1
|
McGovern DJ, Phillips A, Ly A, Prévost ED, Ward L, Siletti K, Kim YS, Fenno LE, Ramakrishnan C, Deisseroth K, Ford CP, Root DH. Salience signaling and stimulus scaling of ventral tegmental area glutamate neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598688. [PMID: 38915564 PMCID: PMC11195246 DOI: 10.1101/2024.06.12.598688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ventral tegmental area (VTA) glutamatergic neurons participate in reward, aversion, drug-seeking, and stress. Subsets of VTA VGluT2+ neurons are capable of co-transmitting glutamate and GABA (VGluT2+VGaT+ neurons), transmitting glutamate without GABA (VGluT2+VGaT- neurons), or co-transmitting glutamate and dopamine (VGluT2+TH+ neurons), but whether these molecularly distinct subpopulations show behavior-related differences is not wholly understood. We identified that neuronal activity of each VGluT2+ subpopulation is sensitive to reward value but signaled this in different ways. The phasic maximum activity of VGluT2+VGaT+ neurons increased with sucrose concentration, whereas VGluT2+VGaT- neurons increased maximum and sustained activity with sucrose concentration, and VGluT2+TH+ neurons increased sustained but not maximum activity with sucrose concentration. Additionally, VGluT2+ subpopulations signaled consummatory preferences in different ways. VGluT2+VGaT- neurons and VGluT2+TH+ neurons showed a signaling preference for a behaviorally-preferred fat reward over sucrose, but in temporally-distinct ways. In contrast, VGluT2+VGaT+ neurons uniquely signaled a less behaviorally-preferred sucrose reward compared with fat. Further experiments suggested that VGluT2+VGaT+ consummatory reward-related activity was related to sweetness, partially modulated by hunger state, and not dependent on caloric content or behavioral preference. All VGluT2+ subtypes increased neuronal activity following aversive stimuli but VGluT2+VGaT+ neurons uniquely scaled their magnitude and sustained activity with footshock intensity. Optogenetic activation of VGluT2+VGaT+ neurons during low intensity footshock enhanced fear-related behavior without inducing place preference or aversion. We interpret these data such that VTA glutamatergic subpopulations signal different elements of rewarding and aversive experiences and highlight the unique role of VTA VGluT2+VGaT+ neurons in enhancing the salience of behavioral experiences.
Collapse
Affiliation(s)
- Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Alysabeth Phillips
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Lucy Ward
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Kayla Siletti
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Yoon Seok Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Lief E. Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Current address: Department of Neuroscience, Dell Medical School, The University of Texas at Austin 78712
| | - Charu Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
2
|
Faget L, Oriol L, Lee WC, Zell V, Sargent C, Flores A, Hollon NG, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. Nat Commun 2024; 15:4233. [PMID: 38762463 PMCID: PMC11102457 DOI: 10.1038/s41467-024-48340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Andrew Flores
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Nick G Hollon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
3
|
Faget L, Oriol L, Lee WC, Sargent C, Ramanathan D, Hnasko TS. Ventral pallidum GABA and glutamate neurons drive approach and avoidance through distinct modulation of VTA cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548750. [PMID: 37502884 PMCID: PMC10369949 DOI: 10.1101/2023.07.12.548750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ventral pallidum (VP) contains GABA and glutamate (Glut) neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the cell-type-specific mechanisms by which VP projections to VTA drive behavior. Here, we found that both VP GABA and Glut neurons were activated during approach to reward or delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine (DA) and glutamate neurons. Remarkably, this cell-type-specific recruitment was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP Glut neurons activated VTA GABA, as well as DA and Glut neurons, despite driving aversion. However, VP Glut neurons evoked DA in reward-associated ventromedial nucleus accumbens (NAc), but reduced DA in aversion-associated dorsomedial NAc. These findings show how heterogeneous VP cell types can engage VTA cell types to shape approach and avoidance behaviors.
