1
|
Varrone A, Bundgaard C, Bang-Andersen B. PET as a Translational Tool in Drug Development for Neuroscience Compounds. Clin Pharmacol Ther 2022; 111:774-785. [PMID: 35201613 PMCID: PMC9305164 DOI: 10.1002/cpt.2548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/29/2022] [Indexed: 11/05/2022]
Abstract
In central nervous system drug discovery programs, early development of new chemical entities (NCEs) requires a multidisciplinary strategy and a translational approach to obtain proof of distribution, proof of occupancy, and proof of function in specific brain circuits. Positron emission tomography (PET) provides a way to assess in vivo the brain distribution of NCEs and their binding to the target of interest, provided that radiolabeling of the NCE is possible or that a suitable radioligand is available. PET is therefore a key tool for early phases of drug discovery programs. This review will summarize the main applications of PET in early drug development and discuss the usefulness of PET microdosing studies performed with direct labelling of the NCE and PET occupancy studies. The purpose of this review is also to propose an alignment of the nomenclatures used by drug metabolism and pharmacokinetic scientists and PET imaging scientists to indicate key pharmacokinetic parameters and to provide guidance in the performance and interpretation of PET studies.
Collapse
Affiliation(s)
- Andrea Varrone
- Translational Biomarkers and Imaging, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Benny Bang-Andersen
- Translational Biomarkers and Imaging, H. Lundbeck A/S, Copenhagen, Denmark.,Medicinal Chemistry & Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
2
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Abstract
Dopamine D3 receptors have key roles in behavioral reward, addiction, Parkinson's disease, and schizophrenia, and there is interest in studying their role in these disorders using PET. However, current PET radiotracers for studying D3 receptors in humans all bind to both D2 and D3 due to similarities between the two receptors. Selective D2 and D3 radioligands would aid investigation of the differences between D2 and D3 circuitry in the central nervous system. While there are currently in vitro measures of ligand D3/D2 selectivity, there is a need for an in vivo PET measure of D3/D2 selectivity. This review discusses current PET imaging of dopamine D2/D3 receptors and proposes methodology for quantitating in vivo selectivity of probes for PET imaging of dopamine D3 receptors.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle J Labban
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Mukherjee J, Majji D, Kaur J, Constantinescu CC, Narayanan TK, Shi B, Nour MT, Pan ML. PET radiotracer development for imaging high-affinity state of dopamine D2 and D3 receptors: Binding studies of fluorine-18 labeled aminotetralins in rodents. Synapse 2016; 71. [PMID: 27864853 DOI: 10.1002/syn.21950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
Imaging the high-affinity, functional state (HA) of dopamine D2 and D3 receptors has been pursued in PET imaging studies of various brain functions. We report further evaluation of 18 F-5-OH-FPPAT, and the newer 18 F-5-OH-FHXPAT and 18 F-7-OH-FHXPAT. Syntheses of 18 F-5-OH-FHXPAT and 18 F-7-OH-FHXPAT were improved by modifications of our previously reported procedures. Brain slices and brain homogenates from male Sprague-Dawley rats were used with the 3 radiotracers (74-111 kBq/cc). Competition with dopamine (1-100 nM) and Gpp(NH)p (10-50 µM) were carried out to demonstrate binding to dopamine D2 and D3 HA-states and binding kinetics of 18 F-5-OH-FPPAT measured. Ex vivo brain slice autoradiography was carried out on rats administered with 18 F-5-OH-FHXPAT to ascertain HA-state binding. PET/CT imaging in rats and wild type (WT) and D2 knock-out mice were carried out using 18 F-7-OH-FHXPAT (2-37 MBq). Striatum was clearly visualized by the three radiotracers in brain slices and dopamine displaced more than 80% of binding, with dissociation rate in homogenates of 2.2 × 10-2 min-1 for 18 F-5-OH-FPPAT. Treatment with Gpp(NH)p significantly reduced 50-80% striatal binding with faster dissociation rates (5.0 × 10-2 min-1 ), suggesting HA-state binding of 18 F-5-OH-FPPAT and 18 F-5-OH-FHXPAT. Striatal binding of 18 F-5-OH-FHXPAT in ex vivo brain slices were sensitive to Gpp(NH)p, suggesting HA-state binding in vivo. PET binding ratios of 18 F-7-OH-FHXPAT in rat brain were ventral striatum/cerebellum = 2.09 and dorsal striatum/cerebellum = 1.65; similar binding ratios were found in the D2 WT mice. These results suggest that in vivo PET measures of agonists in the brain at least in part reflect binding to the membrane-bound HA-state of the dopamine receptor.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging Center, University of California-Irvine, Irvine, California, 92697, USA
