1
|
Francis TC, Yano H, Demarest TG, Shen H, Bonci A. High-Frequency Activation of Nucleus Accumbens D1-MSNs Drives Excitatory Potentiation on D2-MSNs. Neuron 2019; 103:432-444.e3. [PMID: 31221559 DOI: 10.1016/j.neuron.2019.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022]
Abstract
Subtypes of nucleus accumbens medium spiny neurons (MSNs) promote dichotomous outcomes in motivated behaviors. However, recent reports indicate enhancing activity of either nucleus accumbens (NAc) core MSN subtype augments reward, suggesting coincident MSN activity may underlie this outcome. Here, we report a collateral excitation mechanism in which high-frequency, NAc core dopamine 1 (D1)-MSN activation causes long-lasting potentiation of excitatory transmission (LLP) on dopamine receptor 2 (D2)-MSNs. Our mechanistic investigation demonstrates that this form of plasticity requires release of the excitatory peptide substance P from D1-MSNs and robust cholinergic interneuron activation through neurokinin receptor stimulation. We also reveal that D2-MSN LLP requires muscarinic 1 receptor activation, intracellular calcium signaling, and GluR2-lacking AMPAR insertion. This study uncovers a mechanism for shaping NAc core activity through the transfer of excitatory information from D1-MSNs to D2-MSNs and may provide a means for altering goal-directed behavior through coordinated MSN activity.
Collapse
Affiliation(s)
- T Chase Francis
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Hideaki Yano
- Intramural Research Program, Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hui Shen
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, School of Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Piantadosi PT, Yeates DC, Floresco SB. Cooperative and dissociable involvement of the nucleus accumbens core and shell in the promotion and inhibition of actions during active and inhibitory avoidance. Neuropharmacology 2018; 138:57-71. [DOI: 10.1016/j.neuropharm.2018.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
|
3
|
Willett JA, Johnson AG, Vogel AR, Patisaul HB, McGraw LA, Meitzen J. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster. J Neurophysiol 2018; 119:1576-1588. [PMID: 29361665 DOI: 10.1152/jn.00737.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.
Collapse
Affiliation(s)
- Jaime A Willett
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Physiology, North Carolina State University , Raleigh, North Carolina
| | - Ashlyn G Johnson
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
| | - Andrea R Vogel
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
4
|
de Kloet SF, Mansvelder HD, De Vries TJ. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem Pharmacol 2015. [PMID: 26208783 DOI: 10.1016/j.bcp.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit.
Collapse
Affiliation(s)
- Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Aguilar-Rivera M, Casanova J, Gatica R, Quirk G, Fuentealba J. Amphetamine sensitization is accompanied by an increase in prelimbic cortex activity. Neuroscience 2015; 288:1-9. [DOI: 10.1016/j.neuroscience.2014.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
|
6
|
Baker PM, Ragozzino ME. Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. ACTA ACUST UNITED AC 2014; 21:368-79. [PMID: 25028395 PMCID: PMC4105715 DOI: 10.1101/lm.034819.114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for conditional discrimination performance in which a switch in reward-predictive cues occurs every three to six trials. The GABA agonists baclofen and muscimol infused into the prelimbic cortex significantly impaired performance leading rats to adopt an inappropriate turn strategy. The NMDA receptor antagonist D-AP5 infused into the dorsomedial striatum or prelimbic cortex and dorsomedial striatum contralateral disconnection impaired performance due to a rat failing to switch a response choice for an entire trial block in about two out of 13 test blocks. In an additional study, contralateral disconnection did not affect nonswitch discrimination performance. The results suggest that the prelimbic cortex and dorsomedial striatum are necessary to support cue-guided behavioral switching. The prelimbic cortex may be critical for generating alternative response patterns while the dorsomedial striatum supports the selection of an appropriate response when cue information must be used to flexibly switch response patterns.
