express genes characteristic of more differentiated spermatogonia. In contrast, deleting Geminin from spermatocytes does not disrupt meiosis or the differentiation of spermatids into mature sperm. In females, Geminin is not required for meiosis, oocyte differentiation, or fertility after the embryonic period of mitotic proliferation has ceased. We conclude that Geminin is absolutely required for mitotic proliferation of spermatogonia but does not regulate their differentiation. Our results suggest that Geminin maintains replication fidelity during the mitotic phase of spermatogenesis, ensuring the precise duplication of genetic information for transmission to the next generation.
Collapse
Affiliation(s)
- Kelly A Barry
- Feinberg Cardiovascular Research Institute, Department of Medicine, and Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
39
|
Abstract
During embryonic development, cells must divide to produce appropriate numbers, but later must exit the cell cycle to allow differentiation. How these processes of proliferation and differentiation are co-ordinated during embryonic development has been poorly understood until recently. However, a number of studies have now given an insight into how the cell cycle machinery, including cyclins, CDKs (cyclin-dependent kinases), CDK inhibitors and other cell cycle regulators directly influence mechanisms that control cell fate and differentiation. Conversely, examples are emerging of transcriptional regulators that are better known for their role in driving the differentiated phenotype, which also play complementary roles in controlling cell cycle progression. The present review will summarise our current understanding of the mechanisms co-ordinating the cell cycle and differentiation in the developing nervous system, where these links have been, perhaps, most extensively studied.
Collapse
|
40
|
Kerns SL, Schultz KM, Barry KA, Thorne TM, McGarry TJ. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition. PLoS One 2012; 7:e38009. [PMID: 22662261 PMCID: PMC3360639 DOI: 10.1371/journal.pone.0038009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/28/2012] [Indexed: 12/23/2022] Open
Abstract
In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways.
Collapse
Affiliation(s)
- Sarah L. Kerns
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kathryn M. Schultz
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kelly A. Barry
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tina M. Thorne
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Thomas J. McGarry
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Emmett LSD, O'Shea KS. Geminin is required for epithelial to mesenchymal transition at gastrulation. Stem Cells Dev 2012; 21:2395-409. [PMID: 22335560 DOI: 10.1089/scd.2011.0483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Geminin is a multifunctional protein previously suggested to both maintain the bone morphogenetic protein inhibition required for neural induction and to control cell-cycle progression and cell fate in the early embryo. Since Geminin is required in the blastocyst on E3.5, we employed shRNA to examine its role during postimplantation development. Geminin knockdown inhibited the epithelial to mesenchymal transition (EMT) required at gastrulation and neural crest delamination, resulting in anterior-posterior axis and patterning defects, while overexpression promoted EMT at both locations. Geminin was negatively correlated with expression of E-cadherin, which is critically involved in controlling epithelial architecture. In addition, Geminin expression level was correlated with Wnt signaling and expression of the Wnt target gene Axin2 and with Msx2, and negatively correlated with the expression of Bmp4 and Neurog1 in quantitative reverse transcriptase-polymerase chain reaction analysis of RNAs from individual embryos. These results suggest that in addition to patterning the early embryo, Geminin plays a previously unrecognized role in EMT via its ability to affect Wnt signaling and E-cadherin expression.
Collapse
Affiliation(s)
- Lisa S D Emmett
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|