| | - Divya Majji
- Department of Radiological Sciences, Preclinical Imaging Center, University of California-Irvine, Irvine, California, 92697, USA
| | - Jasmeet Kaur
- Department of Radiological Sciences, Preclinical Imaging Center, University of California-Irvine, Irvine, California, 92697, USA
| | - Cristian C Constantinescu
- Department of Radiological Sciences, Preclinical Imaging Center, University of California-Irvine, Irvine, California, 92697, USA
| | - Tanjore K Narayanan
- Department of Nuclear Medicine, Kettering Medical Center, Dayton, Ohio, 45429, USA
| | - Bingzhi Shi
- Department of Nuclear Medicine, Kettering Medical Center, Dayton, Ohio, 45429, USA
| | - Mohamed T Nour
- Department of Radiological Sciences, Preclinical Imaging Center, University of California-Irvine, Irvine, California, 92697, USA
| | - Min-Liang Pan
- Department of Radiological Sciences, Preclinical Imaging Center, University of California-Irvine, Irvine, California, 92697, USA
| |
Collapse
|
6
|
van Wieringen JP, Michel MC, Janssen HM, Janssen AG, Elsinga PH, Booij J. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors. EJNMMI Res 2014; 4:53. [PMID: 25977878 PMCID: PMC4422956 DOI: 10.1186/s13550-014-0053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 01/11/2023] Open
Abstract
Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals.
Collapse
Affiliation(s)
- Jan-Peter van Wieringen
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| |
Collapse
|
7
|
Pithia N, Gulati N, Pandey S, Coleman R, Kant R, Mukherjee J. Synthesis and biological evaluation of 18F-Norfallypride in the rodent brain using PET imaging. Nucl Med Biol 2013; 40:697-704. [DOI: 10.1016/j.nucmedbio.2013.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/05/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
8
|
Suridjan I, Rusjan P, Addington J, Wilson AA, Houle S, Mizrahi R. Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J Psychiatry Neurosci 2013; 38:98-106. [PMID: 23010256 PMCID: PMC3581597 DOI: 10.1503/jpn.110181] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The dopamine (DA) D2 receptors exist in 2 states: a high-affinity state (D2 high) that is linked to second messenger systems, responsible for functional effects, exhibits high affinity for agonists (e.g., DA), and a low-affinity state that is functionally inert exhibits lower affinity for agonists. The DA D3 receptor subtype exhibits high agonist affinity, whereas the existence of the multiple affinity states is controversial. Preclinical studies in animal models of psychosis have shown a selective increase of D2 high as the common factor in psychosis, and the D3 receptor has been suggested to be involved in the pathophysiology of schizophrenia. METHODS We studied D2 high and D3 in people at clinical high risk (CHR) for schizophrenia and in antipsychotic-naive patients with schizophrenia using the novel positron emission tomography radiotracer, [11C]-(+)-PHNO. The binding potential nondisplaceable (BP(ND)) was examined in the regions of interest (ROI; caudate, putamen, ventral striatum, globus pallidus, substantia nigra and thalamus) using an ROI and a voxel-wise approach while participants performed a cognitive task. RESULTS We recruited 12 CHR individuals and 13 antipsychotic-naive patients with schizophrenia-spectrum disorder, whom we compared with 12 age- and sex-matched healthy controls. The BP(ND) between patients and controls did not differ in any of the ROIs, consistent with the voxel-wise analysis. Correlations between the BP(ND) in D3-rich regions and psychopathology warrant further investigation. LIMITATIONS In the absence of resting-state (baseline) BP(ND) data, or following a depletion paradigm (i.e., α-methyl partyrosine), it is not possible to ascertain whether the lack of difference among the groups is owing to different levels of baseline DA or to release during the cognitive task. CONCLUSION To our knowledge, the present study represents the first effort to measure the D2 and D3 receptors under a cognitive challenge in individuals putative/prodromal for schizophrenia using [11C]-(+)-PHNO.
