1
|
Dudev T, Grauffel C, Lim C. Calcium in Signaling: Its Specificity and Vulnerabilities toward Biogenic and Abiogenic Metal Ions. J Phys Chem B 2021; 125:10419-10431. [PMID: 34515482 DOI: 10.1021/acs.jpcb.1c05154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Divalent calcium ion (Ca2+) plays an indispensable role as a second messenger in a myriad of signal transduction processes. Of utmost importance for the faultless functioning of calcium-modulated signaling proteins is their binding selectivity of the native metal cation over rival biogenic/abiogenic metal ion contenders in the intra/extracellular fluids. In this Perspective, we summarize recent findings on the competition between the cognate Ca2+ and other biogenic or abiogenic divalent cations for binding to Ca2+-signaling proteins or organic cofactors. We describe the competition between the two most abundant intracellular biogenic metal ions (Mg2+ and Ca2+) for Ca2+-binding sites in signaling proteins, followed by the rivalry between native Ca2+ and "therapeutic" Li+ as well as "toxic" Pb2+. We delineate the key factors governing the rivalry between the native and non-native cations in proteins and highlight key implications for the biological performance of the respective proteins/organic cofactors.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan
| |
Collapse
|
2
|
Ahmad A, Sheikh S, Khan MA, Chaturvedi A, Patel P, Patel R, Buch BC, Anand RS, Shah TC, Vora VN, Ramasubramanian V, Rao S, Kumar N, Prasad BSV, Sathianathan R, Verma KK, Jhanwar VG, Kumar N, Shah S, Dalal PK, Sindhu B, Talukdar P, Ahmad I. Endoxifen: A new, protein kinase C inhibitor to treat acute and mixed mania associated with bipolar I disorder. Bipolar Disord 2021; 23:595-603. [PMID: 33368969 DOI: 10.1111/bdi.13041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 12/20/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Endoxifen is a protein kinase C inhibitor. The objective of the present phase III study was to demonstrate the safety and efficacy of endoxifen in treating bipolar I disorder (BPD I) patients. METHODS A multicenter, double-blind, active-controlled study was conducted using a daily dose of 8 mg endoxifen compared to 1000 mg divalproex, the current standard treatment, in patients with BPD I acute manic episodes with/without mixed features. The primary endpoint of our study was the mean change in total Young Mania Rating Scale (YMRS) score at day 21. RESULTS Endoxifen (n = 116) significantly (p < 0.0001) reduced total YMRS score (from 33.1 to 17.8. A significant (p < 0.001) improvement in Montgomery-Åsberg Depression Rating Scale (MADRS) score was observed for endoxifen (4.8 to 2.5). Early time to remission of the disease was observed with endoxifen compared to divalproex. None of the patients required rescue medication and there was no drug-associated withdrawals. Changes in Clinical Global Impressions-Bipolar Disorder and Clinical Global Impression-Severity of Illness scores showed that treatment with endoxifen was well-tolerated. CONCLUSIONS Endoxifen at a low daily dose of 8 mg was as efficacious and safe in patients with BPD I acute manic episodes with/without mixed features.
Collapse
Affiliation(s)
- Ateeq Ahmad
- Jina Pharmaceuticals Inc, Libertyville, IL, USA
| | | | | | | | - Piyush Patel
- Intas Pharmaceuticals Ltd, Ahmedabad, Gujarat, India
| | - Ronak Patel
- Lambda Therapeutic Research Ltd, Ahmedabad, Gujarat, India
| | | | | | | | | | | | | | - Narendra Kumar
- Mysore Medical College and Research Institute, K.R. Hospital, Mysore, Karnataka, India
| | - B S V Prasad
- Sujata Birla Hospital and Medical Research Center, Nasik, Maharashtra, India
| | | | | | - Venu Gopal Jhanwar
- Deva Institute of Healthcare and Research, Varanasi, Uttar Pradesh, India
| | - Nand Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Sandip Shah
- Gujarat Medical Education & Research Society Medical College, Gotri, Vadodara, India
| | - Pronob Kumar Dalal
- King George's Medical University, G.M. Associated Hospitals, Lucknow, Uttar Pradesh, India
| | | | - Payel Talukdar
- Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | - Imran Ahmad
- Jina Pharmaceuticals Inc, Libertyville, IL, USA
| |
Collapse
|
3
|
Grauffel C, Weng WH, Dudev T, Lim C. Trinuclear Calcium Site in the C2 Domain of PKCα/γ Is Prone to Lithium Attack. ACS OMEGA 2021; 6:20657-20666. [PMID: 34396011 PMCID: PMC8359144 DOI: 10.1021/acsomega.1c02882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 05/10/2023]
Abstract
Lithium (Li+) is the first-line therapy for bipolar disorder and a candidate drug for various diseases such as amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Despite being the captivating subject of many studies, the mechanism of lithium's therapeutic action remains unclear. To date, it has been shown that Li+ competes with Mg2+ and Na+ to normalize the activity of inositol and neurotransmitter-related signaling proteins, respectively. Furthermore, Li+ may co-bind with Mg2+-loaded adenosine or guanosine triphosphate to alter the complex's susceptibility to hydrolysis and mediate cellular signaling. Bipolar disorder patients exhibit abnormally high cytosolic Ca2+ levels and protein kinase C (PKC) hyperactivity that can be downregulated by long-term Li+ treatment. However, the possibility that monovalent Li+ could displace the bulkier divalent Ca2+ and inhibit PKC activity has not been considered. Here, using density functional theory calculations combined with continuum dielectric methods, we show that Li+ may displace the native dication from the positively charged trinuclear site in the C2 domain of cytosolic PKCα/γ. This would affect the membrane-docking ability of cytosolic PKCα/γ and reduce the abnormally high membrane-associated active PKCα/γ levels, thus downregulating the PKC hyperactivity found in bipolar patients.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Wei-Hsiang Weng
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical
Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Tsing
Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Is There Justification to Treat Neurodegenerative Disorders by Repurposing Drugs? The Case of Alzheimer's Disease, Lithium, and Autophagy. Int J Mol Sci 2020; 22:ijms22010189. [PMID: 33375448 PMCID: PMC7795249 DOI: 10.3390/ijms22010189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Lithium is the prototype mood-stabilizer used for acute and long-term treatment of bipolar disorder. Cumulated translational research of lithium indicated the drug's neuroprotective characteristics and, thereby, has raised the option of repurposing it as a drug for neurodegenerative diseases. Lithium's neuroprotective properties rely on its modulation of homeostatic mechanisms such as inflammation, mitochondrial function, oxidative stress, autophagy, and apoptosis. This myriad of intracellular responses are, possibly, consequences of the drug's inhibition of the enzymes inositol-monophosphatase (IMPase) and glycogen-synthase-kinase (GSK)-3. Here we review lithium's neurobiological properties as evidenced by its neurotrophic and neuroprotective properties, as well as translational studies in cells in culture, in animal models of Alzheimer's disease (AD) and in patients, discussing the rationale for the drug's use in the treatment of AD.
Collapse
|
5
|
Ruggiero RN, Rossignoli MT, Lopes-Aguiar C, Leite JP, Bueno-Junior LS, Romcy-Pereira RN. Lithium modulates the muscarinic facilitation of synaptic plasticity and theta-gamma coupling in the hippocampal-prefrontal pathway. Exp Neurol 2018; 304:90-101. [DOI: 10.1016/j.expneurol.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
|
6
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging. Sci Rep 2017; 7:40726. [PMID: 28098178 PMCID: PMC5241875 DOI: 10.1038/srep40726] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Lithium (Li) is a potent mood stabilizer and displays neuroprotective and neurogenic properties. Despite extensive investigations, the mechanisms of action have not been fully elucidated, especially in the juvenile, developing brain. Here we characterized lithium distribution in the juvenile mouse brain during 28 days of continuous treatment that result in clinically relevant serum concentrations. By using Time-of-Flight Secondary Ion Mass Spectrometry- (ToF-SIMS) based imaging we were able to delineate temporospatial lithium profile throughout the brain and concurrent distribution of endogenous lipids with high chemical specificity and spatial resolution. We found that Li accumulated in neurogenic regions and investigated the effects on hippocampal neurogenesis. Lithium increased proliferation, as judged by Ki67-immunoreactivity, but did not alter the number of doublecortin-positive neuroblasts at the end of the treatment period. Moreover, ToF-SIMS revealed a steady depletion of sphingomyelin in white matter regions during 28d Li-treatment, particularly in the olfactory bulb. In contrast, cortical levels of cholesterol and choline increased over time in Li-treated mice. This is the first study describing ToF-SIMS imaging for probing the brain-wide accumulation of supplemented Li in situ. The findings demonstrate that this technique is a powerful approach for investigating the distribution and effects of neuroprotective agents in the brain.