Collapse
Affiliation(s)
- Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Lucie Oriol
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Wen-Chun Lee
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Cody Sargent
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dhakshin Ramanathan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Thomas S. Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Vigor Encoding in the Ventral Pallidum. eNeuro 2021; 8:ENEURO.0064-21.2021. [PMID: 34326066 PMCID: PMC8376296 DOI: 10.1523/eneuro.0064-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
The ventral pallidum (VP) is the major downstream nucleus of the nucleus accumbens (NAc). Both VP and NAc neurons are responsive to reward-predictive stimuli and are critical drivers of reward-seeking behavior. The cue-evoked excitations and inhibitions of NAc neurons predict the vigor (latency and speed) of the cue-elicited locomotor approach response and encode the animal’s proximity to the movement target, but do not encode more specific movement features such as turn direction. VP neurons also encode certain vigor parameters, but it remains unknown whether they also encode more specific movement features, and whether such encoding could account for vigor encoding. To address these questions, we recorded the firing of neurons in the VP of freely moving male rats performing a discriminative stimulus (DS) task. Similar to NAc neurons, VP neurons’ cue-evoked excitations were correlated with the speed of the upcoming approach movement and the animal’s proximity to the movement target at cue onset. Unlike NAc neurons, VP neurons’ firing reflected the efficiency of the approach movement path but not the latency to initiate locomotion. VP cue-evoked excitations are unlikely to be directly influenced by NAc cue-evoked excitations because unilateral treatment of the NAc with a dopamine D1 receptor antagonist, a manipulation that reduces NAc neurons’ cue-evoked excitations, did not alter ipsilateral VP cue-evoked excitations. These observations suggest that the two structures receive simultaneous activation by inputs conveying similar but not identical information, and work in parallel to set the vigor of the behavioral response.
Collapse
|
6
|
Neurochemical Signaling of Reward and Aversion to Ventral Tegmental Area Glutamate Neurons. J Neurosci 2021; 41:5471-5486. [PMID: 34001626 DOI: 10.1523/jneurosci.1419-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Ventral tegmental area (VTA) glutamate neurons signal and participate in reward and aversion-based behaviors. However, the neurochemical mechanisms that underlie how these neurons contribute to motivated behaviors is unknown. We used a combination of optical sensors to identify how distinct neurochemical inputs to VTA glutamate neurons participate in motivated behavior within female and male transgenic mice. Activity of glutamate inputs to VTA glutamate neurons increased for both reward-predicting and aversion-predicting cues and aversive outcomes, but subpopulations of glutamate inputs were increased or decreased by reward. For both reward and aversion-based cues and outcomes, activity of GABA inputs to VTA glutamate neurons mostly decreased. GCaMP recordings showed overall population increases in VTA glutamate neuron intracellular calcium during reward and aversion-based cues and outcomes. Electrophysiological recordings of VTA VGluT2 neurons showed that glutamate receptor activation increases firing while loss of excitation via glutamate receptor blockade decreases firing. GABA-A receptor activation decreased VTA glutamate neuron firing but GABA-A receptor blockade did not significantly change VTA glutamate neuron firing. Electrophysiological recordings in coordination with our sensor data suggest that glutamate inputs strongly regulate VTA glutamate neuron participation in diverse motivated behaviors.SIGNIFICANCE STATEMENT Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters of the nervous system. However, identifying how these neurotransmitters regulate motivated behavior has remained challenging because of a lack of tools (1) capable of measuring neurotransmission at the temporal scale of motivated behaviors and (2) capable of capturing chemical signaling onto genetically-distinct neuronal populations. We have overcome these obstacles by implementing genetically-encoded fluorescent indicators to monitor both glutamate and GABA input dynamics exclusively to ventral tegmental area (VTA) glutamate neurons during reward and aversion-based behaviors. We identify that glutamate and GABA inputs to VTA glutamate neurons differentially and dynamically signal reward and aversion-based cues and outcomes. This research provides foundational evidence that links distinct neurotransmitters to motivated behaviors regulated by VTA glutamate neurons.
Collapse
|
7
|
Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020; 1731:146164. [PMID: 30796894 PMCID: PMC6702109 DOI: 10.1016/j.brainres.2019.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Cocaine abuse remains a pervasive public health problem, and treatments thus far have proven ineffective for long-term abstinence maintenance. Intensive research on the neurobiology underlying drug abuse has led to the consideration of many candidate transmitter systems to target for intervention. Among these, the hypocretin/orexin (hcrt/ox) neuropeptide system holds largely untapped yet clinically viable therapeutic potential. Hcrt/ox originates from the hypothalamus and projects widely across the mammalian central nervous system to produce neuroexcitatory actions via two excitatory G-protein coupled receptor subtypes. Functionally, hcrt/ox promotes arousal/wakefulness and facilitates energy homeostasis. In the early 2000s, hcrt/ox transmission was shown to underlie mating behavior in male rats suggesting a novel role in reward-seeking. Soon thereafter, hcrt/ox neurons were shown to respond to drug-associated stimuli, and hcrt/ox transmission was found to facilitate motivated responding for intravenous cocaine. Notably, blocking hcrt/ox transmission using systemic or site-directed pharmacological antagonists markedly reduced motivated drug-taking as well as drug-seeking in tests of relapse. This review will unfold the current state of knowledge implicating hcrt/ox receptor transmission in the context of cocaine abuse and provide detailed background on animal models and underlying midbrain circuits. Specifically, attention will be paid to the mesoaccumbens, tegmental, habenular, pallidal and preoptic circuits. The review will conclude with discussion of recent preclinical studies assessing utility of suvorexant - the first and only FDA-approved hcrt/ox receptor antagonist - against cocaine-associated behaviors.