Collapse
Affiliation(s)
| | | | | | | | | | - Romina Mizrahi
- Correspondence to: R. Mizrahi, PET Centre, Centre for Addiction and Mental Health, 250 College St., Toronto ON M5T 1R8;
| |
Collapse
|
9
|
Xu J, Vangveravong S, Li S, Fan J, Jones LA, Cui J, Wang R, Tu Z, Chu W, Perlmutter JS, Mach RH. Positron emission tomography imaging of dopamine D2 receptors using a highly selective radiolabeled D2 receptor partial agonist. Neuroimage 2013; 71:168-74. [PMID: 23333701 DOI: 10.1016/j.neuroimage.2013.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 11/16/2022] Open
Abstract
A series of microPET imaging studies were conducted in anesthetized rhesus monkeys using the dopamine D2-selective partial agonist, [(11)C]SV-III-130. There was a high uptake in regions of brain known to express a high density of D2 receptors under baseline conditions. Rapid displacement in the caudate and putamen, but not in the cerebellum, was observed after injection of the dopamine D2/3 receptor nonselective ligand S(-)-eticlopride at a low dosage (0.025mg/kg/i.v.); no obvious displacement in the caudate, putamen and cerebellum was observed after the treatment with a dopamine D3 receptor selective ligand WC-34 (0.1mg/kg/i.v.). Pretreatment with lorazepam (1mg/kg, i.v. 30min) to reduce endogenous dopamine prior to tracer injection resulted in unchanged binding potential (BP) values, a measure of D2 receptor binding in vivo, in the caudate and putamen. d-Amphetamine challenge studies indicate that there is a significant displacement of [(11)C]SV-III-130 by d-Amphetamine-induced increases in synaptic dopamine levels.
Collapse
Affiliation(s)
- Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Agonist high- and low-affinity states of dopamine D₂ receptors: methods of detection and clinical implications. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:135-54. [PMID: 23224422 DOI: 10.1007/s00210-012-0817-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/22/2012] [Indexed: 01/10/2023]
Abstract
Dopamine D(2) receptors, similar to other G-protein-coupled receptors, exist in a high- and low-affinity state for agonists. Based upon a review of the methods for detecting D(2) receptor agonist high-affinity states, we discuss alterations of such states in animal models of disease and the implications of such alterations for their labelling with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers. The classic approach of detecting agonist high-affinity states compares agonist competition for antagonist radioligands, in most cases using [(3)H]-spiperone as the radioligand; alternative approaches and radioligands have been proposed, but their claimed advantages have not been substantiated by other investigators. In view of the advantages and disadvantages of various techniques, we critically have reviewed reported findings on the detection of D(2) receptor agonist high-affinity states in a variety of animal models. These data are compared to the less numerous findings from human in vivo studies based on PET and SPECT tracers; they are interpreted in light of the finding that D(2) receptor agonist high-affinity states under control conditions may differ between rodent and human brain. The potential advantages of agonist ligands in studies of pathophysiology and as diagnostics are being discussed.