Collapse
|
8
|
Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017; 9:1326-1351. [DOI: 10.1039/c7mt00203c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal ions are critical to a wide range of biological processes.
Collapse
Affiliation(s)
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory
- School of Earth & Environmental Sciences
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
9
|
Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, Kelsoe JR. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 16:446-53. [PMID: 27401222 DOI: 10.1038/tpj.2016.50] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Lithium (Li) is the mainstay mood stabilizer for the treatment of bipolar disorder (BD), although its mode of action is not yet fully understood nor is it effective in every patient. We sought to elucidate the mechanism of action of Li and to identify surrogate outcome markers that can be used to better understand its therapeutic effects in BD patients classified as good (responders) and poor responders (nonresponders) to Li treatment. To accomplish these goals, RNA-sequencing gene expression profiles of lymphoblastoid cell lines (LCLs) were compared between BD Li responders and nonresponders with healthy controls before and after treatment. Several Li-responsive gene coexpression networks were discovered indicating widespread effects of Li on diverse cellular signaling systems including apoptosis and defense response pathways, protein processing and response to endoplasmic reticulum stress. Individual gene markers were also identified, differing in response to Li between BD responders and nonresponders, involved in processes of cell cycle and nucleotide excision repair that may explain part of the heterogeneity in clinical response to treatment. Results further indicated a Li gene expression signature similar to that observed with clonidine treatment, an α2-adrenoceptor agonist. These findings provide a detailed mechanism of Li in LCLs and highlight putative surrogate outcome markers that may permit for advanced treatment decisions to be made and for facilitating recovery in BD patients.
Collapse
Affiliation(s)
- M S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C H White
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - T Shekhtman
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - K Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China.,Laboratory of Cognition and Emotion, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - D Looney
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - C H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J R Kelsoe
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Anand A, McClintick JN, Murrell J, Karne H, Nurnberger JI, Edenberg HJ. Effects of Lithium Monotherapy for Bipolar Disorder on Gene Expression in Peripheral Lymphocytes. MOLECULAR NEUROPSYCHIATRY 2016; 2:115-123. [PMID: 27867936 DOI: 10.1159/000446348] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study investigated the effect of lithium monotherapy on peripheral lymphocyte gene expression in bipolar disorder (BD). METHOD Twenty-two medication-free bipolar subjects (11 hypomanic, 11 depressed) were started on lithium monotherapy. Closely matched healthy subjects (n = 15) were included as controls but did not receive treatment. Blood RNA samples were collected at baseline and after 2 and 8 weeks of treatment. RNA expression was measured using the Affymetrix GeneChip® Human Gene 1.0 ST Array followed by Ingenuity pathways analysis. The results for the contrast of weeks 2 and 8 were not significantly different and were combined. RESULTS In BD subjects, 56 genes showed significant (false discovery rate <0.1) expression changes from baseline; the effect sizes and directions for all of these were similar at weeks 2 and 8. Among these were immune-related genes (IL5RA, MOK, IFI6, and RFX2), purinergic receptors (P2RY14, P2RY2, and ADORA3) and signal transduction-related genes (CAMK1 and PIK3R6). Pathway and upstream regulator analysis also revealed that lithium altered several immune- and signal transduction-related functions. Differentially expressed genes did not correlate with week 8 clinical response, but other genes involved in protein synthesis and degradation did. CONCLUSION Peripheral gene expression may serve as a biomarker of lithium effect.
Collapse
Affiliation(s)
- Amit Anand
- Center for Behavioral Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology and Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Jill Murrell
- Department of Biochemistry and Molecular Biology and Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Harish Karne
- Center for Behavioral Health, Cleveland Clinic, Cleveland, Ohio, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology and Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Ind., USA
| |
Collapse
|
11
|
Abstract
In this chapter, we review the mechanism of action of lithium salts from a chemical perspective. A description on how lithium salts are used to treat mental illnesses, in particular bipolar disorder, and other disease states is provided. Emphasis is not placed on the genetics and the psychopharmacology of the ailments for which lithium salts have proven to be beneficial. Rather we highlight the application of chemical methodologies for the characterization of the cellular targets of lithium salts and their distribution in tissues.
Collapse
|
12
|
Arraf Z, Khamisy-Farah R, Amit T, Youdim MBH, Farah R. Lithium's gene expression profile, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol 2013; 33:411-20. [PMID: 23324999 PMCID: PMC11497965 DOI: 10.1007/s10571-013-9907-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 12/28/2022]
Abstract
Lithium can prevent 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. This is attributed to induced antioxidant and antiapoptotic state, which among other factors results from induction of Bcl-2 and reduction of Bax, however, cDNA microarray reveals that this represents only one cascade of lithium targets. From analyzing the gene expression profile of lithium, we are able to point out candidate genes that might be involved in the antioxidant and neuroprotective properties of lithium. Among these are, the cAMP response element binding (CREB) protein, extracellular signal-regulated kinase (ERK), both CREB and ERK-part of the mitogen-activated kinase pathway-were upregulated by lithium, downregulated by MPTP, and maintained in mice fed with lithium chloride (LiCl) supplemented diet and treated with MPTP. Our positive control included tyrosine hydroxylase which both its mRNA and protein levels were independently measured, in addition to Bcl-2 protein levels. Other important genes which were similarly regulated are plasma glutathione peroxidase precursor (GSHPX-P), protein kinase C alpha type, insulin-like growth factor binding protein 4 precursor, and interferon regulatory factor. In addition, some genes were oppositely regulated, i.e., downregulated by lithium, upregulated by MPTP, and maintained in mice fed with LiCl supplemented diet and treated with MPTP, among these genes were basic fibroblast growth factor receptor 1 precursor, inhibin alpha subunit, glutamate receptor subunit zeta 1 precursor (NMD-R1), postsynaptic density protein-95 which together with NMD-R1 can form an apoptotic promoting complex. The discussed targets represent part of genes altered by chronic lithium. In fact lithium affected the expressions of more than 50 genes among these were basic transcription factors, transcription activators, cell signaling proteins, cell adhesion proteins, oncogenes and tumor suppressors, intracellular transducers, survival and death genes, and cyclins, here we discuss the relevance of these changes to lithium's reported neuroprotective properties.