Collapse
Affiliation(s)
- Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Taylor A Gentile
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Prasad AA, Xie C, Chaichim C, Nguyen JH, McClusky HE, Killcross S, Power JM, McNally GP. Complementary Roles for Ventral Pallidum Cell Types and Their Projections in Relapse. J Neurosci 2020; 40:880-893. [PMID: 31818977 PMCID: PMC6975293 DOI: 10.1523/jneurosci.0262-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScope in situ hybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1 and VPPV neurons in relapse. We show that VPGad1 neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1 neurons. This convergence of striatopallidal inputs at the level of individual LHGad1 neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPV neurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1 neurons control relapse during renewal via projections to LH. VPPV neurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENT Relapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.
Collapse
Affiliation(s)
| | | | - Chanchanok Chaichim
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2052, Australia
| | | | | | | | - John M Power
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
9
|
Yohn SE, Galbraith J, Calipari ES, Conn PJ. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chem Neurosci 2019; 10:2125-2143. [PMID: 30933466 PMCID: PMC7898461 DOI: 10.1021/acschemneuro.8b00601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated data from clinical and preclinical studies suggest that, in drug addiction and states of overeating, such as obesity and binge eating disorder (BED), there is an imbalance in circuits that are critical for motivation, reward saliency, executive function, and self-control. Central to these pathologies and the extensive topic of this Review are the aberrations in dopamine (DA) and glutamate (Glu) within the mesolimbic pathway. Group I metabotropic glutamate receptors (mGlus) are highly expressed in the mesolimbic pathway and are poised in key positions to modulate disruptions in synaptic plasticity and neurotransmitter release observed in drug addiction, obesity, and BED. The use of allosteric modulators of group I mGlus has been studied in drug addiction, as they offer several advantages over traditional orthosteric agents. However, they have yet to be studied in obesity or BED. With the substantial overlap between the neurocircuitry involved in drug addiction and eating disorders, group I mGlus may also provide novel targets for obesity and BED.
Collapse
Affiliation(s)
- Samantha E. Yohn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Jordan Galbraith
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
10
|
Matsui A, Alvarez VA. Cocaine Inhibition of Synaptic Transmission in the Ventral Pallidum Is Pathway-Specific and Mediated by Serotonin. Cell Rep 2018; 23:3852-3863. [PMID: 29949769 PMCID: PMC6101978 DOI: 10.1016/j.celrep.2018.05.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/09/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023] Open
Abstract
The ventral pallidum (VP) is part of the basal ganglia circuitry and a target of both direct and indirect pathway projections from the nucleus accumbens. VP is important in cocaine reinforcement, and the firing of VP neurons is modulated in vivo during cocaine self-administration. This modulation of firing is thought to be indirect via cocaine actions on dopamine in the accumbens. Here, we show that cocaine directly inhibits synaptic transmission evoked by selective stimulation of indirect pathway projections to VP neurons. The inhibition is independent of dopamine receptor activation, absent in 5-HT1B knockout mice, and mimicked by a serotonin transporter (SERT) blocker. SERT-expressing neurons in dorsal raphe project to the VP. Optogenetic stimulation of these projections evokes serotonin transients and effectively inhibits GABAergic transmission to VP neurons. This study shows that cocaine increases endogenous serotonin in the VP to suppress synaptic transmission selectively from indirect pathway projections to VP neurons.