Collapse
|
11
|
Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I, Pruessner JC, Remington G, Houle S, Wilson AA. Increased stress-induced dopamine release in psychosis. Biol Psychiatry 2012; 71:561-7. [PMID: 22133268 DOI: 10.1016/j.biopsych.2011.10.009] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/02/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND A pathologic response to common life stressors, in which a hyperresponsive dopaminergic system is thought to play a key role, is a potential etiologic factor in the triggering and relapse of psychosis. However, there is no direct evidence that brain dopaminergic response to stress is exaggerated in psychosis. METHODS Using the ability of endogenous dopamine (DA) to compete with [(11)C]-(+)-PHNO binding, as measured with positron emission tomography, we examined stress-induced DA release in response to a validated psychosocial stress task. We studied 12 clinical high-risk (CHR), 10 antipsychotic-naive subjects with schizophrenia (SCZ), and 12 matched healthy volunteers (HV). Stress-induced DA release was estimated as the percent change in binding potential between conditions (stress and control scan) in the striatal subdivisions: limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST). RESULTS We found a significant difference between groups in the AST (F = 8.13, df = 2,31, p = .001), and at the SMST (F = 3,64, df = 2,31, p = .03) but not in the LST (F = .43, df = 2,31, p = .40) with CHR and SCZ having larger [(11)C]-(+)-PHNO displacement in response to the stress. Bonferroni-corrected comparisons confirmed that HV displacement (-2.86%) in the AST was significantly different in CHR (6.97%) and SCZ (11.44%) (with no significant difference between CHR and SCZ). CONCLUSIONS This study reveals a sensitized dopaminergic response to stress in a psychiatric condition and may have important theoretical and clinical implications regarding efforts to abort or delay relapse and/or conversion to psychosis.
Collapse
Affiliation(s)
- Romina Mizrahi
- Positron Emission Tomography Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shotbolt P, Tziortzi AC, Searle GE, Colasanti A, van der Aart J, Abanades S, Plisson C, Miller SR, Huiban M, Beaver JD, Gunn RN, Laruelle M, Rabiner EA. Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans. J Cereb Blood Flow Metab 2012; 32:127-36. [PMID: 21878947 PMCID: PMC3323295 DOI: 10.1038/jcbfm.2011.115] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[(11)C]PHNO is a D(2)/D(3) agonist positron emission tomography radiotracer, with higher in vivo affinity for D(3) than for D(2) receptors. As [(11)C]-(+)-PHNO is an agonist, its in vivo binding is expected to be more affected by acute fluctuations in synaptic dopamine than that of antagonist radiotracers such as [(11)C]raclopride. In this study, the authors compared the effects of an oral dose of the dopamine releaser amphetamine (0.3 mg/kg) on in vivo binding of [(11)C]-(+)-PHNO and [(11)C]raclopride in healthy subjects, using a within-subjects, counterbalanced, open-label design. In the dorsal striatum, where the density of D(3) receptors is negligible and both tracers predominantly bind to D(2) receptors, the reduction of [(11)C]-(+)-PHNO binding potential (BP(ND)) was 1.5 times larger than that of [(11)C]raclopride. The gain in sensitivity associated with the agonist [(11)C]-(+)-PHNO implies that ∼65% of D(2) receptors are in the high-affinity state in vivo. In extrastriatal regions, where [(11)C]-(+)-PHNO predominantly binds to D(3) receptors, the amphetamine effect on [(11)C]-(+)-PHNO BP(ND) was even larger, consistent with the higher affinity of dopamine for D(3). This study indicates that [(11)C]-(+)-PHNO is superior to [(11)C]raclopride for studying acute fluctuations in synaptic dopamine in the human striatum. [(11)C]-(+)-PHNO also enables measurement of synaptic dopamine in D(3) regions.