Collapse
Affiliation(s)
- Zaher Arraf
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | | | - Tamar Amit
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Moussa B. H. Youdim
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Raymond Farah
- Department of Internal Medicine B, Ziv Medical Center, Safed, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
13
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
14
|
Zhao Y, Natarajan V. Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal 2009; 21:367-77. [PMID: 18996473 PMCID: PMC2660380 DOI: 10.1016/j.cellsig.2008.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/27/2008] [Accepted: 10/21/2008] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces diverse cellular responses, including cell proliferation, migration, and cytokine release. LPA can be generated intracellularly and extracellularly through multiple synthetic pathways by action of various enzymes, such as phospholipase A(1/2) (PLA(1/2)), phospholipase D (PLD), acylglycerol kinase (AGK), and lysophospholipase D (lysoPLD). Metabolism of LPA is regulated by a family of lipid phosphate phosphatases (LPPs). Significant amounts of LPA have been detected in various biological fluids, including serum, saliva, and bronchoalveolar lavage fluid (BALF). The most significant effects of LPA appear to be through activation of the G-protein-coupled receptors (GPCRs), termed LPA(1-6). LPA regulates gene expression through activation of several transcriptional factors, such as nuclear factor-kappaB (NF-kappaB), AP-1, and C/EBPbeta. In addition to GPCRs, cross-talk between LPA receptors and receptor tyrosine kinases (RTKs) partly regulates LPA-induced intracellular signaling and cellular responses. Airway epithelial cells participate in innate immunity through the release of cytokines, chemokines, lipid mediators, other inflammatory mediators and an increase in barrier function in response to a variety of inhaled stimuli. Expression of LPA receptors has been demonstrated in airway epithelial cells. This review summarizes our recent observations of the role of LPA/LPA-Rs in regulation of airway epithelium, especially in relation to the secretion of pro- and anti-inflammatory mediators and regulation of airway barrier function.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
15
|
Forester BP, Finn CT, Berlow YA, Wardrop M, Renshaw PF, Moore CM. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study. Bipolar Disord 2008; 10:691-700. [PMID: 18837863 PMCID: PMC4100250 DOI: 10.1111/j.1399-5618.2008.00627.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES We investigated the relationship between brain lithium levels and the metabolites N-acetyl aspartate (NAA) and myo-inositol (myo-Ino) in the anterior cingulate cortex of a group of older adults with bipolar disorder (BD). METHODS This cross-sectional assessment included nine subjects (six males and three females) with bipolar I disorder and currently treated with lithium, who were examined at McLean Hospital's Geriatric Psychiatry Research Program and Brain Imaging Center. The subjects' ages ranged from 56 to 85 years (66.0 +/- 9.7 years) and all subjects had measurements of serum and brain lithium levels. Brain lithium levels were assessed using lithium magnetic resonance spectroscopy. All subjects also had proton magnetic resonance spectroscopy to obtain measurements of NAA and myo-Ino. RESULTS Brain lithium levels were associated with higher NAA levels [df = (1, 8), Beta = 12.53, t = 4.09, p < 0.005] and higher myo-Ino levels [df = (1, 7), F = 16.81, p < 0.006]. There were no significant effects of serum lithium levels on any of the metabolites. CONCLUSION Our findings of a relationship between higher brain lithium levels and elevated NAA levels in older adult subjects with BD may support previous evidence of lithium's neuroprotective, neurotrophic, and mitochondrial function-enhancing effects. Elevated myo-Ino related to elevated brain lithium levels may reflect increased inositol monophosphatase (IMPase) activity, which would lead to an increase in myo-Ino levels. This is the first study to demonstrate alterations in NAA and myo-Ino in a sample of older adults with BD treated with lithium.
Collapse
Affiliation(s)
- Brent P Forester
- Geriatric Psychiatry Research Program, McLean Hospital, Belmont, MA 02478, USA.
| | | | - Yosef A Berlow
- Geriatric Psychiatry Research Program, McLean Hospital, Belmont,Department of Psychiatry, Harvard Medical School, Boston
| | - Megan Wardrop
- Brain Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Perry F Renshaw
- Department of Psychiatry, Harvard Medical School, Boston,Brain Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Constance M Moore
- Department of Psychiatry, Harvard Medical School, Boston,Brain Imaging Center, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
16
|
Aral H, Vecchio-Sadus A. Toxicity of lithium to humans and the environment--a literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 70:349-56. [PMID: 18456327 DOI: 10.1016/j.ecoenv.2008.02.026] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/13/2008] [Accepted: 02/24/2008] [Indexed: 05/22/2023]
Abstract
Lithium concentrations in the surface and underground waters may be higher than general environment in places where lithium-rich brines and minerals occur, and in places where lithium batteries are disposed of. This review has indicated that lithium is not expected to bioaccumulate and its human and environmental toxicity are low. Lithium is not a dietary mineral for plants but it does stimulate plant growth. Large doses of lithium (up to 10 mg/L in serum) are given to patients with bipolar disorder. At 10 mg/L of blood, a person is mildly lithium poisoned. At 15 mg/L they experience confusion and speech impairment, and at 20 mg/L Li there is a risk of death. A provisional recommended daily intake of 14.3 microg/kg body weight lithium for an adult has been suggested.
Collapse
Affiliation(s)
- Hal Aral
- CSIRO Minerals, Box 312, Clayton South, Vic. 3169, Australia.
| | | |
Collapse
|
17
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
18
|
Fuentes LB, Calderón CP, García Aseff SB, Muñoz EM, M⊘ller M, Pelzer LE. Effect of lithium on the melatonin production in the pineal gland of viscacha. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291010701292086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Pandey GN, Ren X, Dwivedi Y, Pavuluri MN. Decreased protein kinase C (PKC) in platelets of pediatric bipolar patients: effect of treatment with mood stabilizing drugs. J Psychiatr Res 2008; 42:106-16. [PMID: 17208254 PMCID: PMC2190755 DOI: 10.1016/j.jpsychires.2006.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 12/25/2022]
Abstract
Pediatric bipolar disorder (PBD) is a major public health concern, however, its neurobiology is poorly understood. We, therefore, studied the role of protein kinase C (PKC) in the pathophysiology of bipolar illness. We determined PKC activity and immunolabeling of various PKC isozymes (i.e., PKC alpha, PKC betaI, PKC betaII, and PKC delta) in the cytosol and membrane fractions of platelets obtained from PBD patients and normal control subjects. PKC activity and PKC isozymes were also determined after 8 weeks of pharmacotherapy of PBD patients (n=16) with mood stabilizers. PKC activity and the protein expression of PKC betaI and betaII, but not PKC alpha or PKC delta, were significantly decreased in both membrane as well as cytosol fractions of platelets obtained from medication-free PBD patients compared with normal control subjects. Eight weeks of pharmacotherapy resulted in significantly increased PKC activity but no significant changes in any of the PKC isozymes in PBD patients. These results indicate that decreases of specific PKC isozymes and decreased PKC activity may be associated with the pathophysiology of PBD and that pharmacotherapy with mood stabilizing drugs results in an increase and normalization of PKC activity along with improvement in clinical symptoms.
Collapse
Affiliation(s)
- Ghanshyam N Pandey
- University of Illinois at Chicago, Department of Psychiatry, 1601 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
20
|
Periz G, Dharia D, Miller SH, Keller LR. Flagellar elongation and gene expression in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:1411-20. [PMID: 17573545 PMCID: PMC1951131 DOI: 10.1128/ec.00167-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lithium (Li(+)) affects the physiology of cells from a broad range of organisms including plants and both vertebrate and invertebrate animals. Although its effects result presumably from changes in gene expression elicited by its interaction with intracellular signal transduction pathways, the molecular mechanisms of Li(+) action are not well understood. The biflagellate green alga Chlamydomonas reinhardtii is an ideal genetic model for the integration of the effects on Li(+) on signal transduction, gene expression, and aspects of flagellar biogenesis. Li(+) causes C. reinhardtii flagella to elongate to approximately 1.4 times their normal length and blocks flagellar motility (S. Nakamura, H. Tabino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). We report here that Li(+) treatment increases the abundance of several flagellar mRNAs, including alpha- and beta-tubulin and pcf3-21. Li(+)-induced flagellar gene expression occurs in cells pretreated with cycloheximide, suggesting that the abundance change is a response that does not require new protein synthesis. Deletion analysis of the flagellar alpha1-tubulin gene promoter showed that sequences necessary for Li(+)-induced expression differed from those for acid shock induction and contain a consensus binding site for CREB/ATF and AP-1 transcription factors. These studies suggest potential promoter elements, candidate factors, and signal transduction pathways that may coordinate the C. reinhardtii cellular response to Li(+).