Collapse
Affiliation(s)
- Phillip M Baker
- Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, USA Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Michael E Ragozzino
- Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, USA Department of Psychology, University of Illinois at Chicago, Chicago, Illinois 60607, USA Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
7
|
Impact of neonatal NOS-1 inhibitor exposure on neurobehavioural measures and prefrontal-temporolimbic integration in the rat nucleus accumbens. Int J Neuropsychopharmacol 2014; 17:275-87. [PMID: 24025168 DOI: 10.1017/s1461145713000990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter that plays a significant role in the establishment and refinement of functional neural circuits. Genetic and post-mortem studies have suggested that neuronal NO synthase (NOS-1) activity may be compromised in frontal and temporal lobes, and related structures, in schizophrenia. The goal of this study was to determine if there is a link between neonatal disruptions in NO signalling and disturbances in the development and function of prefrontal-temporolimbic circuits. Neonatal rats were injected on postnatal days PD3-5 with the selective NOS-1 inhibitor Nω-propyl-L-arginine (NPA) and tested in adulthood (≥PD60) or as juveniles (PD30). Adult rats treated with NPA as neonates exhibited increased amphetamine-induced locomotion compared to animals receiving vehicle as neonates, whereas this was not observed in juvenile rats treated with NPA as neonates. Adult rats exposed to NPA as neonates also exhibited deficits in social interaction and short-term recognition memory, as well as reduced brain weight, compared to vehicle-treated controls. Finally, neonatal NPA exposure increased the responsiveness of nucleus accumbens neurons to prefrontal cortical input and disrupted the modulation of cortico-accumbens circuits by hippocampal afferents that is normally observed in adult animals. These results show for the first time that neonatal inhibition of NOS-1 during a critical neurodevelopmental period leads to aberrant behaviours that manifest in adulthood, as well as electrophysiological abnormalities in prefrontal-temporolimbic circuits. Greater understanding of the role of NOS-1 in the development of these circuits will shed light on how developmental insults translate to pathophysiology associated with schizophrenia.
Collapse
|
8
|
Mattioni M, Le Novère N. Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PLoS One 2013; 8:e66811. [PMID: 23843966 PMCID: PMC3700997 DOI: 10.1371/journal.pone.0066811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/14/2013] [Indexed: 01/13/2023] Open
Abstract
Neuron behavior results from the interplay between networks of biochemical processes and electrical signaling. Synaptic plasticity is one of the neuronal properties emerging from such an interaction. One of the current approaches to study plasticity is to model either its electrical aspects or its biochemical components. Among the chief reasons are the different time scales involved, electrical events happening in milliseconds while biochemical cascades respond in minutes or hours. In order to create multiscale models taking in consideration both aspects simultaneously, one needs to synchronize the two models, and exchange relevant variable values. We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. Our synchronization strategy is general enough to be used in simulations of other models with similar synchronization issues, such as networks of neurons. Moreover, the integration between the electrical and the biochemical models opens up the possibility to investigate multiscale process, like synaptic plasticity, in a more global manner, while taking into account a more realistic description of the underlying mechanisms.
Collapse
Affiliation(s)
- Michele Mattioni
- European Molecular Biology Laboratory-The European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Nicolas Le Novère
- European Molecular Biology Laboratory-The European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
- Babraham Institute, Babraham, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Vizcarra-Chacón BJ, Arias-García MA, Pérez-Ramírez MB, Flores-Barrera E, Tapia D, Drucker-Colin R, Bargas J, Galarraga E. Contribution of different classes of glutamate receptors in the corticostriatal polysynaptic responses from striatal direct and indirect projection neurons. BMC Neurosci 2013; 14:60. [PMID: 23782743 PMCID: PMC3691831 DOI: 10.1186/1471-2202-14-60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022] Open
Abstract
Background Previous work showed differences in the polysynaptic activation of GABAergic synapses during corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (dSPNs and iSPNs). Here, we now show differences and similarities in the polysynaptic activation of cortical glutamatergic synapses on the same responses. Corticostriatal contacts have been extensively studied. However, several questions remain unanswered, e.g.: what are the differences and similarities in the responses to glutamate in dSPNs and iSPNs? Does glutamatergic synaptic activation exhibits a distribution of latencies over time in vitro? That would be a strong suggestion of polysynaptic cortical convergence. What is the role of kainate receptors in corticostriatal transmission? Current-clamp recordings were used to answer these questions. One hypothesis was: if prolonged synaptic activation distributed along time was present, then it would be mainly generated from the cortex, and not from the striatum. Results By isolating responses from AMPA-receptors out of the complex suprathreshold response of SPNs, it is shown that a single cortical stimulus induces early and late synaptic activation lasting hundreds of milliseconds. Prolonged responses depended on cortical stimulation because they could not be elicited using intrastriatal stimulation, even if GABAergic transmission was blocked. Thus, the results are not explained by differences in evoked inhibition. Moreover, inhibitory participation was larger after cortical than after intrastriatal stimulation. A strong activation of interneurons was obtained from the cortex, demonstrating that polysynaptic activation includes the striatum. Prolonged kainate (KA) receptor responses were also elicited from the cortex. Responses of dSPNs and iSPNs did not depend on the cortical area stimulated. In contrast to AMPA-receptors, responses from NMDA- and KA-receptors do not exhibit early and late responses, but generate slow responses that contribute to plateau depolarizations. Conclusions As it has been established in previous physiological studies in vivo, synaptic invasion over different latencies, spanning hundreds of milliseconds after a single stimulus strongly indicates convergent polysynaptic activation. Interconnected cortical neurons converging on the same SPNs may explain prolonged corticostriatal responses. Glutamate receptors participation in these responses is described as well as differences and similarities between dSPNs and iSPNs.