Collapse
Affiliation(s)
- Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA-IRP), NIH, Bethesda, MD 20892, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism (NIAAA-IRP), NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse (NIDA-IRP), Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation. eNeuro 2018; 5:eN-NWR-0386-17. [PMID: 29780881 PMCID: PMC5957524 DOI: 10.1523/eneuro.0386-18.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
The nucleus accumbens (NAc) plays a central role in reinforcement and motivation. Around 95% of the NAc neurons are medium spiny neurons (MSNs), divided into those expressing dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R). Optogenetic activation of D2-MSNs increased motivation, whereas inhibition of these neurons produced the opposite effect. Yet, it is still unclear how activation of D2-MSNs affects other local neurons/interneurons or input terminals and how this contributes for motivation enhancement. To answer this question, in this work we combined optogenetic modulation of D2-MSNs with in loco pharmacological delivery of specific neurotransmitter antagonists in rats. First, we showed that optogenetic activation of D2-MSNs increases motivation in a progressive ratio (PR) task. We demonstrated that this behavioral effect relies on cholinergic-dependent modulation of dopaminergic signalling of ventral tegmental area (VTA) terminals, which requires D1R and D2R signalling in the NAc. D2-MSN optogenetic activation decreased ventral pallidum (VP) activity, reducing the inhibitory tone to VTA, leading to increased dopaminergic activity. Importantly, optogenetic activation of D2-MSN terminals in the VP was sufficient to recapitulate the motivation enhancement. In summary, our data suggests that optogenetic stimulation of NAc D2-MSNs indirectly modulates VTA dopaminergic activity, contributing for increased motivation. Moreover, both types of dopamine receptors signalling in the NAc are required in order to produce the positive behavioral effects.
Collapse
|
12
|
Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat Commun 2018; 9:849. [PMID: 29487284 PMCID: PMC5829073 DOI: 10.1038/s41467-018-03125-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/19/2018] [Indexed: 01/07/2023] Open
Abstract
The ventral pallidum (VP) lies at the interface between sensory, motor, and cognitive processing-with a particular role in mounting behavioral responses to rewards. Though the VP is predominantly GABAergic, glutamate neurons were recently identified, though their relative abundances and respective roles are unknown. Here, we show that VP glutamate neurons are concentrated in the rostral ventromedial VP and project to qualitatively similar targets as do VP GABA neurons. At the functional level, we used optogenetics to show that activity in VP GABA neurons can drive positive reinforcement, particularly through projections to the ventral tegmental area (VTA). On the other hand, activation of VP glutamate neurons leads to behavioral avoidance, particularly through projections to the lateral habenula. These findings highlight cell-type and projection-target specific roles for VP neurons in behavioral reinforcement, dysregulation of which could contribute to the emergence of negative symptoms associated with drug addiction and other neuropsychiatric disease.
Collapse
|
13
|
Rosell-Negre P, Bustamante JC, Fuentes-Claramonte P, Costumero V, Llopis-Llacer JJ, Barrós-Loscertales A. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts. PLoS One 2016; 11:e0167400. [PMID: 27907134 PMCID: PMC5131954 DOI: 10.1371/journal.pone.0167400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023] Open
Abstract
The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other non-drug reinforcers and the user's loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards.
Collapse
Affiliation(s)
- Patricia Rosell-Negre
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| | - Juan-Carlos Bustamante
- Departamento de Psicologia y Sociología. Universidad de Zaragoza, Zaragoza, Zaragoza, Spain
| | - Paola Fuentes-Claramonte
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
- FIDMAG Germanes Hospitalàries Research Foundation Barcelona, Cataluña, Spain
| | - Víctor Costumero
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| | - Juan-José Llopis-Llacer
- Unidad de Conductas Adictivas, Hospital General Universitario, Consellería de Sanitat, Castellón de la Plana, Spain
| | - Alfonso Barrós-Loscertales
- Departamento de Psicología Básica, Clínica y Psicobiología. Universitat Jaume I, Castellón, Castelló de la Plana, Spain
| |
Collapse
|
14
|
Ahrens AM, Meyer PJ, Ferguson LM, Robinson TE, Aldridge JW. Neural Activity in the Ventral Pallidum Encodes Variation in the Incentive Value of a Reward Cue. J Neurosci 2016; 36:7957-70. [PMID: 27466340 PMCID: PMC4961780 DOI: 10.1523/jneurosci.0736-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED There is considerable individual variation in the extent to which reward cues are attributed with incentive salience. For example, a food-predictive conditioned stimulus (CS; an illuminated lever) becomes attractive, eliciting approach toward it only in some rats ("sign trackers," STs), whereas others ("goal trackers," GTs) approach the food cup during the CS period. The purpose of this study was to determine how individual differences in Pavlovian approach responses are represented in neural firing patterns in the major output structure of the mesolimbic system, the ventral pallidum (VP). Single-unit in vivo electrophysiology was used to record neural activity in the caudal VP during the performance of ST and GT conditioned responses. All rats showed neural responses to both cue onset and reward delivery but, during the CS period, STs showed greater neural activity than GTs both in terms of the percentage of responsive neurons and the magnitude of the change in neural activity. Furthermore, neural activity was positively correlated with the degree of attraction to the cue. Given that the CS had equal predictive value in STs and GTs, we conclude that neural activity in the VP largely reflects the degree to which the CS was attributed with incentive salience. SIGNIFICANCE STATEMENT Cues associated with reward can acquire motivational properties (i.e., incentive salience) that cause them to have a powerful influence on desire and motivated behavior. There are individual differences in sensitivity to reward-paired cues, with some individuals attaching greater motivational value to cues than others. Here, we investigated the neural activity associated with these individual differences in incentive salience. We found that cue-evoked neural firing in the ventral pallidum (VP) reflected the strength of incentive motivation, with the greatest neural responses occurring in individuals that demonstrated the strongest attraction to the cue. This suggests that the VP plays an important role in the process by which cues gain control over motivation and behavior.