Collapse
Affiliation(s)
- Goran Periz
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | |
Collapse
|
21
|
Einat H, Manji HK. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry 2006; 59:1160-71. [PMID: 16457783 DOI: 10.1016/j.biopsych.2005.11.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite extensive research, the molecular/cellular underpinnings of bipolar disorder (BD) remain to be fully elucidated. Recent data has demonstrated that mood stabilizers exert major effects on signaling that regulate cellular plasticity; however, a direct extrapolation to mechanisms of disease demands proof that manipulation of candidate genes, proteins, or pathways result in relevant behavioral changes. METHODS We critique and evaluate the behavioral changes induced by manipulation of cellular plasticity cascades implicated in BD. RESULTS Not surprisingly, the behavioral data suggest that several important signaling molecules might play important roles in mediating facets of the complex symptomatology of BD. Notably, the protein kinase C and extracellular signal-regulated kinase cascades might play important roles in the antimanic effects of mood stabilizers, whereas glycogen synthase kinase (GSK)-3 might mediate facets of lithium's antimanic/antidepressant actions. Glucocorticoid receptor (GR) modulation also seems to be capable to inducing affective-like changes observed in mood disorders. And Bcl-2, amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, and inositol homeostasis represent important pharmacological targets for mood stabilizers, but additional behavioral research is needed to more fully delineate their behavioral effects. CONCLUSIONS Behavioral data support the notion that regulation of cellular plasticity is involved in affective-like behavioral changes observed in BD. These findings are leading to the development of novel therapeutics for this devastating illness.
Collapse
Affiliation(s)
- Haim Einat
- College of Pharmacy, Duluth, University of Minnesota, 55812, USA.
| | | |
Collapse
|
22
|
Umbach JA, Zhao Y, Gundersen CB. Lithium enhances secretion from large dense-core vesicles in nerve growth factor-differentiated PC12 cells. J Neurochem 2005; 94:1306-14. [PMID: 16111479 DOI: 10.1111/j.1471-4159.2005.03277.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable attention has been focused on the therapeutic role of lithium (Li) in bipolar disorders. Although no consensus has emerged, Li presumably influences the behavior of neurons that regulate mood and behavior. Using PC12 cells to study cellular and molecular actions of Li, we previously reported that Li modulates the expression of proteins associated with large dense-core vesicles (LDCVs; organelles typically containing monoamines, neuropeptides and other cargo proteins). The current investigation indicates that this enhanced expression of LDCV proteins correlates with an altered secretory phenotype in Li-treated cells. Immunoblotting detects significant increases in the cellular content and secretion of the LDCV cargo proteins chromogranin B and secretogranin II. Amperometry reveals an increase of spike number elicited by K+-depolarization of Li-treated cells but no change of spike amplitude or kinetics. Electron microscopy reveals no significant change in LDCV number per unit area in Li-treated cells. However, there is a significant increase (about 15%) in the diameter of LDCVs after Li. Thus, Li induces changes in the properties of LDCVs that culminate in augmented regulated secretion in nerve growth factor-differentiated PC12 cells. These results extend our understanding of Li-dependent changes of cellular function that may be germane to the therapeutic action of Li.
Collapse
Affiliation(s)
- Joy A Umbach
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-177019, USA.
| | | | | |
Collapse
|
23
|
Strunecká A, Patočka J, Šárek M. How does lithium mediate its therapeutic effects? J Appl Biomed 2005. [DOI: 10.32725/jab.2005.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
24
|
|
25
|
McNamara RK, Lenox RH. The myristoylated alanine-rich C kinase substrate: a lithium-regulated protein linking cellular signaling and cytoskeletal plasticity. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.cnr.2004.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Carbonell L, Cuffí ML, Forn J. Effect of chronic lithium treatment on the turnover of alpha2-adrenoceptors after chemical inactivation in rats. Eur Neuropsychopharmacol 2004; 14:497-502. [PMID: 15589389 DOI: 10.1016/j.euroneuro.2004.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 11/25/2003] [Accepted: 02/03/2004] [Indexed: 11/19/2022]
Abstract
One of the most effective psychotherapeutic agents in the treatment of bipolar disease is lithium. Chronic lithium treatment affects some signal transduction mechanisms such as cAMP, cGMP, inositol 1,4,5 P(3), Gi protein, protein kinase C and can also modify gene expression in rat brain. In a previous study, we observed a greater inhibitory effect of lithium on cAMP production after blockade of alpha(2)-adrenoceptors in rat cerebral cortex. Here we examine the influence of chronic lithium treatment on turnover of alpha(2)-adrenoceptors after their inactivation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in rat cerebral cortex. After treatment with lithium for 10 days (120 mg/kg/day, i.p.), there was a significant increase in the appearance and disappearance rate constants of these adrenoceptors and a significant reduction of their half-life. These results suggest that chronic lithium administration alters the alpha(2)-adrenoceptor turnover in rat brain.
Collapse
Affiliation(s)
- L Carbonell
- Department of Pharmacology and Medicinal Chemistry, School of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
27
|
Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G. Valproate decreases inositol biosynthesis. Biol Psychiatry 2004; 56:868-74. [PMID: 15576064 DOI: 10.1016/j.biopsych.2004.08.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 07/20/2004] [Accepted: 08/28/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Lithium and valproate (VPA) are used for treating bipolar disorder. The mechanism of mood stabilization has not been elucidated, but the role of inositol has gained substantial support. Lithium inhibition of inositol monophosphatase, an enzyme required for inositol recycling and de novo synthesis, suggested the hypothesis that lithium depletes brain inositol and attenuates phosphoinositide signaling. Valproate also depletes inositol in yeast, Dictyostelium, and rat neurons. This raised the possibility that the effect is the result of myo-inositol-1-phosphate (MIP) synthase inhibition. METHODS Inositol was measured by gas chromatography. Human prefrontal cortex MIP synthase activity was assayed in crude homogenate. INO1 was assessed by Northern blotting. Growth cones morphology was evaluated in cultured rat neurons. RESULTS We found a 20% in vivo reduction of inositol in mouse frontal cortex after acute VPA administration. As hypothesized, inositol reduction resulted from decreased MIP synthase activity: .21-.28 mmol/LVPA reduced the activity by 50%. Among psychotropic drugs, the effect is specific to VPA. Accordingly, only VPA upregulates the yeast INO1 gene coding for MIP synthase. The VPA derivative N-methyl-2,2,3,3,-tetramethyl-cyclopropane carboxamide reduces MIP synthase activity and has an affect similar to that of VPA on rat neurons, whereas another VPA derivative, valpromide, poorly affects the activity and has no affect on neurons. CONCLUSIONS The rate-limiting step of inositol biosynthesis, catalyzed by MIP synthase, is inhibited by VPA; inositol depletion is a first event shown to be common to lithium and VPA.
Collapse
Affiliation(s)
- Galit Shaltiel
- Stanley Research Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Mental Health Center, Beersheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sun X, Young LT, Wang JF, Grof P, Turecki G, Rouleau GA, Alda M. Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder. Neuropsychopharmacology 2004; 29:799-804. [PMID: 14735134 DOI: 10.1038/sj.npp.1300383] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lithium, a common drug for the treatment of bipolar disorder (BD), requires chronic administration to prevent recurrences of the illness. The necessity for long-term treatment suggests that changes in genes expression are involved in the mechanism of its action. We studied effects of lithium on gene expression in lymphoblasts from BD patients, all excellent responders to lithium prophylaxis. Gene expression was analyzed using cDNA arrays that included a total of 2400 cDNAs. We found that chronic lithium treatment at a therapeutically relevant concentration decreased the expression of seven genes in lymphoblasts from lithium responders. Five of these candidate lithium-regulated genes, including alpha1B-adrenoceptor (alpha1B-AR), acetylcholine receptor protein alpha chain precursor (ACHR), cAMP-dependent 3',5'-cyclic phosphodiesterase 4D (PDE4D), substance-P receptor (SPR), and ras-related protein RAB7, were verified by Northern blotting analysis in lithium responders. None of these genes were regulated by lithium in healthy control subjects. When we compared the expression of these five genes between bipolar subjects and healthy control subjects at baseline, prior to lithium administration, we found that alpha1B-AR gene expression was higher in bipolar subjects than in healthy control subjects. Our findings indicate that alpha1B-AR may play an important role in the mechanism of action of lithium treatment.