Collapse
Affiliation(s)
- Bianca J Vizcarra-Chacón
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF, México
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Calhoon GG, O'Donnell P. Closing the gate in the limbic striatum: prefrontal suppression of hippocampal and thalamic inputs. Neuron 2013; 78:181-90. [PMID: 23583113 DOI: 10.1016/j.neuron.2013.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/17/2022]
Abstract
Many brain circuits control behavior by integrating information arising from separate inputs onto a common target neuron. Neurons in the ventral striatum (VS) receive converging excitatory afferents from the prefrontal cortex (PFC), hippocampus (HP), and thalamus, among other structures, and the integration of these inputs is critical for goal-directed behaviors. Although HP inputs have been described as gating PFC throughput in the VS, recent data reveal that the VS desynchronizes from the HP during epochs of burst-like PFC activity related to decision making. It is therefore possible that PFC inputs locally attenuate responses to other glutamatergic inputs to the VS. Here, we found that delivering trains of stimuli to the PFC suppresses HP- and thalamus-evoked synaptic responses in the VS, in part through activation of inhibitory processes. This interaction may enable the PFC to exert influence on basal ganglia loops during decision-making instances with minimal disturbance from ongoing contextual inputs.
Collapse
Affiliation(s)
- Gwendolyn G Calhoon
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
11
|
Llano López LH, Caif F, Fraile M, Tinnirello B, Landa de Gargiulo AI, Lafuente JV, Baiardi GC, Gargiulo PA. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi. Pharmacol Rep 2013; 65:566-78. [DOI: 10.1016/s1734-1140(13)71034-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 02/01/2013] [Indexed: 10/25/2022]
|
12
|
Situationally appropriate behavior: translating situations into appetitive behavior modes. Rev Neurosci 2013; 24:577-606. [DOI: 10.1515/revneuro-2013-0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/29/2013] [Indexed: 11/15/2022]
|
13
|
Distinct prefrontal cortical regions negatively regulate evoked activity in nucleus accumbens subregions. Int J Neuropsychopharmacol 2012; 15:1287-94. [PMID: 22008178 PMCID: PMC3419342 DOI: 10.1017/s146114571100143x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficits in prefrontal cortical activity are consistent observations in a number of psychiatric diseases with two major regions consistently implicated being the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), regions that carry out independent, but complementary forms of cognitive processing in changing environmental conditions. Information from the prefrontal cortex is integrated in the nucleus accumbens (NAc) to guide goal-directed behaviour. Anatomical studies have demonstrated that distinct prefrontal cortical regions provide an overlapping but distinct innervation of NAc subregions; however, how information from these distinct regions regulates NAc output has not been conclusively demonstrated. Here we demonstrate that, while neurons receiving convergent glutamatergic inputs from the mPFC and OFC have a synergistic effect on single-spike firing, medium spiny neurons that receive a monosynaptic input from only one region are actually inhibited by activation of the complementary region. Therefore, the mPFC and OFC negatively regulate evoked activity within the lateral and medial regions of the NAc, respectively, and exist in a state of balance with respect to their influence on information processing within ventral striatal circuits.