Collapse
Affiliation(s)
- Paul Shotbolt
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Seneca N, Finnema SJ, Laszlovszky I, Kiss B, Horváth A, Pásztor G, Kapás M, Gyertyán I, Farkas S, Innis RB, Halldin C, Gulyás B. Occupancy of dopamine D₂ and D₃ and serotonin 5-HT₁A receptors by the novel antipsychotic drug candidate, cariprazine (RGH-188), in monkey brain measured using positron emission tomography. Psychopharmacology (Berl) 2011; 218:579-87. [PMID: 21625907 PMCID: PMC3210913 DOI: 10.1007/s00213-011-2343-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/04/2011] [Indexed: 12/19/2022]
Abstract
RATIONALE Cariprazine is a novel antipsychotic drug candidate that exhibits high selectivity and affinity to dopamine D(3) and D(2) receptors and moderate affinity to serotonin 5-HT(1A) receptors. Targeting receptors other than D(2) may provide a therapeutic benefit for both positive and negative symptoms associated with schizophrenia. Positron emission tomography (PET) can be used as a tool in drug development to assess the in vivo distribution and pharmacological properties of a drug. OBJECTIVES The objective of this study was to determine dopamine D(2)/D(3) and serotonin 5-HT(1A) receptor occupancy in monkey brain after the administration of cariprazine. METHODS We examined three monkeys using the following PET radioligands: [(11)C]MNPA (an agonist at D(2) and D(3) receptors), [(11)C]raclopride (an antagonist at D(2) and D(3) receptors), and [(11)C]WAY-100635 (an antagonist at 5-HT(1A) receptors). During each experimental day, the first PET measurement was a baseline study, the second after a low dose of cariprazine, and the third after the administration of a high dose. RESULTS We found that cariprazine occupied D(2)/D(3) receptors in a dose-dependent and saturable manner, with the lowest dose occupying ~5% of receptors and the highest dose showing more than 90% occupancy. 5-HT(1A) receptor occupancy was considerably lower compared with D(2)/D(3) occupancy at the same doses, with a maximal value of ~30% for the raphe nuclei. CONCLUSIONS We conclude that cariprazine binds preferentially to dopamine D(2)/D(3) rather than to serotonin 5-HT(1A) receptors in monkey brain. These findings can be used to guide the selection of cariprazine dosing in humans.
Collapse
Affiliation(s)
- Nicholas Seneca
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm 171 76, Sweden,Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sjoerd J. Finnema
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm 171 76, Sweden
| | | | - Béla Kiss
- Gedeon Richter Ltd., Budapest 1103, Hungary
| | | | | | | | | | | | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Balás Gulyás
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm 171 76, Sweden
| |
Collapse
|
14
|
Skinbjerg M, Sibley DR, Javitch JA, Abi-Dargham A. Imaging the high-affinity state of the dopamine D2 receptor in vivo: fact or fiction? Biochem Pharmacol 2011; 83:193-8. [PMID: 21945484 DOI: 10.1016/j.bcp.2011.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 01/27/2023]
Abstract
Positron Emission Tomography (PET) has been used for more than three decades to image and quantify dopamine D2 receptors (D2R) in vivo with antagonist radioligands but in the recent years agonist radioligands have also been employed. In vitro competition studies have demonstrated that agonists bind to both a high and a low-affinity state of the D2Rs, of which the high affinity state reflects receptors that are coupled to G-proteins and the low-affinity state reflects receptors uncoupled from G-proteins. In contrast, antagonists bind with uniform affinity to the total pool of receptors. Results of these studies led to the proposal that D2Rs exist in high and low-affinity states for agonists in vivo and sparked the development and use of agonist radioligands for PET imaging with the primary purpose of measuring the proportion of receptors in the high-affinity (activating) state. Although several lines of research support the presence of high and low-affinity states of D2Rs and their detection by in vivo imaging paradigms, a growing body of controversial data has now called this into question. These include both in vivo and ex vivo studies of anesthesia effects, rodent models with increased proportions of high-affinity state D2Rs as well as the molecular evidence for stable receptor-G-protein complexes. In this commentary we review these data and discuss the evidence for the in vivo existence of D2Rs configured in high and low-affinity states and whether or not the high-affinity state of the D2R can, in fact, be imaged in vivo with agonist radioligands.