Collapse
Affiliation(s)
- Xiujun Sun
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Agam G, Shaltiel G. Possible role of 3'(2')-phosphoadenosine-5'-phosphate phosphatase in the etiology and therapy of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:723-7. [PMID: 12921902 DOI: 10.1016/s0278-5846(03)00125-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bipolar affective disorder (BPD) is a multifactorial, severe, chronic and disabling illness with 50% heritability that affects 1-2% of the population. Lithium ions (Li) are the drug of choice for BPD. Yet, 20-40% of patients fail to respond to Li. Although numerous biochemical and cellular effects have been attributed to Li, its therapeutic mechanism of action has not been elucidated. This review presents the possible involvement of 3'(2')-phosphoadenosine-5'-phosphate (PAP) phosphatase in the etiology of bipolar disorder and the mechanism of action of Li. Of the enzymes inhibited by Li, PAP phosphatase is inhibited with the lowest Ki (0.3 mM). At therapeutic concentrations of Li (0.5-1.5 mM), inhibition is greater than 80%. Therefore, PAP phosphatase is a strong candidate for Li's therapeutic mechanism of action. In yeast, a PAP phosphatase knockout mutation leads to the accumulation of PAP, which affects ribosomal-, transfer- and small nucleolar-RNA processing. PAP accumulation in the mammalian brain following Li inhibition of PAP phosphatase may very well account for the observed effects of Li on gene expression and behavior. Furthermore, we have reported significant changes in PAP phosphatase levels in postmortem frontal cortex of bipolar patients.
Collapse
Affiliation(s)
- Galila Agam
- Stanley Research Center and Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel.
| | | |
Collapse
|
30
|
Agam G, Shamir A, Shaltiel G, Greenberg ML. Myo-inositol-1-phosphate (MIP) synthase: a possible new target for antibipolar drugs. Bipolar Disord 2003; 4 Suppl 1:15-20. [PMID: 12479670 DOI: 10.1034/j.1399-5618.4.s1.2.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inositol metabolism is well characterized in yeast at a molecular level, and yeast is the only eukaryote in which genetic, molecular and functional genomic approaches to identify lithium. valproate and inositol targets may be combined readily. It has been shown that lithium inhibits yeast inositol monophosphatase (encoded by INM1 and INM2), and both valproate and lithium reduce intracellular inositol. Unlike lithium, valproate causes a decrease in intracellular inositol-1-phosphate as well. suggesting that myo-inositol-1-P (MIP) synthase is a site of valproate action in the yeast PI cycle. MIP synthase is the rate-limiting step in inositol biosynthesis and is highly regulated in response to inositol. Yeast genes that are affected by both lithium and valproate in the phosphoinositide pathways (INO1 increased over 10-fold, INO2 increased twofold and INM1 decreased about twofold) have been identified. It has also been reported previously that both lithium and inositol mildly up-regulate IMPA1 (encoding mammalian inositol monophosphatase) expression in human cells. These findings indicate that IMPA is regulated only mildly by lithium, and therefore may not be the major target in the inositol pathway. Given the substantial evidence for the role of inositol in the mechanism of action of lithium and valproate. the opposing and mild effects of lithium on the genes encoding inositol monophosphatase in yeast and human cells, but the powerful effect of lithium and valproate on INO1 in yeast, it is hypothesized that human hIANO1 is a factor in the psychopharmacology of mood stabilizers.
Collapse
Affiliation(s)
- Galila Agam
- Stanley Foundation Research Center, Ministry of Health Mental Health Center, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Guron University of the Negev, Beersheva Israel
| | | | | | | |
Collapse
|
31
|
Lenox RH, Wang L. Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol Psychiatry 2003; 8:135-44. [PMID: 12610644 DOI: 10.1038/sj.mp.4001306] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical efficacy of lithium in the prophylaxis of recurrent affective episodes in bipolar disorder is characterized by a lag in onset and remains for weeks to months after discontinuation. Thus, the long-term therapeutic effect of lithium likely requires reprogramming of gene expression. Protein kinase C and glycogen synthase kinase-3 signal transduction pathways are perturbed by chronic lithium at therapeutically relevant concentrations and have been implicated in modulating synaptic function in nerve terminals. These signaling pathways offer an opportunity to model critical signals for altering gene expression programs that underlie adaptive responses of neurons to long-term lithium exposure. While the precise physiological events critical for the clinical efficacy of lithium remain unknown, we propose that linking lithium-responsive genes as a regulatory network will provide a strategy to identify signature gene expression patterns that distinguish between therapeutic and nontherapeutic actions of lithium.
Collapse
Affiliation(s)
- R H Lenox
- Molecular Neuropsychopharmacology Program, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
32
|
Weerasinghe GR, Seemann R, Rapoport SI, Bosetti F. Lithium chloride, administered chronically to rats, does not affect the fractional phosphorylation of brain cytosolic phospholipase A2, while reducing its net protein level. Brain Res Bull 2003; 59:303-6. [PMID: 12464403 DOI: 10.1016/s0361-9230(02)00913-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lithium, used to treat bipolar disorder, has been reported to decrease rat brain mRNA and protein levels of cytosolic phospholipase A(2) (cPLA(2)), an enzyme that selectively hydrolyzes arachidonic acid from the stereospecifically numbered (sn)-2 position of membrane phospholipids, and to decrease PLA(2) activity. cPLA(2) can be activated by being phosphorylated at its Ser-228, Ser-505, and Ser-727 sites. In this study, we show that the percent phosphorylated cPLA(2) protein in rat brain is unaffected by lithium. Male Fischer-344 rats were fed lithium chloride for 6 weeks, so as to produce a therapeutically equivalent brain lithium concentration; control rats were fed lithium-free chow under parallel conditions. cPLA(2) was immunoprecipitated from brain homogenate and phosphorylated cPLA(2) protein was quantified using an anti-phosphoserine antibody, and compared to net cPLA(2) protein. The mean ratio of phosphorylated/total cPLA(2) was not changed significantly in the lithium-treated compared to the control group. Thus, decreased brain PLA(2) enzyme activity caused by chronic lithium is likely a consequence only of lithium's downregulation of cPLA(2) transcription.
Collapse
Affiliation(s)
- Gayani R Weerasinghe
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Mood stabilizers represent a class of drugs that are efficacious in the treatment of bipolar disorder. The most established medications in this class are lithium, valproic acid, and carbamazepine. In addition to their therapeutic effects for treatment of acute manic episodes, these medications often are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. While important extracellular effects have not been excluded, most available evidence suggests that the therapeutically relevant targets of this class of medications are in the interior of cells. Herein we give a prospective of a rapidly evolving field, discussing common effects of mood stabilizers as well as effects that are unique to individual medications. Mood stabilizers have been shown to modulate the activity of enzymes, ion channels, arachidonic acid turnover, G protein coupled receptors and intracellular pathways involved in synaptic plasticity and neuroprotection. Understanding the therapeutic targets of mood stabilizers will undoubtedly lead to a better understanding of the pathophysiology of bipolar disorder and to the development of improved therapeutics for the treatment of this disease. Furthermore, the involvement of mood stabilizers in pathways operative in neuroprotection suggests that they may have utility in the treatment of classical neurodegenerative disorders.
Collapse
Affiliation(s)
- Todd D. Gould
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology, Building 49, Room B1EE16, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Bosetti F, Seemann R, Bell JM, Zahorchak R, Friedman E, Rapoport SI, Manickam P. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 2002; 57:205-9. [PMID: 11849827 DOI: 10.1016/s0361-9230(01)00744-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene expression profile in rat brain was examined using microarrays in rats fed lithium chloride for 7 days (subacute) or 42 days (chronic). Brain lithium concentrations were 0.39 mM and 0.79 mM (therapeutically relevant), at 7 and 42 days, respectively. Of the 4132 genes represented in the microarrays, 25 genes were downregulated by at least twofold and none was upregulated after 7 days of treatment. Expression of 50 genes was downregulated by at least two-fold at 42 days, without any being upregulated. Lithium treatment for 7 days did not affect at a measurable extent expression of 37 of the 50 genes that were downregulated at 42 days. Genes whose expression was changed at 42 days coded for a number of receptors, protein kinases, transcription and translation factors, markers of energy metabolism, and signal transduction. Thus, chronic lithium at a therapeutically relevant concentration reduced expression of a large number of genes involved in multiple signaling and other pathways, without increasing expression at a comparable extent.
