1
|
Liu X, Wu J, Peng Y, Qian H, Lv X, Li F, Jin K, Niu Y, Song J, Han W, Chen G, Li B, Zuo Q. Chicken Primordial Germ Cells Do Not Proliferate in Insulin-Lacking Media. Int J Mol Sci 2025; 26:3122. [PMID: 40243906 PMCID: PMC11988930 DOI: 10.3390/ijms26073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Insulin is an important component of stem cell cultures; however, its role in the proliferation of avian primordial germ cells (PGCs) is unknown. The proliferation of PGCs in cultures varies and the growth factors and signaling pathways necessary to induce the proliferation of PGCs in chickens are unknown. Therefore, we conducted the present study to investigate the effect of insulin on the survival and proliferation of PGCs. In this study, we observed that under this culture system, PGCs proliferate in the presence of insulin, but do not proliferate in the absence of insulin. Furthermore, in insulin-lacking media, the expression of pluripotency genes, including LIN28, NANOG, POUV, and SOX2, was markedly decreased. Similarly, the expression of cell adhesion proteins ZO-1, Occludin, and JAM-A was significantly reduced. Elevated levels of ROS, GSSG, and MDA reduced the redox capacity of the cells and induced apoptosis. Subsequent transcriptome analyses revealed that insulin is one of the key factors in the proliferation of chicken PGCs through the regulation of downstream genes by PI3K/AKT, ECM-receptor interaction, Wnt, and P53 signaling, and that these downstream genes may be important for PGCs' proliferation and survival.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Wu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoqian Lv
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Fan Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Li Y, Ma R, Hao X. Therapeutic role of PTEN in tissue regeneration for management of neurological disorders: stem cell behaviors to an in-depth review. Cell Death Dis 2024; 15:268. [PMID: 38627382 PMCID: PMC11021430 DOI: 10.1038/s41419-024-06657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) represents the initial tumor suppressor gene identified to possess phosphatase activity, governing various cellular processes including cell cycle regulation, migration, metabolic pathways, autophagy, oxidative stress response, and cellular senescence. Current evidence suggests that PTEN is critical for stem cell maintenance, self-renewal, migration, lineage commitment, and differentiation. Based on the latest available evidence, we provide a comprehensive overview of the mechanisms by which PTEN regulates activities of different stem cell populations and influences neurological disorders, encompassing autism, stroke, spinal cord injury, traumatic brain injury, Alzheimer's disease and Parkinson's disease. This review aims to elucidate the therapeutic impacts and mechanisms of PTEN in relation to neurogenesis or the stem cell niche across a range of neurological disorders, offering a foundation for innovative therapeutic approaches aimed at tissue repair and regeneration in neurological disorders. This review unravels novel therapeutic strategies for tissue restoration and regeneration in neurological disorders based on the regulatory mechanisms of PTEN on neurogenesis and the stem cell niche.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, 999078, Macau, China.
| | - Ruishuang Ma
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xia Hao
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| |
Collapse
|
3
|
Nowwarote N, Osathanon T, Fournier BPJ, Theerapanon T, Yodsanga S, Kamolratanakul P, Porntaveetus T, Shotelersuk V. PTEN regulates proliferation and osteogenesis of dental pulp cells and adipogenesis of human adipose-derived stem cells. Oral Dis 2023; 29:735-746. [PMID: 34558757 DOI: 10.1111/odi.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Yodsanga
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Paksinee Kamolratanakul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
4
|
Hassan G, Seno M. ERBB Signaling Pathway in Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:65-81. [PMID: 36587302 DOI: 10.1007/978-3-031-12974-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) was first tyrosine kinase receptor linked to human cancers. EGFR or ERBB1 is a member of ERBB subfamily, which consists of four type I transmembrane receptor tyrosine kinases, ERBB1, 2, 3 and 4. ERBBs form homo/heterodimers after ligand binding except ERBB2 and consequently becomes activated. Different signal pathways, such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), RAS/RAF/MEK/ERK, phospholipase Cγ and JAK-STAT, are triggered by ERBB activation. Since ERBBs, through these pathways, regulate stemness and differentiation of cancer stem cells (CSCs), their roles in CSC tumorigenicity have extensively been investigated. The hyperactivation of ERBBs and its downstream pathways stimulated by either genetic and/or epigenetic factors are frequently described in many types of human cancers. Their dysregulations make cells acquiring CSC characters such as survival, tumorigenicity and stemness. Because of the roles in tumor growth and progress, ERBBs are considered to be one of the drug targets as cancer treatment strategy. In this chapter, we will summarize the structure, function and roles of ERBB subfamily along with their relative pathways regulating the stemness and tumorigenicity of CSCs. Finally, we will discuss the targeting therapy strategies of cancer along with ERBBs in addition to some challenges and future perspectives.