Collapse
Affiliation(s)
- Mette Skinbjerg
- Department of Psychiatry, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
15
|
Seeman P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Ther 2011; 17:118-32. [PMID: 20560996 DOI: 10.1111/j.1755-5949.2010.00162.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The dopamine D2 receptor is the common target for antipsychotics, and the antipsychotic clinical doses correlate with their affinities for this receptor. Antipsychotics quickly enter the brain to occupy 60-80% of brain D2 receptors in patients (the agonist aripiprazole occupies up to 90%), with most clinical improvement occurring within a few days. The D2 receptor can exist in a state of high-affinity (D2(High) ) or in a state of low-affinity for dopamine (D2Low). AIM The present aim is to review why individuals with schizophrenia are generally supersensitive to dopamine-like drugs such as amphetamine or methyphenidate, and whether the D2(High) state is a common basis for dopamine supersensitivity in the animal models of schizophrenia. RESULTS All animal models of schizophrenia reveal elevations in D2(High) receptors. These models include brain lesions, sensitization by drugs (amphetamine, phencyclidine, cocaine, corticosterone), birth injury, social isolation, and gene deletions in pathways for NMDA, dopamine, GABA, acetylcholine, and norepinephrine. CONCLUSIONS These multiple abnormal pathways converge to a final common pathway of dopamine supersensitivity and elevated D2(High) receptors, presumably responsible for psychotic symptoms. Although antipsychotics alleviate psychosis and reverse the elevation of D2(High) receptors, long-term antipsychotics can further enhance dopamine supersensitivity in patients. Therefore, switching from a traditional antipsychotic to an agonist antipsychotic (aripiprazole) can result in psychotic signs and symptoms. Clozapine and quetiapine do not elicit parkinsonism or tardive dyskinesia because they are released from D2 within 12 to 24 h. Traditional antipsychotics remain attached to D2 receptors for days, preventing relapse, but allowing accumulation that can lead to tardive dyskinesia. Future goals include imaging D2(High) receptors and desensitizing them in early-stage psychosis.
Collapse
Affiliation(s)
- Philip Seeman
- Departments of Pharmacology and Psychiatry, University of Toronto, 260 Heath Street West, Suite 605, Toronto, Ontario, Canada M5P 3L6.
| |
Collapse
|
16
|
|
17
|
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse 2011; 65:892-909. [DOI: 10.1002/syn.20916] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
|
18
|
Ishibashi K, Ishii K, Oda K, Mizusawa H, Ishiwata K. Binding of pramipexole to extrastriatal dopamine D2/D3 receptors in the human brain: a positron emission tomography study using 11C-FLB 457. PLoS One 2011; 6:e17723. [PMID: 21408026 PMCID: PMC3052387 DOI: 10.1371/journal.pone.0017723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/13/2011] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to determine the binding sites of pramipexole in extrastriatal dopaminergic regions because its antidepressive effects have been speculated to occur by activating the dopamine D(2) receptor subfamily in extrastriatal areas. Dynamic positron emission tomography (PET) scanning using (11)C-FLB 457 for quantification of D(2)/D(3) receptor subtype was performed on 15 healthy volunteers. Each subject underwent two PET scans before and after receiving a single dose of pramipexole (0, 0.125, or 0.25 mg). The study demonstrated that pramipexole significantly binds to D(2)/D(3) receptors in the prefrontal cortex, amygdala, and medial and lateral thalamus at a dose of 0.25 mg. These regions have been indicated to have some relation to depression and may be part of the target sites where pramipexole exerts its antidepressive effects.