Collapse
Affiliation(s)
- Francesca Bosetti
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 6N202, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bezchlibnyk YB, Wang JF, McQueen GM, Young LT. Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex. J Neurochem 2001; 79:826-34. [PMID: 11723175 DOI: 10.1046/j.1471-4159.2001.00628.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have implicated a number of biochemical pathways in the etiology of bipolar disorder (BD). However, the precise abnormalities underlying this disorder remain to be established. To investigate novel factors that may be important in the pathophysiology of BD, we utilized cDNA expression arrays to examine differences in expression of up to 1200 genes known to be involved in potentially relevant biochemical processes. This investigation was undertaken in post-mortem samples of frontal cortex tissue from patients with BD and matched controls, obtained (n = 10/group) from the Stanley Foundation Neuropathology Consortium. Results include significant (greater than 35% change in signal intensity) differences between BD and controls in a number of genes (n = 24). Selected targets were analyzed by RT-PCR, which confirmed a decrease in transforming growth factor-beta1 (TGF-beta 1), and an increase in both caspase-8 precursor (casp-8) and transducer of erbB2 (Tob) expression in BD. We further observed a significant decrease of TGF-beta 1 mRNA levels in BD by RT-PCR in individual post-mortem samples. Given the neuroprotective role attributed to this inhibitory cytokine, our results suggest that the down-regulation of TGF-beta 1 may lead to various neurotoxic insults potentially involved in the etiology of certain mood disorders.
Collapse
Affiliation(s)
- Y B Bezchlibnyk
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Wang L, Liu X, Lenox RH. Transcriptional down-regulation of MARCKS gene expression in immortalized hippocampal cells by lithium. J Neurochem 2001; 79:816-25. [PMID: 11723174 DOI: 10.1046/j.1471-4159.2001.00631.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene (Macs) for the mouse myristoylated alanine-rich C kinase substrate (MARCKS) encodes a prominent substrate for protein kinase C that has been implicated in processes requiring signal dependent changes in actin-membrane plasticity and cytoskeletal restructuring. We have previously demonstrated that MARCKS protein is significantly down-regulated in rat hippocampus and in an immortalized hippocampal cell line (HN33.dw) following long-term exposure to lithium at clinically relevant concentrations (1 mM). Our current studies have examined transcriptional and post-transcriptional events that may underlie the lithium-induced down-regulation of MARCKS protein in the cultured hippocampal cell model system. MARCKS mRNA and protein expression were found to be concomitantly down-regulated following exposure of the HN33.dw cells to chronic lithium. Whereas the stability of MARCKS mRNA remained unchanged in the presence of lithium, nuclear run-off assay indicated that the transcription of nascent MARCKS mRNA was significantly reduced (approximately 50%) in the cells that had been treated with lithium for 7 days. Transient transfection of HN33.dw cells with a mouse cloned Macs promoter (993-bp) showed that the Macs promoter activity was attenuated to the same extent after chronic (7-10 days), but not subacute (24 h), lithium exposure. The inhibition of the Macs promoter was found to be dependent upon the presence of a 280-bp promoter region between -993-bp and -713-bp relative to the translation start site, suggesting that this region is a potential lithium-responsive region of Macs promoter (LRR). Mutant promoter lacking the LRR not only did not respond to chronic lithium exposure but also had significantly reduced promoter activity, suggesting that chronic lithium exposure represses the transcriptional activity of activator(s) bound to the promoter. Taken together, our data indicate that transcriptional inhibition of the Macs gene underlies the lithium-induced down-regulation of MARCKS expression in the immortalized hippocampal cells.
Collapse
Affiliation(s)
- L Wang
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
37
|
Masi F, Scheggi S, Mangiavacchi S, Romeo A, Tagliamonte A, De Montis MG, Gambarana C. Acquisition of an appetitive behavior reverses the effects of long-term treatment with lithium in rats. Neuroscience 2001; 100:805-10. [PMID: 11036214 DOI: 10.1016/s0306-4522(00)00339-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rats exposed to a long-term treatment with lithium chloride develop a deficit of avoidance accompanied by a reduction in the basal levels of extraneuronal dopamine and in dopamine accumulation in the nucleus accumbens shell after acute uptake inhibition. Such a condition is similar to that of an experimental model of depression induced by exposing rats to a chronic stress procedure. Rats exposed to chronic stress are also unable to acquire an appetitive behavior sustained by a highly palatable food. Thus, it was studied whether rats fed a diet containing lithium would develop an appetitive behavior induced by a pure hedonic stimulus. Rats on the lithium diet developed a clear-cut escape deficit condition accompanied by a decreased dopamine output in the nucleus accumbens shell; nevertheless, they learned the appetitive behavior within a similar period to controls. The development of the appetitive behavior coincided with the recovery of the capacity to avoid a noxious stimulus and with the return of the dopaminergic transmission in the nucleus accumbens shell to values similar to those of control rats. It may be concluded that the mechanism of action underlying the behavioral and neurochemical sequelae of a chronic stress is distinct from that of the analogous effects produced by lithium.
Collapse
Affiliation(s)
- F Masi
- Division of Pharmacology, Department of Neuroscience, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Cordeiro ML, Umbach JA, Gundersen CB. Lithium ions Up-regulate mRNAs encoding dense-core vesicle proteins in nerve growth factor-differentiated PC12 cells. J Neurochem 2000; 75:2622-5. [PMID: 11080216 DOI: 10.1046/j.1471-4159.2000.0752622.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported that lithium ions induced an up-regulation of cysteine string protein (CSP) gene expression in nerve growth factor (NGF)-differentiated PC12 cells but not in undifferentiated cells. Concomitantly, expression of two other proteins of regulated secretory pathways, synaptophysin (SY) and SNAP-25, was unaffected by lithium. To assess further the specificity of this effect of lithium, we used cDNA arrays. Our data indicate that lithium ions increase the level of mRNA for proteins such as secretogranin II and vesicular monoamine transporter 1 that are preferentially associated with large densecore secretory vesicles (LDCVs) without affecting mRNAs for proteins predominantly affiliated with small synaptic-like vesicles, including the vesicular acetylcholine transporter and SY. This action of lithium is detected in NGF-differentiated PC12 cells but not in undifferentiated cells. These observations suggest that lithium ions modulate the turnover of LDCVs, and this may play a role in mediating the therapeutic action of lithium in manic-depressive illness.
Collapse
Affiliation(s)
- M L Cordeiro
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, School of Medicine, University of California Los Angeles 90095-1770, USA
| | | | | |
Collapse
|
39
|
Semba J, Watanabe H, Suhara T, Akanuma N. Chronic lithium chloride injection increases glucocorticoid receptor but not mineralocorticoid receptor mRNA expression in rat brain. Neurosci Res 2000; 38:313-9. [PMID: 11070198 DOI: 10.1016/s0168-0102(00)00180-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lithium has been used clinically for the treatment of bipolar disorders. However, the brain mechanisms, by which lithium acts, are still unclear. An impaired hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathogenesis of mood disorders. In this study, we investigated the effects of chronic lithium on the corticosteroid receptors in the brain. Male Wistar rats were injected with LiCl (1.5 mEq/kg) or saline intraperitoneally (i.p.) once a day for 14 days. Twenty-four hours after the last injection, the expressions of mRNA for glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) in the brain were determined by non-radioactive in situ hybridization. Chronic administration of LiCl increased the expression of GR mRNA in the hippocampus and paraventricular nucleus of the hypothalamus (PVN). However, no significant changes were observed in the expression of either MR mRNA in the hippocampus or GR mRNA in the locus ceruleus. Since the hippocampus and PVN mediate negative feedback regulation of the HPA axis, an increased expression of GR mRNA in these regions may normalize HPA axis activity in mood disorders. Thus, the effect of chronic lithium on GR function may be involved in its antimanic and/or prophylactic activity in bipolar disorders.