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Laboratory of Natural Food and Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Okawa ER, Gupta MK, Kahraman S, Goli P, Sakaguchi M, Hu J, Duan K, Slipp B, Lennerz JK, Kulkarni RN. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab 2021; 47:101164. [PMID: 33453419 PMCID: PMC7890209 DOI: 10.1016/j.molmet.2021.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) receptors are important for the growth and development of embryonic tissues. To directly define their roles in the maintenance of pluripotency and differentiation of stem cells, we knocked out both receptors in induced pluripotent stem cells (iPSCs). iPSCs lacking both insulin and IGF-1 receptors (double knockout, DKO) exhibited preserved pluripotency potential despite decreased expression of transcription factors Lin28a and Tbx3 compared to control iPSCs. While embryoid body and teratoma assays revealed an intact ability of DKO iPSCs to form all three germ layers, the latter were composed of primitive neuroectodermal tumor-like cells in the DKO group. RNA-seq analyses of control vs DKO iPSCs revealed differential regulation of pluripotency, developmental, E2F1, and apoptosis pathways. Signaling analyses pointed to downregulation of the AKT/mTOR pathway and upregulation of the STAT3 pathway in DKO iPSCs in the basal state and following stimulation with insulin/IGF-1. Directed differentiation toward the three lineages was dysregulated in DKO iPSCs, with significant downregulation of key markers (Cebpα, Fas, Pparγ, and Fsp27) in adipocytes and transcription factors (Ngn3, Isl1, Pax6, and Neurod1) in pancreatic endocrine progenitors. Furthermore, differentiated pancreatic endocrine progenitor cells from DKO iPSCs showed increased apoptosis. We conclude that insulin and insulin-like growth factor-1 receptors are indispensable for normal lineage development and perturbations in the function and signaling of these receptors leads to upregulation of alternative compensatory pathways to maintain pluripotency. Insulin and IGF-1 receptor signaling regulate the expression of pluripotency genes Lin28 and Tbx3. The STAT3 pathway is upregulated in DKO iPSCs. RNA-seq analyses revealed key developmental and apoptosis pathways regulated by insulin and IGF-1 receptors. Lineage development was dysregulated in DKO iPSCs with downregulation of key mesoderm and endodermal markers.
Collapse
Affiliation(s)
- Erin R Okawa
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Division of Endocrinology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sevim Kahraman
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Praneeth Goli
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Masaji Sakaguchi
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Kaiti Duan
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brittany Slipp
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Wenyang Jieyu Decoction Alleviates Depressive Behavior in the Rat Model of Depression via Regulation of the Intestinal Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3290450. [PMID: 32774410 PMCID: PMC7396094 DOI: 10.1155/2020/3290450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022]
Abstract
Background Intestinal microbiota plays an important role in the occurrence and treatment of depression. This study investigated whether Wenyang Jieyu decoction (WYJYD) alleviates depressive behavior in the rat model via regulation of the intestinal microbiota. Methods Rat model of depression was established by stress stimulus. SD male rats were randomly allocated into normal control, model, model + low-dose WYJYD (1.89 g/kg/d), model + medium-dose WYJYD (3.08 g/kg/d), model + high-dose WYJYD (7.56 g/kg/d), and model + fluoxetine (3.33 mg/kg/d) groups. Behavioral changes were observed using forced swim test. Histopathological changes in hippocampal tissue were examined by HE staining. Indicators in serum were detected by ELISA. Indicators in hippocampal tissue were detected by qPCR and western blot. Microbiota distribution in feces was detected using high-throughput 16S rRNA gene sequencing. Results Compared with the model group, the immobility time in WYJYD and fluoxetine groups was significantly decreased (P < 0.05), and the cell structure was significantly improved. Compared with the model group, the 5-hydroxytryptamine (5-HT) and norepinephrine (NE) levels in medium- and high-dose WYJYD groups and the brain-derived neurotrophic factor (BDNF) level in the high-dose WYJYD group were significantly increased (P < 0.05, all), and the fibroblast growth factor-2 (FGF2), forkhead box protein G1 (FOXG1), and phospho-protein kinase B/protein kinase B (p-AKT/AKT) expressions were increased with WYJYD treatments. The Chao1 and ACE indices in high-dose WYJYD and the Simpson and Shannon indices in medium-dose WYJYD were significantly different than the model group. The similarity of the intestinal microbial community of each group after WYJYD treatment tended to be closer to the control group. Compared with the model group, as the dosage of WYJYD increased, the abundance of genera Coprococcus, Lachnospira, and rc4-4 was significantly increased, while the abundance of genera Desulfovibrio, Burkholderia, and Enterococcus was significantly decreased. Conclusion WYJYD may alleviate the depressive behavior of the rat model by regulating the intestinal microbiota and neurotransmitters.