Collapse
Affiliation(s)
- Kenji Ishibashi
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
19
|
Skinbjerg M, Seneca N, Liow JS, Hong J, Weinshenker D, Pike VW, Halldin C, Sibley DR, Innis RB. Dopamine beta-hydroxylase-deficient mice have normal densities of D(2) dopamine receptors in the high-affinity state based on in vivo PET imaging and in vitro radioligand binding. Synapse 2010; 64:699-703. [PMID: 20336622 DOI: 10.1002/syn.20781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vitro, D(2) dopamine receptors (DAR) can exist in low- and high-affinity states for agonists and increases of D(2) receptors in high-affinity state have been proposed to underlie DA receptor supersensitivity in vivo. Deletion of the gene for dopamine beta-hydroxylase (DBH) causes mice to become hypersensitive to the effects of psychostimulants, and in vitro radioligand binding results suggest an increased percentage of D(2) receptors in a high-affinity state. To determine whether DBH knockout mice display an increase of high-affinity state D(2) receptors in vivo, we scanned DBH knockout and control mice with the agonist PET radioligand [(11)C]MNPA, which is thought to bind preferentially to the high-affinity state of the D(2) receptor. In addition, we performed in vitro binding experiments on striatal homogenates with [(3)H]methylspiperone to measure B(max) values and the percentages of high- and low-affinity states of the D(2) receptor. We found that the in vivo striatal binding of [(11)C]MNPA was similar in DBH knockout mice and heterozygous controls and the in vitro B(max) values and percentages of D(2) receptors in the high-affinity state, were not significantly different between these two groups. In summary, our results suggest that DBH knockout mice have normal levels of D(2) receptors in the high-affinity state and that additional mechanisms contribute to their behavioral sensitivity to psychostimulants.
Collapse
Affiliation(s)
- Mette Skinbjerg
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-2035, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The antipsychotic effectiveness of chlorpromazine and haloperidol started a search for their therapeutic targets. The antipsychotic receptor target turned out to be a dopamine receptor, now cloned as the dopamine D2 receptor. The D2 receptor is the common target for antipsychotics. Antipsychotic clinical doses correlate with their affinities for this receptor. Therapeutic doses of antipsychotics occupy 60 to 80% of brain D2 receptors in patients, but aripiprazole occupies up to 90%. While antipsychotics may take up to six hours to occupy D2 receptors, much clinical improvement occurs within a few days. The receptor has high- and low-affinity states. The D2High state is functional for dopamine-like agonists such as aripiprazole. Most individuals with schizophrenia are supersensitive to dopamine. Animal models of psychosis show that a variety of risk factors, genetic and nongenetic, are associated with behavioral supersensitivity to dopamine, reflected in elevated levels of dopamine D2High receptors. Although antipsychotics such as haloperidol alleviate psychosis and reverse the elevation of D2High receptors, long-term use of traditional antipsychotics can further enhance dopamine supersensitivity in patients. Therefore, switching from a traditional antipsychotic to an agonist antipsychotic such as aripiprazole can result in the emergence of psychotic signs and symptoms. Clozapine and quetiapine do not elicit parkinsonism and rarely result in tardive dyskinesia because they are released from D2 within 12 to 24 hours. Traditional antipsychotics remain attached to D2 receptors for days, preventing relapse, but allowing accumulation that can lead to tardive dyskinesia. Future goals include imaging D2High receptors and desensitizing them in early-stage psychosis.