Collapse
Affiliation(s)
- J Semba
- Division of Health Sciences, University of the Air, 2-11 Wakaba, Mihama-ku, Chiba 261-8586, Japan.
| | | | | | | |
Collapse
|
40
|
Abstract
Neurons compute in part by integrating, on a time scale of milliseconds, many synaptic inputs and generating a digital output-the "action potential" of classic electrophysiology. Recent discoveries indicate that neurons also perform a second, much slower, integration operating on a time scale of minutes or even hours. The output of this slower integration involves a pulse of gene expression which may be likened to the electrophysiological action potential. Its function, however, is not directed toward immediate transmission of a synaptic signal but rather toward the experience-dependent modification of the underlying synaptic circuitry. Commonly termed the "immediate early gene" (IEG) response, this phenomenon is often assumed to be a necessary component of a linear, deterministic cascade of memory consolidation. Critical review of the large literature describing the phenomenon, however, leads to an alternative model of IEG function in the brain. In this alternative, IEG activation is not directed at the consolidation of memories of a specific inducing event; instead, it sets the overall gain or efficiency of memory formation and directs it to circuits engaged by behaviorally significant contexts. The net result is a sharpening of the selectivity of memory formation, a recruitment of temporally correlated associations, and an ultimate enhancement of long-term memory retrieval.
Collapse
Affiliation(s)
- D F Clayton
- Beckman Institute Neuronal Pattern Analysis Group, Department of Cell & Structural Biology and Neuroscience Program, University of Illinois, Urbana, Illinois, 61801, USA.
| |
Collapse
|
41
|
O'Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 2000; 880:84-91. [PMID: 11032992 DOI: 10.1016/s0006-8993(00)02797-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the mechanisms underlying lithium's efficacy as a mood stabilizer in bipolar disorder has been proposed to be via its effects on the phosphoinositol cycle (PI-cycle), where it is an inhibitor of the enzyme converting inositol monophosphates to myo-inositol. In contrast, sodium valproate, another commonly used mood stabilizer, appears to have no direct effects on this enzyme and was thus believed to have a different mechanism of action. In the present study, high resolution nuclear magnetic resonance (NMR) spectroscopy was used to study the chronic effects of both lithium and sodium valproate on the concentrations of myo-inositol and inositol monophosphates in rat brain. As predicted, lithium-treated rats exhibited a significant increase in the concentration of inositol monophosphates and a significant decrease in myo-inositol concentration compared to saline-treated controls. However, unexpectedly, sodium valproate administration produced exactly the same results as lithium administration. These novel findings suggest that both lithium and sodium valproate may share a common mechanism of action in the treatment of bipolar disorder via actions on the PI-cycle.
Collapse
Affiliation(s)
- T O'Donnell
- Department of Psychiatry, University of Alberta, Alberta, T6G 2B7, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Chen G, Masana MI, Manji HK. Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disord 2000; 2:217-36. [PMID: 11249800 DOI: 10.1034/j.1399-5618.2000.20303.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has become increasingly appreciated that the long-term treatment of complex neuropsychiatric disorders like bipolar disorder (BD) involves the strategic regulation of signaling pathways and gene expression in critical neuronal circuits. Accumulating evidence from our laboratories and others has identified the family of protein kinase C (PKC) isozymes as a shared target in the brain for the long-term action of both lithium and valproate (VPA) in the treatment of BD. In rats chronically treated with lithium at therapeutic levels, there is a reduction in the levels of frontal cortical and hippocampal membrane-associated PKC alpha and PKC epsilon. Using in vivO microdialysis, we have investigated the effects of chronic lithium on the intracellular cross-talk between PKC and the cyclic AMP (cAMP) generating system in vivo. We have found that activation of PKC produces an increase in dialysate cAMP levels in both prefrontal cortex and hippocampus, effects which are attenuated by chronic lithium administration. Lithium also regulates the activity of another major signaling pathway the c-Jun N-terminal kinase pathway--in a PKC-dependent manner. Both Li and VPA, at therapeutically relevant concentrations, increase the DNA binding of activator protein 1 (AP-1) family of transcription factors in cultured cells in vitro, and in rat brain ex vivo. Furthermore, both agents increase the expression of an AP-1 driven reporter gene, as well as the expression of several endogenous genes known to be regulated by AP-1. Together, these results suggest that the PKC signaling pathway and PKC-mediated gene expression may be important mediators of lithium's long-term therapeutic effects in a disorder as complex as BD.
Collapse
Affiliation(s)
- G Chen
- Department of Psychiatry and Behavioral Neurosciences, WSU School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
43
|
Soares JC, Chen G, Dippold CS, Wells KF, Frank E, Kupfer DJ, Manji HK, Mallinger AG. Concurrent measures of protein kinase C and phosphoinositides in lithium-treated bipolar patients and healthy individuals: a preliminary study. Psychiatry Res 2000; 95:109-18. [PMID: 10963797 DOI: 10.1016/s0165-1781(00)00175-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined the hypothesis that lithium inhibits the PI signaling pathway in humans during in vivo administration by concurrently measuring PKC isozymes and platelet membrane phosphoinositides in lithium-treated patients and healthy individuals. The platelet membrane and cytosolic levels of PKC alpha, beta I, beta II, delta, and epsilon were measured using Western blotting. The relative platelet membrane contents of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP(2)) were measured with two-dimensional thin-layer chromatography. Nine euthymic lithium-treated bipolar subjects and 11 healthy control subjects were studied. Compared to control subjects, lithium-treated bipolar patients had significantly lower levels of cytosolic PKC alpha isozyme (t-test=-3.24, d.f.=17, P=0.01) and PIP(2) platelet membrane levels (t-test=-2.51, d.f.=18, P=0.02), and a trend toward reduced levels of cytosolic PKC beta II isozyme (t=-2.17, d.f.=17, P=0.05). There was no significant correlation between PIP(2) and any of the PKC isozymes. These preliminary findings suggest that chronic lithium treatment may decrease the levels of both cytosolic PKC alpha isozyme and membrane PIP(2) in platelets of bipolar disorder patients.
Collapse
Affiliation(s)
- J C Soares
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.soares+@pitt.edu
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cordeiro ML, Umbach JA, Gundersen CB. Lithium ions enhance cysteine string protein gene expression in vivo and in vitro. J Neurochem 2000; 74:2365-72. [PMID: 10820197 DOI: 10.1046/j.1471-4159.2000.0742365.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lithium is a well established pharmacotherapy for the treatment of recurrent manic-depressive illness. However, the mechanism by which lithium exerts its therapeutic action remains elusive. Here we report that lithium at 1 mM significantly increased the expression of cysteine string proteins (CSPs) in a pheochromocytoma cell line (PC12 cells) differentiated by nerve growth factor. These cells concomitantly exhibited increased expression of CSPs in their cell bodies and boutons. Enhanced CSP expression was also observed in the brain of rats fed a lithium-containing diet, which elevated serum lithium to a therapeutically relevant concentration of approximately 1.0 mM. However, both in vitro and in vivo, the expression of another synaptic vesicle protein, synaptophysin, and the t-SNARE, synaptosomal-associated protein of 25 kDa (SNAP-25), was not significantly altered by lithium. These observations indicate that lithium-induced changes of CSP gene expression may contribute to the therapeutic efficacy of this monovalent cation.