Collapse
|
7
|
Venniyoor A. PTEN: A Thrifty Gene That Causes Disease in Times of Plenty? Front Nutr 2020; 7:81. [PMID: 32582754 PMCID: PMC7290048 DOI: 10.3389/fnut.2020.00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The modern obesity epidemic with associated disorders of metabolism and cancer has been attributed to the presence of "thrifty genes". In the distant past, these genes helped the organism to improve energy efficiency and store excess energy safely as fat to survive periods of famine, but in the present day obesogenic environment, have turned detrimental. I propose PTEN as the likely gene as it has functions that span metabolism, cancer and reproduction, all of which are deranged in obesity and insulin resistance. The activity of PTEN can be calibrated in utero by availability of nutrients by the methylation arm of the epigenetic pathway. Deficiency of protein and choline has been shown to upregulate DNA methyltransferases (DNMT), especially 1 and 3a; these can then methylate promoter region of PTEN and suppress its expression. Thus, the gene is tuned like a metabolic rheostat proportional to the availability of specific nutrients, and the resultant "dose" of the protein, which sits astride and negatively regulates the insulin-PI3K/AKT/mTOR pathway, decides energy usage and proliferation. This "fixes" the metabolic capacity of the organism periconceptionally to a specific postnatal level of nutrition, but when faced with a discordant environment, leads to obesity related diseases.
Collapse
Affiliation(s)
- Ajit Venniyoor
- Department of Medical Oncology, National Oncology Centre, The Royal Hospital, Muscat, Oman
| |
Collapse
|
8
|
Zimmerlin L, Zambidis ET. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Exp Cell Res 2020; 390:111935. [PMID: 32151493 PMCID: PMC7171895 DOI: 10.1016/j.yexcr.2020.111935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Tankyrase 1 (TNKS1; PARP-5a) and Tankyrase 2 (TNKS2; PARP-5b) are poly-ADP-ribosyl-polymerase (PARP)-domain-containing proteins that regulate the activities of a wide repertoire of target proteins via post-translational addition of poly-ADP-ribose polymers (PARylation). Although tankyrases were first identified as regulators of human telomere elongation, important and expansive roles of tankyrase activity have recently emerged in the development and maintenance of stem cell states. Herein, we summarize the current state of knowledge of the various tankyrase-mediated activities that may promote human naïve and 'extended' pluripotency'. We review the putative role of tankyrase and PARP inhibition in trophectoderm specification, telomere elongation, DNA repair and chromosomal segregation, metabolism, and PTEN-mediated apoptosis. Importantly, tankyrases possess PARP-independent activities that include regulation of MDC1-associated DNA repair by homologous recombination (HR) and autophagy/pexophagy, which is an essential mechanism of protein synthesis in the preimplantation embryo. Additionally, tankyrases auto-regulate themselves via auto-PARylation which augments their cellular protein levels and potentiates their non-PARP tankyrase functions. We propose that these non-PARP-related activities of tankyrase proteins may further independently affect both naïve and extended pluripotency via mechanisms that remain undetermined. We broadly outline a hypothetical framework for how inclusion of a tankyrase/PARP inhibitor in small molecule cocktails may stabilize and potentiate naïve and extended pluripotency via pleiotropic routes and mechanisms.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| | - Elias T Zambidis
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| |
Collapse
|
9
|
Gao J, Petraki S, Sun X, Brooks LA, Lynch TJ, Hsieh CL, Elteriefi R, Lorenzana Z, Punj V, Engelhardt JF, Parekh KR, Ryan AL. Derivation of induced pluripotent stem cells from ferret somatic cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L671-L683. [PMID: 32073882 PMCID: PMC7191474 DOI: 10.1152/ajplung.00456.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.