Collapse
Affiliation(s)
- Allison M Ahrens
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Paul J Meyer
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and Department of Psychology, University at Buffalo, Buffalo, New York 14051
| | - Lindsay M Ferguson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - J Wayne Aldridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| |
Collapse
|
15
|
Chan CL, Wheeler DS, Wheeler RA. The neural encoding of cocaine-induced devaluation in the ventral pallidum. Neurobiol Learn Mem 2016; 130:177-84. [PMID: 26948120 DOI: 10.1016/j.nlm.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/25/2023]
Abstract
Cocaine experience affects motivation structures such as the nucleus accumbens (NAc) and its major output target, the ventral pallidum (VP). Previous studies demonstrated that both NAc activity and hedonic responses change reliably as a taste cue comes to predict cocaine availability. Here we extended this investigation to examine drug-experience induced changes in hedonic encoding in the VP. VP activity was first characterized in adult male Sprague-Dawley rats in response to intraoral infusions of palatable saccharin and unpalatable quinine solutions. Next, rats received 7 daily pairings of saccharin that predicted either a cocaine (20mg/kg, ip) or saline injection. Finally, the responses to saccharin and quinine were again assessed. Of 109 units recorded in 11 rats that received saccharin-cocaine pairings, 71% of responsive units significantly reduced firing rate during saccharin infusions and 64% increased firing rate during quinine exposure. However, as saccharin came to predict cocaine, and elicited aversive taste reactivity, VP responses changed to resemble quinine. After conditioning, 70% of saccharin-responsive units increased firing rate. Most units that encoded the palatable taste (predominantly reduced firing rate) were located in the anterior VP, while most units that were responsive to aversive tastes were located in the posterior VP. This study reveals an anatomical complexity to the nature of hedonic encoding in the VP.
Collapse
Affiliation(s)
- Chung-Lung Chan
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Daniel S Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Robert A Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
16
|
Chronic nicotine activates stress/reward-related brain regions and facilitates the transition to compulsive alcohol drinking. J Neurosci 2015; 35:6241-53. [PMID: 25878294 DOI: 10.1523/jneurosci.3302-14.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Alcohol and nicotine are the two most co-abused drugs in the world. Previous studies have shown that nicotine can increase alcohol drinking in nondependent rats, yet it is unknown whether nicotine facilitates the transition to alcohol dependence. We tested the hypothesis that chronic nicotine will speed up the escalation of alcohol drinking in rats and that this effect will be accompanied by activation of sparsely distributed neurons (neuronal ensembles) throughout the brain that are specifically recruited by the combination of nicotine and alcohol. Rats were trained to respond for alcohol and made dependent using chronic, intermittent exposure to alcohol vapor, while receiving daily nicotine (0.8 mg/kg) injections. Identification of neuronal ensembles was performed after the last operant session, using immunohistochemistry. Nicotine produced an early escalation of alcohol drinking associated with compulsive alcohol drinking in dependent, but not in nondependent rats (air exposed), as measured by increased progressive-ratio responding and increased responding despite adverse consequences. The combination of nicotine and alcohol produced the recruitment of discrete and phenotype-specific neuronal ensembles (∼4-13% of total neuronal population) in the nucleus accumbens core, dorsomedial prefrontal cortex, central nucleus of the amygdala, bed nucleus of stria terminalis, and posterior ventral tegmental area. Blockade of nicotinic receptors using mecamylamine (1 mg/kg) prevented both the behavioral and neuronal effects of nicotine in dependent rats. These results demonstrate that nicotine and activation of nicotinic receptors are critical factors in the development of alcohol dependence through the dysregulation of a set of interconnected neuronal ensembles throughout the brain.