Collapse
|
14
|
Marty VN, Spigelman I. Long-lasting alterations in membrane properties, k(+) currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Front Neurosci 2012; 6:86. [PMID: 22701402 PMCID: PMC3370662 DOI: 10.3389/fnins.2012.00086] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 01/19/2023] Open
Abstract
Chronic alcohol exposure causes marked changes in reinforcement mechanisms and motivational state that are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system. Although the NAcc plays an important role in mediating alcohol-seeking behaviors, little is known about the molecular mechanisms underlying alcohol-induced neuroadaptive changes in NAcc function. The aim of this study was to investigate the effects of chronic intermittent ethanol (CIE) treatment, a rat model of alcohol withdrawal and dependence, on intrinsic electrical membrane properties and glutamatergic synaptic transmission of medium spiny neurons (MSNs) in the NAcc core during protracted withdrawal. We show that CIE treatment followed by prolonged withdrawal increased the inward rectification of MSNs observed at hyperpolarized potentials. In addition, MSNs from CIE-treated animals displayed a lower input resistance, faster action potentials (APs), and larger fast afterhyperpolarizations (fAHPs) than MSNs from vehicle-treated animals, all suggestive of increases in K(+)-channel conductances. Significant increases in the Cs(+)-sensitive inwardly rectifying K(+)-current accounted for the increased input resistance, while increases in the A-type K(+)-current accounted for the faster APs and increased fAHPs in MSNs from CIE rats. We also show that the amplitude and the conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated mEPSCs were enhanced in CIE-treated animals due to an increase in a small fraction of functional postsynaptic GluA2-lacking AMPARs. These long-lasting modifications of excitability and excitatory synaptic receptor function of MSNs in the NAcc core could play a critical role in the neuroadaptive changes underlying alcohol withdrawal and dependence.
Collapse
Affiliation(s)
- Vincent N Marty
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, CA, USA
| | | |
Collapse
|
15
|
Spiros A, Roberts P, Geerts H. A Quantitative Systems Pharmacology Computer Model for Schizophrenia Efficacy and Extrapyramidal Side Effects. Drug Dev Res 2012. [DOI: 10.1002/ddr.21008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Goldstein BL, Barnett BR, Vasquez G, Tobia SC, Kashtelyan V, Burton AC, Bryden DW, Roesch MR. Ventral striatum encodes past and predicted value independent of motor contingencies. J Neurosci 2012; 32:2027-36. [PMID: 22323717 PMCID: PMC3287081 DOI: 10.1523/jneurosci.5349-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 02/08/2023] Open
Abstract
The ventral striatum (VS) is thought to signal the predicted value of expected outcomes. However, it is still unclear whether VS can encode value independently from variables often yoked to value such as response direction and latency. Expectations of high value reward are often associated with a particular action and faster latencies. To address this issue we trained rats to perform a task in which the size of the predicted reward was signaled before the instrumental response was instructed. Instrumental directional cues were presented briefly at a variable onset to reduce accuracy and increase reaction time. Rats were more accurate and slower when a large versus small reward was at stake. We found that activity in VS was high during odors that predicted large reward even though reaction times were slower under these conditions. In addition to these effects, we found that activity before the reward predicting cue reflected past and predicted reward. These results demonstrate that VS can encode value independent of motor contingencies and that the role of VS in goal-directed behavior is not just to increase vigor of specific actions when more is at stake.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel W. Bryden
- Department of Psychology and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Matthew R. Roesch
- Department of Psychology and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
17
|
Hunt MJ, Falinska M, Łeski S, Wójcik DK, Kasicki S. Differential effects produced by ketamine on oscillatory activity recorded in the rat hippocampus, dorsal striatum and nucleus accumbens. J Psychopharmacol 2011; 25:808-21. [PMID: 20413405 DOI: 10.1177/0269881110362126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previously, we showed that NMDA antagonists enhance high-frequency oscillations (130-180 Hz) in the nucleus accumbens. However, whether NMDA antagonists can enhance high-frequency oscillations in other brain regions remains unclear. Here, we used monopolar, bipolar and inverse current source density techniques to examine oscillatory activity in the hippocampus, a region known to generate spontaneous ripples (∼200 Hz), its surrounding tissue, and the dorsal striatum, neuroanatomically related to the nucleus accumbens. In monopolar recordings, ketamine-induced increases in the power of high-frequency oscillations were detected in all structures, although the power was always substantially larger in the nucleus accumbens. In bipolar recordings, considered to remove common-mode input, high-frequency oscillations associated with ketamine injection were not present in the regions we investigated outside the nucleus accumbens. In line with this, inverse current source density showed the greatest changes in current to occur in the vicinity of the nucleus accumbens and a monopolar structure of the generator. We found little spatial localisation of ketamine high-frequency oscillations in other areas. In contrast, sharp-wave ripples, which were well localized to the hippocampus, occurred less frequently after ketamine. Notably, we also found ketamine produced small, but significant, changes in the power of 30-90 Hz gamma oscillations (an increase in the hippocampus and a decrease in the nucleus accumbens).