Collapse
Affiliation(s)
- Jinghui Gao
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Sophia Petraki
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Leonard A Brooks
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Thomas J Lynch
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Chih-Lin Hsieh
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Reem Elteriefi
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
11
|
Pten-mediated Gsk3β modulates the naïve pluripotency maintenance in embryonic stem cells. Cell Death Dis 2020; 11:107. [PMID: 32034125 PMCID: PMC7007436 DOI: 10.1038/s41419-020-2271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (ESCs) are isolated from the inner cell mass of blastocysts, and they exist in different states of pluripotency—naïve and primed states. Pten is a well-known tumor suppressor. Here, we generated Pten−/− mouse ESCs with the CRISPR-Cas9 system and verified that Pten−/− ESCs maintained naïve pluripotency by blocking Gsk3β activity. Serum/LIF and 2i (MAPK and GSK3 inhibitors) conditions are commonly used for ESC maintenance. We show that the Pten-inhibitor SF1670 contributed to sustaining mouse ESCs and that Pten activation by the S380A, T382A, and T383A mutations (Pten-A3) suppressed the pluripotency of ESCs. The in vivo teratoma formation ability of SF1670-treated ESCs increased, while the Pten-A3 mutations suppressed teratoma formation. Furthermore, the embryoid bodies derived from Pten-deficient ESCs or SF1670-treated wild-type ESCs showed greater expression of ectoderm and pluripotency markers. These results suggest that Pten-mediated Gsk3β modulates the naïve pluripotency of ESCs and that Pten ablation regulates the lineage-specific differentiation.
Collapse
|
12
|
Abstract
Specificity in signal transduction is determined by the ability of cells to "encode" and subsequently "decode" different environmental signals. Akin to computer software, this "signaling code" governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
13
|
Corsini NS, Peer AM, Moeseneder P, Roiuk M, Burkard TR, Theussl HC, Moll I, Knoblich JA. Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation. Cell Stem Cell 2019; 22:543-558.e12. [PMID: 29625069 DOI: 10.1016/j.stem.2018.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 01/05/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
Stem cell-specific transcriptional networks are well known to control pluripotency, but constitutive cellular processes such as mRNA splicing and protein synthesis can add complex layers of regulation with poorly understood effects on cell-fate decisions. Here, we show that the RNA binding protein HTATSF1 controls embryonic stem cell differentiation by regulating multiple aspects of RNA processing during ribosome biogenesis. HTATSF1, in a complex with splicing factor SF3B1, controls intron removal from ribosomal protein transcripts and regulates ribosomal RNA transcription and processing, thereby controlling 60S ribosomal abundance and protein synthesis. HTATSF1-dependent protein synthesis is essential for naive pre-implantation epiblast to transition into post-implantation epiblast, a stage with transiently low protein synthesis, and further differentiation toward neuroectoderm. Together, these results identify coordinated regulation of ribosomal RNA and protein synthesis by HTATSF1 and show that this essential mechanism controls protein synthesis during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Angela M Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Paul Moeseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mykola Roiuk
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Hans-Christian Theussl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
14
|
Madsen RR, Knox RG, Pearce W, Lopez S, Mahler-Araujo B, McGranahan N, Vanhaesebroeck B, Semple RK. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc Natl Acad Sci U S A 2019; 116:8380-8389. [PMID: 30948643 PMCID: PMC6486754 DOI: 10.1073/pnas.1821093116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The PIK3CA gene, which encodes the p110α catalytic subunit of PI3 kinase (PI3K), is mutationally activated in cancer and in overgrowth disorders known as PIK3CA-related overgrowth spectrum (PROS). To determine the consequences of genetic PIK3CA activation in a developmental context of relevance to both PROS and cancer, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous knockin of PIK3CAH1047R While heterozygous iPSCs remained largely similar to wild-type cells, homozygosity for PIK3CAH1047R caused widespread, cancer-like transcriptional remodeling, partial loss of epithelial morphology, up-regulation of stemness markers, and impaired differentiation to all three germ layers in vitro and in vivo. Genetic analysis of PIK3CA-associated cancers revealed that 64% had multiple oncogenic PIK3CA copies (39%) or additional PI3K signaling pathway-activating "hits" (25%). This contrasts with the prevailing view that PIK3CA mutations occur heterozygously in cancer. Our findings suggest that a PI3K activity threshold determines pathological consequences of oncogenic PIK3CA activation and provide insight into the specific role of this pathway in human pluripotent stem cells.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Rachel G Knox