Collapse
|
17
|
Ho CY, Berridge KC. Excessive disgust caused by brain lesions or temporary inactivations: mapping hotspots of the nucleus accumbens and ventral pallidum. Eur J Neurosci 2014; 40:3556-72. [PMID: 25229197 PMCID: PMC4236281 DOI: 10.1111/ejn.12720] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense 'disgust reactions' (e.g. gapes) to a normally pleasant sensation such as sweetness. Here, we aimed to map forebrain candidates more precisely, to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol/baclofen microinjections) caused rats to show excessive sensory disgust reactions to sucrose. Our study compared subregions of the nucleus accumbens shell, ventral pallidum, lateral hypothalamus, and adjacent extended amygdala. The results indicated that the posterior half of the ventral pallidum was the only forebrain site where intense sensory disgust gapes in response to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness 'liking'). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust, but lesions never did at any site. Furthermore, even inactivations failed to induce disgust in the rostral half of the accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior and rostral halves of the medial shell.
Collapse
Affiliation(s)
- Chao-Yi Ho
- Department of Psychology, University of Michigan, Ann Arbor
| | | |
Collapse
|
18
|
Barker DJ, Striano BM, Coffey KC, Root DH, Pawlak AP, Kim OA, Kulik J, Fabbricatore AT, West MO. Sensitivity to self-administered cocaine within the lateral preoptic-rostral lateral hypothalamic continuum. Brain Struct Funct 2014; 220:1841-54. [PMID: 24604249 PMCID: PMC4157119 DOI: 10.1007/s00429-014-0736-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
The lateral preoptic-rostral lateral hypothalamic continuum (LPH) receives projections from the nucleus accumbens and is believed to be one route by which nucleus accumbens signaling affects motivated behaviors. While accumbens firing patterns are known to be modulated by fluctuating levels of cocaine, studies of the LPH's drug-related firing are absent from the literature. The present study sought to electrophysiologically test whether drug-related tonic and slow-phasic patterns exist in the firing of LPH neurons during a free-access cocaine self-administration task. Results demonstrated that a majority of neurons in the LPH exhibited changes in both tonic and slow-phasic firing rates during fluctuating drug levels. During the maintenance phase of self-administration, 69.6% of neurons exhibited at least a twofold change in tonic firing rate when compared to their pre-drug firing rates. Moreover, 54.4% of LPH neurons demonstrated slow-phasic patterns, specifically "progressive reversal" patterns, which have been shown to be related to pharmacological changes across the inter-infusion interval. Firing rate was correlated with calculated drug level in 58.7% of recorded cells. Typically, a negative correlation between drug level and firing rate was observed, with a majority of neurons showing decreases in firing during cocaine self-administration. A small percentage of LPH neurons also exhibited correlations between locomotor behavior and firing rate; however, correlations with drug level in these same neurons were always stronger. Thus, the weak relationships between LPH firing and locomotor behaviors during cocaine self-administration do not account for the observed changes in firing. Overall, these findings suggest that a proportion of LPH neurons are sensitive to fluctuations in cocaine concentration and may contribute to neural activity that controls drug taking.
Collapse
Affiliation(s)
- David J Barker
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barker DJ, Root DH, Coffey KR, Ma S, West MO. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals. J Vis Exp 2014:e51004. [PMID: 24561332 DOI: 10.3791/51004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vivo electrophysiological recordings in the awake, behaving animal provide a powerful method for understanding neural signaling at the single-cell level. The technique allows experimenters to examine temporally and regionally specific firing patterns in order to correlate recorded action potentials with ongoing behavior. Moreover, single-unit recordings can be combined with a plethora of other techniques in order to produce comprehensive explanations of neural function. In this article, we describe the anesthesia and preparation for microwire implantation. Subsequently, we enumerate the necessary equipment and surgical steps to accurately insert a microwire array into a target structure. Lastly, we briefly describe the equipment used to record from each individual electrode in the array. The fixed microwire arrays described are well-suited for chronic implantation and allow for longitudinal recordings of neural data in almost any behavioral preparation. We discuss tracing electrode tracks to triangulate microwire positions as well as ways to combine microwire implantation with immunohistochemical techniques in order to increase the anatomical specificity of recorded results.