Collapse
Affiliation(s)
- Mark J Hunt
- Laboratory of the Limbic System, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
18
|
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 2011; 36:74-97. [PMID: 20881948 PMCID: PMC3055522 DOI: 10.1038/npp.2010.151] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/08/2022]
Abstract
Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine.
Collapse
Affiliation(s)
- Y-Lan Boureau
- The Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, London, UK
| |
Collapse
|
19
|
Spiga S, Lintas A, Migliore M, Diana M. Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependence. Addict Biol 2010; 15:266-76. [PMID: 20477755 DOI: 10.1111/j.1369-1600.2010.00218.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cannabinoid withdrawal produces a hypofunction of mesencephalic dopamine neurons that impinge upon medium spiny neurons (MSN) of the forebrain. After chronic treatment with two structurally different cannabinoid agonists, Delta(9)-tetrahydrocannabinol and CP55 940 (CP) rats were withdrawn spontaneously and pharmacologically with the CB1 antagonist SR141716A (SR). In these two conditions, evaluation of tyrosine hydroxylase (TH)-positive neurons revealed significant morphometrical reductions in the ventrotegmental area but not substantia nigra pars compacta of withdrawn rats. Similarly, confocal analysis of Golgi-Cox-stained sections of the nucleus accumbens revealed a decrease in the shell, but not the core, of the spines' density of withdrawn rats. Administration of the CB1 antagonist SR to control rats, provoked structural abnormalities reminiscent of those observed in withdrawal conditions and support the regulatory role of cannabinoids in neurogenesis, axonal growth and synaptogenesis by acting as eu-proliferative signals through the CB1 receptors. Further, these measures were incorporated into a realistic computational model that predicts a strong reduction in the excitability of morphologically altered MSN, yielding a significant reduction in action potential output. These pieces of evidence support the tenet that withdrawal from addictive compounds alters functioning of the mesolimbic system and provide direct morphological evidence for functional abnormalities associated with cannabinoid dependence at the level of dopaminergic neurons and their postsynaptic counterpart and are coherent with recent hypothesis underscoring a hypodopaminergic state as a distinctive feature of the 'addicted brain'.
Collapse
Affiliation(s)
- Saturnino Spiga
- Department of Animal Biology and Ecology, University of Cagliari, Italy
| | | | | | | |
Collapse
|
20
|
Interaction of the rostral basolateral amygdala and prelimbic prefrontal cortex in regulating reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav 2010; 96:347-53. [PMID: 20600250 DOI: 10.1016/j.pbb.2010.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/12/2010] [Indexed: 11/21/2022]
Abstract
Previous findings in rats suggest that the rostral basolateral amygdala (rBLA) and prelimbic prefrontal cortex (plPFC) are likely components of cue reinstatement circuitry based on bilateral inactivation of each site alone. In the present investigation, we examined whether the rBLA and plPFC interact to regulate reinstatement of cocaine-seeking behavior elicited by reexposure to a combination of discrete and contextual cocaine-paired cues. After establishing stable baseline responding under a second-order schedule of cocaine reinforcement and cue presentation, rats underwent response-extinction training in which cocaine and cocaine-paired cues were withheld. To test the interaction, rats with asymmetric cannulae placements in the rBLA and plPFC received vehicle or lidocaine infusions prior to reinstatement testing during which cocaine-paired cues were presented, in the absence of cocaine availability, under a second-order schedule. Asymmetric inactivation of the rBLA and plPFC significantly attenuated reinstatement of cocaine-seeking behavior relative to vehicle treatment. As expected, inactivation of the rBLA or plPFC in rats with unilateral cannulae placements did not disrupt reinstatement relative to vehicle treatment. Findings propose critical intrahemispheric interaction between the rBLA and plPFC in regulating reinstatement of cocaine-seeking behavior elicited by reexposure to drug-paired cues.