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
| | - Wayne Pearce
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Saioa Lopez
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Betania Mahler-Araujo
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Histopathology Department, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Bart Vanhaesebroeck
- University College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | - Robert K Semple
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;
- National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, United Kingdom
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
15
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
16
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
17
|
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2017; 143:3050-60. [PMID: 27578176 DOI: 10.1242/dev.137075] [Citation(s) in RCA: 778] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
Collapse
Affiliation(s)
- Jason S L Yu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
18
|
Zhang S, Zhao L, Wang J, Chen N, Yan J, Pan X. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death Dis 2017; 8:e2548. [PMID: 28079892 PMCID: PMC5386383 DOI: 10.1038/cddis.2016.480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022]
Abstract
Poor cell survival and limited functional benefits have restricted mesenchymal stem cell (MSC) efficacy for treating myocardial infarction (MI), suggesting that a better understanding of stem cell biology is needed. The transcription factor HIF-2α is an essential regulator of the transcriptional response to hypoxia, which can interact with embryonic stem cells (ESCs) transcription factor Oct4 and modulate its signaling. Here, we obtained very small embryonic-like mesenchymal stem cells (vselMSCs) from MI patients, which possessed the very small embryonic-like stem cells' (VSELs) morphology as well as ESCs' pluripotency. Using microarray analysis, we compared HIF-2α-regulated gene profiles in vselMSCs with ESC profiles and determined that HIF-2α coexpressed Oct4 in vselMSCs similarly to ESCs. However, this coexpression was absent in unpurified MSCs (uMSCs). Under hypoxic condition, vselMSCs exhibited stronger survival, proliferation and differentiation than uMSCs. Transplantation of vselMSCs caused greater improvement in cardiac function and heart remodeling in the infarcted rats. We further demonstrated that HIF-2α and Oct4 jointly regulate their relative downstream gene expressions, including Bcl2 and Survivin; the important pluripotent markers Nanog, Klf4, and Sox2; and Ang-1, bFGF, and VEGF, promoting angiogenesis and engraftment. Importantly, these effects were generally magnified by upregulation of HIF-2α and Oct4 induced by HIF-2α or Oct4 overexpression, and the greatest improvements were elicited after co-overexpressing HIF-2α and Oct4; overexpressing one transcription factor while silencing the other canceled this increase, and HIF-2α or Oct4 silencing abolished these effects. Together, these findings demonstrated that HIF-2α in vselMSCs cooperated with Oct4 in survival and function. The identification of the cooperation between HIF-2α and Oct4 will lead to deeper characterization of the downstream targets of this interaction in vselMSCs and will have novel pathophysiological implications for the repair of infarcted myocardium.
Collapse
Affiliation(s)
- Shaoheng Zhang
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Road, Tianhe District, Guangzhou 510630, China
| | - Lan Zhao
- Department of Cardiology, Dahua Hospital, 901 Laohumin Rd, Xuhui District, Shanghai 200237, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, Tongji Univercity School of Medicine, 450 Tengyue Rd, Shanghai 200090, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, Tongji Univercity School of Medicine, 450 Tengyue Rd, Shanghai 200090, China
| | - Jian Yan
- Department of Cardiology, Dahua Hospital, 901 Laohumin Rd, Xuhui District, Shanghai 200237, China
| | - Xin Pan
- Central Laboratory, Yangpu Hospital, Tongji Univercity School of Medicine, 450 Tengyue Rd, Shanghai 200090, China
| |
Collapse
|
19
|