Collapse
Affiliation(s)
- David J Barker
- Department of Psychology, Rutgers, the State University of New Jersey
| | - David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse
| | - Kevin R Coffey
- Department of Psychology, Rutgers, the State University of New Jersey;
| | - Sisi Ma
- Department of Psychology, Rutgers, the State University of New Jersey
| | - Mark O West
- Department of Psychology, Rutgers, the State University of New Jersey
| |
Collapse
|
20
|
Kupchik YM, Scofield MD, Rice KC, Cheng K, Roques BP, Kalivas PW. Cocaine dysregulates opioid gating of GABA neurotransmission in the ventral pallidum. J Neurosci 2014; 34:1057-66. [PMID: 24431463 PMCID: PMC3891949 DOI: 10.1523/jneurosci.4336-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol and Alcoholism, Rockville, Maryland 20892, Pharmaleads SAS, 75013 Paris, France, and Université Paris-Descartes, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Cruz FC, Koya E, Guez-Barber DH, Bossert JM, Lupica CR, Shaham Y, Hope BT. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 2013; 14:743-54. [PMID: 24088811 DOI: 10.1038/nrn3597] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.
Collapse
Affiliation(s)
- Fabio C Cruz
- Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Root DH, Ma S, Barker DJ, Megehee L, Striano BM, Ralston CM, Fabbricatore AT, West MO. Differential roles of ventral pallidum subregions during cocaine self-administration behaviors. J Comp Neurol 2013; 521:558-88. [PMID: 22806483 DOI: 10.1002/cne.23191] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/30/2012] [Accepted: 07/09/2012] [Indexed: 12/11/2022]
Abstract
The ventral pallidum (VP) is necessary for drug-seeking behavior. VP contains ventromedial (VPvm) and dorsolateral (VPdl) subregions, which receive projections from the nucleus accumbens shell and core, respectively. To date no study has investigated the behavioral functions of the VPdl and VPvm subregions. To address this issue, we investigated whether changes in firing rate (FR) differed between VP subregions during four events: approaching toward, responding on, or retreating away from a cocaine-reinforced operandum and a cocaine-associated cue. Baseline FR and waveform characteristics did not differ between subregions. VPdl neurons exhibited a greater change in FR compared with VPvm neurons during approaches toward, as well as responses on, the cocaine-reinforced operandum. VPdl neurons were more likely to exhibit a similar change in FR (direction and magnitude) during approach and response than VPvm neurons. In contrast, VPvm firing patterns were heterogeneous, changing FRs during approach or response alone, or both. VP neurons did not discriminate cued behaviors from uncued behaviors. No differences were found between subregions during the retreat, and no VP neurons exhibited patterned changes in FR in response to the cocaine-associated cue. The stronger, sustained FR changes of VPdl neurons during approach and response may implicate VPdl in the processing of drug-seeking and drug-taking behavior via projections to subthalamic nucleus and substantia nigra pars reticulata. In contrast, the heterogeneous firing patterns of VPvm neurons may implicate VPvm in facilitating mesocortical structures with information related to the sequence of behaviors predicting cocaine self-infusions via projections to mediodorsal thalamus and ventral tegmental area.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kupchik YM, Kalivas PW. The rostral subcommissural ventral pallidum is a mix of ventral pallidal neurons and neurons from adjacent areas: an electrophysiological study. Brain Struct Funct 2012; 218:1487-500. [PMID: 23143342 DOI: 10.1007/s00429-012-0471-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/25/2012] [Indexed: 12/29/2022]
Abstract
The ventral pallidum (VP) is a part of the ventral striatopallidal system and is involved in reward-related behaviors. The VP is composed of a ventromedial (VPvm) and a dorsolateral (VPdl) subregion, and some rostral-caudal differences are reported. Study of the VP often focuses on the subcommissural VP, typically considered homogenous in spite of known subdivisions. In this work, we used slice electrophysiology combined with immunohistochemistry for marker neuropeptides to test whether the subcommissural VP is functionally homogenous. Using sagittal slices, we show that more lateral levels (2.40 mm) of the subcommissural VP are homogenous but that a more medial slice (1.90 mm) contains two types of neurons. One type, located more caudally, resembles neurons in the lateral subcommissural VP, with long aspiny dendrites, primarily GABAergic input, and characteristic electrophysiological properties, such as depolarized membrane potential and spontaneous action potential discharge. The second type of neuron, located mostly in the rostral subcommissural VP, shows properties that are akin to medium spiny neurons of adjacent regions, including spiny dendrites, major glutamatergic input, hyperpolarized membrane potential, and no spontaneous action potentials. The two types of neurons were present in both the VPvm and VPdl, implying that the mix is not a characteristic of histologically defined subregions. We conclude that at medial levels the rostral subcommissural VP contains a mix of typical ventral pallidal neurons and spiny neurons similar to those in adjacent regions. This observation needs to be considered when interpreting past experiments and designing future experiments in the subcommissural VP.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA,