Collapse
|
21
|
Podda MV, Riccardi E, D'Ascenzo M, Azzena GB, Grassi C. Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent protein kinase A-independent mechanism. Neuroscience 2010; 167:678-90. [PMID: 20211700 DOI: 10.1016/j.neuroscience.2010.02.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/06/2010] [Accepted: 02/28/2010] [Indexed: 01/15/2023]
Abstract
Dopamine/cAMP signaling has been reported to mediate behavioral responses related to drug addiction. It also modulates the plasticity and firing properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), although the effects of cAMP signaling on the resting membrane potential (RMP) of MSNs has not been specifically defined. In this study, activation of dopamine D1-like receptors (D1Rs) by SKF-38393 elicited membrane depolarization and inward currents in MSNs from the NAc core of 14-17 day-old mice. Similar results were obtained following stimulation of adenylyl cyclase (AC) activity with forskolin or application of exogenous cAMP. Forskolin occluded SKF-38393's effects, thus indicating that D1R action is mediated by AC/cAMP signaling. Accordingly, AC blockade by SQ22536 significantly inhibited the responses to SKF-38393. Effects elicited by D1R stimulation or increased cAMP levels were unaffected by protein kinase A (PKA) or protein kinase C (PKC) blockade and were not mimicked by the Epac agonist, 8CPT-2Me-cAMP. Responses to forskolin were also not significantly modified by cyclic nucleotide-gated (CNG) channel blockade. Forskolin-induced membrane depolarization was associated with increased membrane input resistance. Voltage-clamp experiments revealed that forskolin and SKF-38393 effects were due to inhibition of resting K(+) currents exhibiting inward rectification at hyperpolarized potentials and a reversal potential (around -90 mV) that shifted with the extracellular K(+) concentration. Forskolin and D1R agonist effects were abolished by the inward rectifier K(+) (Kir)-channel blocker, BaCl(2). Collectively, these data suggest that stimulation of postsynaptic D1Rs in MSNs of the NAc core causes membrane depolarization by inhibiting Kir currents. This effect is mediated by AC/cAMP signaling but it is independent on PKA, PKC, Epac and CNG channel activation, suggesting that it may stem from cAMP's direct interaction with Kir channels. D1R/cAMP-mediated excitatory effects may influence the generation of output signals from MSNs by facilitating their transition from the quiescent down-state to the functionally active up-state.
Collapse
Affiliation(s)
- M V Podda
- Institute of Human Physiology, Medical School, Catholic University S. Cuore, Rome, Italy
| | | | | | | | | |
Collapse
|
22
|
Alexander KS, Brooks JM, Sarter M, Bruno JP. Disruption of mesolimbic regulation of prefrontal cholinergic transmission in an animal model of schizophrenia and normalization by chronic clozapine treatment. Neuropsychopharmacology 2009; 34:2710-20. [PMID: 19693002 PMCID: PMC2783192 DOI: 10.1038/npp.2009.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abnormal mesolimbic control of cortical cholinergic activity has been hypothesized to contribute to the cognitive symptoms of schizophrenia. Stimulation of NMDA receptors in nucleus accumbens (NAC) increases acetylcholine (ACh) release in prefrontal cortex (PFC), an activation thought to contribute to attentional processing. Thus, the effects of intra-NAC perfusion of NMDA (250-400 microM) on ACh release in PFC were determined in rats receiving lesions of the ventral hippocampus (VH) as neonates (nVHLX), a neurodevelopmental model of schizophrenia, or as adults (aVHLX). NMDA elevated ACh release (100-150% above baseline) in adults sham-lesioned as neonates or in aVHLX rats. Adult nVHLX were unresponsive to NAC NMDA receptor stimulation. The inability of nVHLX to respond to NMDA emerged over development as a separate experiment demonstrated that evoked ACh release was normal before puberty (100-150% increase) yet, in these same nVHLX animals, absent after puberty. Amphetamine-evoked ACh release was assessed in nVHLX animals to exclude potential limitations in release capacity. Amphetamine produced greater increases in ACh release than in shams, indicating that nVHLX does not impair the capacity of cholinergic neurons to release ACh. Finally, the ability of 13 days of pretreatment with clozapine (1.25 mg/kg/day) to reinstate NMDA-evoked cortical ACh efflux was determined. Clozapine treatment normalized NMDA-evoked ACh release in nVHLX animals. These experiments show that mesolimbic regulation of cortical ACh release is disrupted in postpubertal nVHLX rats and normalized by low-dose treatment of clozapine; supporting the usefulness of nVHLX animals for research on the neuronal mechanisms underlying the cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