Li HH, Lin SL, Huang CN, Lu FJ, Chiu PY, Huang WN, Lai TJ, Lin CL. miR-302 Attenuates Amyloid-β-Induced Neurotoxicity through Activation of Akt Signaling. J Alzheimers Dis 2016; 50:1083-98. [PMID: 26890744 DOI: 10.3233/jad-150741] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deficiency of insulin signaling has been linked to diabetes and ageing-related neurodegenerative diseases such as Alzheimer's disease (AD). In this regard, brains exhibit defective insulin receptor substrate-1 (IRS-1) and hence result in alteration of insulin signaling in progression of AD, the most common cause of dementia. Consequently, dysregulation of insulin signaling plays an important role in amyloid-β (Aβ)-induced neurotoxicity. As the derivation of induced pluripotent stem cells (iPSC) involves cell reprogramming, it may provide a means for regaining the control of ageing-associated dysfunction and neurodegeneration via affecting insulin-related signaling. To this, we found that an embryonic stem cell (ESC)-specific microRNA, miR-302, silences phosphatase and tensin homolog (PTEN) to activate Akt signaling, which subsequently stimulates nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) elevation and hence inhibits Aβ-induced neurotoxicity. miR-302 is predominantly expressed in iPSCs and is known to regulate several important biological processes of anti-oxidative stress, anti-apoptosis, and anti-aging through activating Akt signaling. In addition, we also found that miR-302-mediated Akt signaling further stimulates Nanog expression to suppress Aβ-induced p-Ser307 IRS-1 expression and thus enhances tyrosine phosphorylation and p-Ser 473-Akt/p-Ser 9-GSK3β formation. Furthermore, our in vivo studies revealed that the mRNA expression levels of both Nanog and miR-302-encoding LARP7 genes were significantly reduced in AD patients' blood cells, providing a novel diagnosis marker for AD. Taken together, our findings demonstrated that miR-302 is able to inhibit Aβ-induced cytotoxicity via activating Akt signaling to upregulate Nrf2 and Nanog expressions, leading to a marked restoration of insulin signaling in AD neurons.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wen-Nung Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
20
|
Hersmus R, van Bever Y, Wolffenbuttel KP, Biermann K, Cools M, Looijenga LHJ. The biology of germ cell tumors in disorders of sex development. Clin Genet 2016; 91:292-301. [PMID: 27716895 DOI: 10.1111/cge.12882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023]
Abstract
Development of a malignant germ cell tumor, i.e., germ cell cancer (GCC) in individuals with disorders of sex development (DSD) depends on a number of (epi-)genetic factors related to early gonadal- and germ cell development, possibly related to genetic susceptibility. Fetal development of germ cells is orchestrated by strict processes involving specification, migration and the development of a proper gonadal niche. In this review we will discuss the early (epi-)genetic events in normal and aberrant germ cell and gonadal development. Focus will be on the formation of the precursor lesions of GCC in individuals who have DSD. In our view, expression of the different embryonic markers in, and epigenetic profile of the precursor lesions reflects the developmental stage in which these cells are blocked in their maturation. Therefore, these are not a primary pathogenetic driving force. Progression later in life towards a full blown cancer likely depends on additional factors such as a changed endocrine environment in a susceptible individual. Genetic susceptibility is, as evidenced by the presence of specific risk genetic variants (SNPs) in patients with a testicular GCC, related to genes involved in early germ cell and gonadal development.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katja P Wolffenbuttel
- Department of Pediatric Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine Cools
- Department of Pediatric Endocrinology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | | |
Collapse
|
21
|
Utility of Lymphoblastoid Cell Lines for Induced Pluripotent Stem Cell Generation. Stem Cells Int 2016; 2016:2349261. [PMID: 27375745 PMCID: PMC4914736 DOI: 10.1155/2016/2349261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 05/08/2016] [Indexed: 12/15/2022] Open
Abstract
A large number of EBV immortalized LCLs have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into iPSCs have paved the way for generating more relevant in vitro disease models using this existing bioresource. However, the overall reprogramming efficiency and success rate remain poor and very little is known about the mechanistic changes that take place at the transcriptome and cellular functional level during LCL-to-iPSC reprogramming. Here, we report a new optimized LCL-to-iPSC reprogramming protocol using episomal plasmids encoding pluripotency transcription factors and mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate using this optimized protocol. Further, we investigated the transcriptional changes in mRNA and miRNA levels, using FC-abs ≥ 2.0 and FDR ≤ 0.05 cutoffs; 5,228 mRNAs and 77 miRNAs were differentially expressed during LCL-to-iPSC reprogramming. The functional enrichment analysis of the upregulated genes and activation of human pluripotency pathways in the reprogrammed iPSCs showed that the generated iPSCs possess transcriptional and functional profiles very similar to those of human ESCs.