| | | |
Collapse
|
24
|
Root DH, Fabbricatore AT, Pawlak AP, Barker DJ, Ma S, West MO. Slow phasic and tonic activity of ventral pallidal neurons during cocaine self-administration. Synapse 2011; 66:106-27. [PMID: 21953543 DOI: 10.1002/syn.20990] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 09/14/2011] [Indexed: 02/06/2023]
Abstract
Ventral pallidal (VP) neurons exhibit rapid phasic firing patterns within seconds of cocaine-reinforced responses. The present investigation examined whether VP neurons exhibited firing rate changes: (1) over minutes during the inter-infusion interval (slow phasic patterns) and/or (2) over the course of the several-hour self-administration session (tonic firing patterns) relative to pre-session firing. Approximately three-quarters (43/54) of VP neurons exhibited slow phasic firing patterns. The most common pattern was a post-infusion decrease in firing followed by a progressive reversal of firing over minutes (51.16%; 22/43). Early reversals were predominantly observed anteriorly whereas progressive and late reversals were observed more posteriorly. Approximately half (51.85%; 28/54) of the neurons exhibited tonic firing patterns consisting of at least a two-fold change in firing. Most cells decreased firing during drug loading, remained low over self-administration maintenance, and reversed following lever removal. Over a whole experiment (tonic) timescale, the majority of neurons exhibited an inverse relationship between calculated drug level and firing rates during loading and post-self-administration behaviors. Fewer neurons exhibited an inverse relationship of calculated drug level and tonic firing rate during self-administration maintenance but, among those that did, nearly all were progressive reversal neurons. The present results show that, similar to its main afferent the nucleus accumbens, VP exhibits both slow phasic and tonic firing patterns during cocaine self-administration. Given that VP neurons are principally GABAergic, the predominant slow phasic decrease and tonic decrease firing patterns within the VP may indicate a disinhibitory influence upon its thalamocortical, mesolimbic, and nigrostriatal targets during cocaine self-administration.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | |
Collapse
|
25
|
McGinty VB, Hayden BY, Heilbronner SR, Dumont EC, Graves SM, Mirrione MM, du Hoffmann J, Sartor GC, España RA, Millan EZ, Difeliceantonio AG, Marchant NJ, Napier TC, Root DH, Borgland SL, Treadway MT, Floresco SB, McGinty JF, Haber S. Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behav Brain Res 2011; 225:348-57. [PMID: 21816177 DOI: 10.1016/j.bbr.2011.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
On April 24-27, 2010, the Motivational Neuronal Networks meeting took place in Wrightsville Beach, North Carolina. The conference was devoted to "Emerging, re-emerging, and forgotten brain areas" of the reward circuit. A central feature of the conference was four scholarly discussions of cutting-edge topics related to the conference's theme. These discussions form the basis of the present review, which summarizes areas of consensus and controversy, and serves as a roadmap for the next several years of research.
Collapse
Affiliation(s)
- Vincent B McGinty
- Department of Neurobiology, Stanford University, Stanford, CA 94305-5125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Smith KS, Berridge KC, Aldridge JW. Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci U S A 2011; 108:E255-64. [PMID: 21670308 PMCID: PMC3131314 DOI: 10.1073/pnas.1101920108] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiple signals for reward-hedonic impact, motivation, and learned associative prediction-are funneled through brain mesocorticolimbic circuits involving the nucleus accumbens and ventral pallidum. Here, we show how the hedonic "liking" and motivation "wanting" signals for a sweet reward are distinctly modulated and tracked in this circuit separately from signals for Pavlovian predictions (learning). Animals first learned to associate a fixed sequence of Pavlovian cues with sucrose reward. Subsequent intraaccumbens microinjections of an opioid-stimulating drug increased the hedonic liking impact of sucrose in behavior and firing signals of ventral pallidum neurons, and likewise, they increased incentive salience signals in firing to the reward-proximal incentive cue (but did not alter firing signals to the learned prediction value of a reward-distal cue). Microinjection of a dopamine-stimulating drug instead enhanced only the motivation component but did not alter hedonic impact or learned prediction signals. Different dedicated neuronal subpopulations in the ventral pallidum tracked signal enhancements for hedonic impact vs. incentive salience, and a faster firing pattern also distinguished incentive signals from slower hedonic signals, even for a third overlapping population. These results reveal separate neural representations of wanting, liking, and prediction components of the same reward within the nucleus accumbens to ventral pallidum segment of mesocorticolimbic circuitry.
Collapse
Affiliation(s)
- Kyle S Smith
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|