Collapse
Affiliation(s)
- Philip Seeman
- Pharmacology Department, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|
21
|
Skinbjerg M, Liow JS, Seneca N, Hong J, Lu S, Thorsell A, Heilig M, Pike VW, Halldin C, Sibley DR, Innis RB. D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage 2010; 50:1402-7. [PMID: 20097293 PMCID: PMC2838946 DOI: 10.1016/j.neuroimage.2010.01.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/14/2009] [Accepted: 01/14/2010] [Indexed: 11/18/2022] Open
Abstract
Dopamine released by amphetamine decreases the in vivo binding of PET radioligands to the dopamine D(2) receptor. Although concentrations of extracellular dopamine largely return to baseline within 1 to 2 h after amphetamine treatment, radioligand binding remains decreased for several hours. The purpose of this study was to determine whether the prolonged decrease of radioligand binding after amphetamine administration is caused by receptor internalization. To distinguish dopamine displacement from receptor internalization, we used wild-type and arrestin3 (arr3) knockout mice, which are incapable of internalizing D(2) receptors. In addition, we used both the D(2) selective agonist [(11)C]MNPA (which is thought to bind to the high affinity state of the receptor) and the D(2) selective antagonist [(18)F]fallypride (which does not differentiate between high and low affinity state). After an initial baseline scan, animals were divided in three groups for a second scan: either 30 min or 4 h after amphetamine administration (3 mg/kg, i.p.) or as retest. At 30 min, [(11)C]MNPA showed greater displacement than [(18)F]fallypride, but each radioligand gave similar displacement in knockout and wild-type mice. At 4 h, the binding of both radioligands returned to baseline in arr3 knockout mice, but remained decreased in wild-type mice. Radioligand binding was unaltered on retest scanning. Our results suggest that the prolonged decrease of radioligand binding after amphetamine is mainly due to internalization of the D(2) receptor rather than dopamine displacement. In addition, this study demonstrates the utility of small animal PET to study receptor trafficking in vivo in genetically modified mice.
Collapse
Affiliation(s)
- Mette Skinbjerg
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Nicholas Seneca
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Annika Thorsell
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Peng T, Zysk J, Dorff P, Elmore CS, Ström P, Malmquist J, Ding M, Tuke D, Werkheiser J, Widzowski D, Mrzljak L, Maier D. D2 receptor occupancy in conscious rat brain is not significantly distinguished with [3H]-MNPA, [3H]-(+)-PHNO, and [3H]-raclopride. Synapse 2010; 64:624-33. [DOI: 10.1002/syn.20771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Minuzzi L, Cumming P. Agonist binding fraction of dopamine D2/3 receptors in rat brain: a quantitative autoradiographic study. Neurochem Int 2010; 56:747-52. [PMID: 20117160 DOI: 10.1016/j.neuint.2010.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 02/02/2023]
Abstract
There has arisen considerable interest in the study of dopamine D(2/3) agonist binding sites by positron emission tomography (PET), based on the claim that agonist sites represent a functional subset of the total number of sites labeled by more conventional antagonist ligands. To test the basis of this claim, we used quantitative autoradiography to measure the abundance of binding sites of a dopamine D(2/3) agonist ([(3)H]NPA) and an antagonist ([(3)H]raclopride) in cryosections of rat brain. Saturation binding studies revealed that the B(max) for [(3)H]NPA was nearly identical to that of [(3)H]raclopride in dorsal brain regions, but was 25% less in the ventral striatum and 56% less in the olfactory tubercle. We also tested the displacement of the two ligands by the hallucinogen LSD, which is known to have dopamine agonist properties. Whereas displacement of [(3)H]raclopride by increasing LSD concentrations was monophasic, displacement of [(3)H]NPA was biphasic, suggesting an action of LSD via a subset of dopamine D(2/3) agonist binding sites. Addition of the stable GTP analogue Gpp(NH)p to the medium abolished 90% of the [(3)H]NPA binding, and increased [(3)H]raclopride binding by 10%, with a shift to the right in the LSD competition curve, suggesting retention of endogenous dopamine in washed cryostat sections. Thus [(3)H]NPA and [(3)H]raclopride binding sites have nearly identical abundances in rat dorsal striatum, but are distinct in the ventral striatum, and with respect to their displacement by LSD.
Collapse
|
24
|
Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol Dis 2010; 37:38-47. [DOI: 10.1016/j.nbd.2009.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/24/2022] Open
|