Collapse
|
22
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
23
|
Thakore-Shah K, Koleilat T, Jan M, John A, Pyle AD. REST/NRSF Knockdown Alters Survival, Lineage Differentiation and Signaling in Human Embryonic Stem Cells. PLoS One 2015; 10:e0145280. [PMID: 26690059 PMCID: PMC4699193 DOI: 10.1371/journal.pone.0145280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
REST (RE1 silencing transcription factor), also known as NRSF (neuron-restrictive silencer factor), is a well-known transcriptional repressor of neural genes in non-neural tissues and stem cells. Dysregulation of REST activity is thought to play a role in diverse diseases including epilepsy, cancer, Down’s syndrome and Huntington’s disease. The role of REST/NRSF in control of human embryonic stem cell (hESC) fate has never been examined. To evaluate the role of REST in hESCs we developed an inducible REST knockdown system and examined both growth and differentiation over short and long term culture. Interestingly, we have found that altering REST levels in multiple hESC lines does not result in loss of self-renewal but instead leads to increased survival. During differentiation, REST knockdown resulted in increased MAPK/ERK and WNT signaling and increased expression of mesendoderm differentiation markers. Therefore we have uncovered a new role for REST in regulation of growth and early differentiation decisions in human embryonic stem cells.
Collapse
Affiliation(s)
- Kaushali Thakore-Shah
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - Tasneem Koleilat
- California State University, Northridge, CA, 91325, United States of America
| | - Majib Jan
- California State University, Northridge, CA, 91325, United States of America
| | - Alan John
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - April D. Pyle
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- * E-mail:
| |
Collapse
|
24
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
25
|
Quantitative Analysis of Robustness of Dynamic Response and Signal Transfer in Insulin mediated PI3K/AKT Pathway. Comput Chem Eng 2014; 71:715-727. [PMID: 25506104 DOI: 10.1016/j.compchemeng.2014.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Robustness is a critical feature of signaling pathways ensuring signal propagation with high fidelity in the event of perturbations. Here we present a detailed quantitative analysis of robustness in insulin mediated PI3K/AKT pathway, a critical signaling pathway maintaining self-renewal in human embryonic stem cells. Using global sensitivity analysis, we identified robustness promoting mechanisms that ensure (1) maintenance of a first order or overshoot dynamics of self-renewal molecule, p-AKT and (2) robust transfer of signals from oscillatory insulin stimulus to p-AKT in the presence of noise. Our results indicate that negative feedback controls the robustness to most perturbations. Faithful transfer of signal from the stimulating ligand to p-AKT occurs even in the presence of noise, albeit with signal attenuation and high frequency cut-off. Negative feedback contributes to signal attenuation, while positive regulators upstream of PIP3 contribute to signal amplification. These results establish precise mechanisms to modulate self-renewal molecules like p-AKT.
Collapse
|
26
|
Swartling FJ, Bolin S, Phillips JJ, Persson AI. Signals that regulate the oncogenic fate of neural stem cells and progenitors. Exp Neurol 2014; 260:56-68. [PMID: 23376224 PMCID: PMC3758390 DOI: 10.1016/j.expneurol.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/19/2013] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
Abstract
Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Anders I Persson
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, USA; Department of Neurology, Sandler Neurosciences Center, University of California, San Francisco, USA.
| |
Collapse
|
27
|
Testicular cancer: biology and biomarkers. Virchows Arch 2014; 464:301-13. [DOI: 10.1007/s00428-013-1522-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022]
|
28
|
Abstract
Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency.
Collapse
|
29
|
Li Y, Hong WX, Lan B, Xu X, Liu Y, Kong L, Li Y, Zhou S, Liu Y, Feng R, Jiang S, He Q, Tan J. PDGF mediates derivation of human embryonic germ cells. Differentiation 2013; 86:141-8. [DOI: 10.1016/j.diff.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/25/2022]
|
30
|
Inhibition of PTEN tumor suppressor promotes the generation of induced pluripotent stem cells. Mol Ther 2013; 21:1242-50. [PMID: 23568261 DOI: 10.1038/mt.2013.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated from patients with specific diseases by the transduction of reprogramming factors and can be useful as a cell source for cell transplantation therapy for various diseases with impaired organs. However, the low efficiency of iPSC derived from somatic cells (0.01-0.1%) is one of the major problems in the field. The phosphoinositide 3-kinase (PI3K) pathway is thought to be important for self-renewal, proliferation, and maintenance of embryonic stem cells (ESCs), but the contribution of this pathway or its well-known negative regulator, phosphatase, and tensin homolog deleted on chromosome ten (Pten), to somatic cell reprogramming remains largely unknown. Here, we show that activation of the PI3K pathway by the Pten inhibitor, dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate, improves the efficiency of germline-competent iPSC derivation from mouse somatic cells. This simple method provides a new approach for efficient generation of iPSCs.