| | - Julie M. Brooks
- Department of Psychology, The Ohio State University, Columbus, OH
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI
| | - John P. Bruno
- Department of Psychology, The Ohio State University, Columbus, OH
| |
Collapse
|
23
|
Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2009; 90:385-417. [PMID: 19941931 DOI: 10.1016/j.pneurobio.2009.11.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]
Abstract
The basal ganglia are often conceptualised as three parallel domains that include all the constituent nuclei. The 'ventral domain' appears to be critical for learning flexible behaviours for exploration and foraging, as it is the recipient of converging inputs from amygdala, hippocampal formation and prefrontal cortex, putatively centres for stimulus evaluation, spatial navigation, and planning/contingency, respectively. However, compared to work on the dorsal domains, the rich potential for quantitative theories and models of the ventral domain remains largely untapped, and the purpose of this review is to provide the stimulus for this work. We systematically review the ventral domain's structures and internal organisation, and propose a functional architecture as the basis for computational models. Using a full schematic of the structure of inputs to the ventral striatum (nucleus accumbens core and shell), we argue for the existence of many identifiable processing channels on the basis of unique combinations of afferent inputs. We then identify the potential information represented in these channels by reconciling a broad range of studies from the hippocampal, amygdala and prefrontal cortex literatures with known properties of the ventral striatum from lesion, pharmacological, and electrophysiological studies. Dopamine's key role in learning is reviewed within the three current major computational frameworks; we also show that the shell-based basal ganglia sub-circuits are well placed to generate the phasic burst and dip responses of dopaminergic neurons. We detail dopamine's modulation of ventral basal ganglia's inputs by its actions on pre-synaptic terminals and post-synaptic membranes in the striatum, arguing that the complexity of these effects hint at computational roles for dopamine beyond current ideas. The ventral basal ganglia are revealed as a constellation of multiple functional systems for the learning and selection of flexible behaviours and of behavioural strategies, sharing the common operations of selection-by-disinhibition and of dopaminergic modulation.
Collapse
Affiliation(s)
- Mark D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, S10 2TN, UK.
| | | |
Collapse
|
24
|
Ventral striatal neurons encode the value of the chosen action in rats deciding between differently delayed or sized rewards. J Neurosci 2009; 29:13365-76. [PMID: 19846724 DOI: 10.1523/jneurosci.2572-09.2009] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ventral striatum (VS) is thought to serve as a gateway whereby associative information from the amygdala and prefrontal regions can influence motor output to guide behavior. If VS mediates this "limbic-motor" interface, then one might expect neural correlates in VS to reflect this information. Specifically, neural activity should reflect the integration of motivational value with subsequent behavior. To test this prediction, we recorded from single units in VS while rats performed a choice task in which different odor cues indicated that reward was available on the left or on the right. The value of reward associated with a left or rightward movement was manipulated in separate blocks of trials by either varying the delay preceding reward delivery or by changing reward size. Rats' behavior was influenced by the value of the expected reward and the response required to obtain it, and activity in the majority of cue-responsive VS neurons reflected the integration of these two variables. Unlike similar cue-evoked activity reported previously in dopamine neurons, these correlates were only observed if the directional response was subsequently executed. Furthermore, activity was correlated with the speed at which the rats' executed the response. These results are consistent with the notion that VS serves to integrate information about the value of an expected reward with motor output during decision making.
Collapse
|
25
|
Gruber AJ, Hussain RJ, O'Donnell P. The nucleus accumbens: a switchboard for goal-directed behaviors. PLoS One 2009; 4:e5062. [PMID: 19352511 PMCID: PMC2663037 DOI: 10.1371/journal.pone.0005062] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/08/2009] [Indexed: 12/05/2022] Open
Abstract
Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC.
Collapse
Affiliation(s)
- Aaron J Gruber
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | | |
Collapse
|