Collapse
|
31
|
Becker L, Peterson J, Kulkarni S, Pasricha PJ. Ex vivo neurogenesis within enteric ganglia occurs in a PTEN dependent manner. PLoS One 2013; 8:e59452. [PMID: 23527198 PMCID: PMC3602370 DOI: 10.1371/journal.pone.0059452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/14/2013] [Indexed: 12/13/2022] Open
Abstract
A population of multipotent stem cells capable of differentiating into neurons and glia has been isolated from adult intestine in humans and rodents. While these cells may provide a pool of stem cells for neurogenesis in the enteric nervous system (ENS), such a function has been difficult to demonstrate in vivo. An extensive study by Joseph et al. involving 108 rats and 51 mice submitted to various insults demonstrated neuronal uptake of thymidine analog BrdU in only 1 rat. Here we introduce a novel approach to study neurogenesis in the ENS using an ex vivo organotypic tissue culturing system. Culturing longitudinal muscle and myenteric plexus tissue, we show that the enteric nervous system has tremendous replicative capacity with the majority of neural crest cells demonstrating EdU uptake by 48 hours. EdU+ cells express both neuronal and glial markers. Proliferation appears dependent on the PTEN/PI3K/Akt pathway with decreased PTEN mRNA expression and increased PTEN phosphorylation (inactivation) corresponding to increased Akt activity and proliferation. Inhibition of PTEN with bpV(phen) augments proliferation while LY294002, a PI3K inhibitor, blocks it. These data suggest that the ENS is capable of neurogenesis in a PTEN dependent manner.
Collapse
Affiliation(s)
- Laren Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Johann Peterson
- Department of Pediatrics, University of California Davis, Sacramento, California, United States of America
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Pankaj Jay Pasricha
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Ostrakhovitch EA, Semenikhin OA. The role of redox environment in neurogenic development. Arch Biochem Biophys 2012; 534:44-54. [PMID: 22910298 DOI: 10.1016/j.abb.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
The dynamic changes of cellular redox elements during neurogenesis allow the control of specific programs for selective lineage progression. There are many redox couples that influence the cellular redox state. The shift from a reduced to an oxidized state and vice versa may act as a cellular switch mechanism of stem cell mode of action from proliferation to differentiation. The redox homeostasis ensures proper functioning of redox-sensitive signaling pathways through oxidation/reduction of critical cysteine residues on proteins involved in signal transduction. This review presents the current knowledge on the relation between changes in the cellular redox environment and stem cell programming in the course of commitment to a restricted neural lineage, focusing on in vivo neurogenesis and in vitro neuronal differentiation. The first two sections outline the main systems that control the intracellular redox environment and make it more oxidative or reductive. The last section provides the background on redox-sensitive signaling pathways that regulate neurogenesis.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|
33
|
Hoofd C, Devreker F, Deneubourg L, Deleu S, Nguyen TMU, Sermon K, Englert Y, Erneux C. A specific increase in inositol 1,4,5-trisphosphate 3-kinase B expression upon differentiation of human embryonic stem cells. Cell Signal 2012; 24:1461-70. [DOI: 10.1016/j.cellsig.2012.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 12/12/2022]
|
34
|
Lipchina I, Studer L, Betel D. The expanding role of miR-302-367 in pluripotency and reprogramming. Cell Cycle 2012; 11:1517-23. [PMID: 22436490 DOI: 10.4161/cc.19846] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
MicroRNA (miRNA) has been shown to be essential for regulating cell fate and pluripotency; however, our knowledge of miRNA function in stem cells is incomplete due to experimental limitations and difficulties in identifying their physiological targets. Recent studies implicated hESC-expressed miRNAs (miR‑302-367 and miR‑371-373 clusters) in regulating BMP signaling and promoting pluripotency, suggesting that low levels of BMP signaling may promote pluripotency by preventing neural induction. A comprehensive list of miR‑302-367 targets recently identified by genome-wide approaches suggests a number of additional cellular processes and signaling pathways whose regulation by miR‑302-367 may promote pluripotency and reprogramming, such as cell cycle, epigenetic changes, metabolism and vesicular transfer.
Collapse
Affiliation(s)
- Inna Lipchina
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|