Collapse
Affiliation(s)
- M L Cordeiro
- Department of Molecular and Medical Pharmacology and Crump Institute for Biological Imaging, University of California Los Angeles School of Medicine, Los Angeles 90095-1770, USA
| | | | | |
Collapse
|
45
|
van Calker D, Belmaker RH. The high affinity inositol transport system--implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disord 2000; 2:102-7. [PMID: 11252649 DOI: 10.1034/j.1399-5618.2000.020203.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 'inositol-depletion hypothesis' postulates that the therapeutic effects of lithium are due to inhibition of inositol monophosphatase, which leads to depletion of brain cells of myo-inositol and consequently to dampening of phosphoinositide (PI) signaling. This article examines the potential relevance of an alternative mechanism for inositol depletion: inhibition of myo-inositol uptake that proceeds via the sodium/myo-inositol cotransport (SMIT). We discuss recent in vitro experiments that show a pronounced downregulation of SMIT after chronic treatment with lithium, carbamazepine, and valproate at therapeutically relevant concentrations. It is concluded that downregulation of SMIT could represent a common mechanism of action of mood stabilizers.
Collapse
Affiliation(s)
- D van Calker
- Department of Psychiatry, University of Freiburg, Germany.
| | | |
Collapse
|
46
|
Murray M, Greenberg ML. Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Mol Microbiol 2000; 36:651-61. [PMID: 10844654 DOI: 10.1046/j.1365-2958.2000.01886.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inositol monophosphatase plays a vital role in the de novo biosynthesis of inositol and in the phosphoinositide second messenger signalling pathway. We cloned the Saccharomyces cerevisiae open reading frame (ORF) YHR046c (termed INM1), which encodes inositol monophosphatase, characterized the protein Inm1p and analysed expression of the INM1 gene. INM1 was expressed in bacteria under the control of the lacZ promoter. The purified protein has inositol monophosphatase activity that is inhibited by the antibipolar drug lithium, but not valproate. In the inm1Delta:URA3 null mutant, inositol monophosphatase activity was reduced but not eliminated. The disruption had little effect on growth in the presence of lithium or valproate and no effect on growth in the absence of inositol. To characterize the regulation of INM1, we examined the effects of inositol, carbon source, growth phase, and the antibipolar drugs lithium and valproate on INM1 expression using an INM1-lacZ reporter gene. Unlike all other phospholipid biosynthetic enzyme-encoding genes studied, which contain the UASINO regulatory element, INM1 expression is increased in the presence of inositol. In addition, INM1 expression was repressed during growth in glycerol and derepressed as glucose-grown cells entered stationary. Both lithium and valproate, which cause a decrease in intracellular inositol, effect a decrease in INM1 expression. A model is presented to account for regulation of INM1 expression.
Collapse
Affiliation(s)
- M Murray
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
47
|
Craig JC, Bennett GD, Miranda RC, Mackler SA, Finnell RH. Ribonucleotide reductase subunit R1: a gene conferring sensitivity to valproic acid-induced neural tube defects in mice. TERATOLOGY 2000; 61:305-13. [PMID: 10716750 DOI: 10.1002/(sici)1096-9926(200004)61:4<305::aid-tera10>3.0.co;2-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural tube defects (NTDs), although prevalent and easily diagnosed, are etiologically heterogeneous, rendering mechanistic interpretation problematic. To date, there is evidence that mammalian neural tube closure (NTC) initiates and fuses intermittently at four discrete locations. Disruption of this process at any of these four sites may lead to a region-specific NTDs, possibly arising through closure site-specific genetic mechanisms. Although recent efforts have focused on elucidating the genetic components of NTDs, a void persists regarding gene identification in closure site-specific neural tissue. To this end, experiments were conducted to identify neural tube closure site-specific genes that might confer regional sensitivity to teratogen-induced NTDs. Using an inbred mouse strain (SWV/Fnn) with a high susceptibility to VPA- induced NTDs that specifically targets and disrupts NTC between the prosencephalon and mesencephalon region (future fore/midbrain; neural tube closure site II), we identified a VPA-sensitive closure site II-specific clone. Sequencing of this clone from an SWV neural tube cDNA library confirmed that it encodes the r1 subunit of the cell cycle enzyme ribonucleotide reductase (RNR). The abundance of rnr-r1 mRNA was significantly increased in response to VPA drug treatment. This upregulated expression was accompanied by a significant decrease in cellular proliferation in the closure site II neural tube region of the embryos, as determined by ELISA cellular proliferation assays performed on BrdU-pulsed neuroepithelial cells in vivo. We hypothesize that rnr-r1 plays a critical role in the development of VPA-induced exencephaly.
Collapse
Affiliation(s)
- J C Craig
- Department of Veterinary Anatomy, Texas A & M University, College Station, Texas 77843-4458, USA
| | | | | | | | | |
Collapse
|
48
|
De Bruin VM, Marinho MM, De Sousa FC, Viana GS. Behavioral and neurochemical alterations after lithium-pilocarpine administration in young and adult rats: a comparative study. Pharmacol Biochem Behav 2000; 65:547-51. [PMID: 10683497 DOI: 10.1016/s0091-3057(99)00247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pilocarpine and lithium-pilocarpine can induce seizures and brain damage in adult rats. However, manifestation of cerebral lesions seems to be an age-related phenomenon suggesting that maturational states of neurocircuitry may be involved. We have studied behavior changes, cerebral histopathology, and muscarinic and dopaminergic receptors density in rodents subjected to lithium-pilocarpine treatment. Wistar rats, at two different ages (21 days and 2 months), were treated with pilocarpine (15 mg/kg, SC), lithium (3 mEq/kg, IP), atropine (50 mg/kg, IP) and the combination of lithium to pilocarpine. Histopathologic studies showed that younger animals were more resistant to the development of cerebral changes and there was a preferential involvement of the striatum (Wilcoxon p = 0.02) as opposed to more generalized areas in adult animals such as hippocampus and neocortex. Lithium treatment induced an upregulation of muscarinic receptors at both ages, and this effect was reversed in younger animals after pilocarpine administration. Lithium also induced an upregulation of dopaminergic receptors in the striatum at both ages (p < 0.05), and this effect was not reversed after pilocarpine administration. Our data confirm that young animals show less brain damage after lithium-pilocarpine, and main alterations in dopaminergic receptors density occur in young and older animals after treatment with lithium and lithium combined to a low dose of pilocarpine.
Collapse
Affiliation(s)
- V M De Bruin
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | |
Collapse
|
49
|
Abstract
The therapeutic efficacy of lithium in the treatment of mood disorders is delayed and only observed after chronic administration, a temporal profile that suggests alterations at the genomic level. Lithium has been demonstrated to modulate AP-1 DNA binding activity as well as the expression of genes regulated by AP-1, but the mechanisms underlying these effects have not been fully elucidated. In the present study, we found that the lithium-induced increases in AP-1 DNA binding activity were accompanied by increases in p-cJun and cJun levels in SH-SY5Y cells. Lithium also increased cJun-mediated reporter gene expression in a dose-dependent manner, with significant effects observed at therapeutically relevant concentrations. Lithium's effects on cJun-mediated reporter gene expression in SH-SY5Y cells were more pronounced in the absence of myo-inositol and were blocked by protein kinase C (PKC) inhibitors and by cotransfection with a PKCalpha dominant-negative mutant. Chronic in vivo lithium administration increased AP-1 DNA binding activity in frontal cortex and hippocampus and also increased the levels of the phosphorylated, active forms of c-Jun NH2-terminal kinases (JNKs) in both brain regions. These results demonstrate that lithium activates the JNK signaling pathway in rat brain during chronic in vivo administration and in human cells of neuronal origin in vitro; in view of the role of JNKs in regulating various aspects of neuronal function and their well-documented role in regulating gene expression, these effects may play a major role in lithium's long-term therapeutic effects.
Collapse
Affiliation(s)
- P Yuan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
50
|
Manji HK, McNamara R, Chen G, Lenox RH. Signalling pathways in the brain: cellular transduction of mood stabilisation in the treatment of manic-depressive illness. Aust N Z J Psychiatry 1999; 33 Suppl:S65-83. [PMID: 10622182 DOI: 10.1111/j.1440-1614.1999.00670.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The long-term treatment of manic-depressive illness (MDI) likely involves the strategic regulation of signalling pathways and gene expression in critical neuronal circuits. Accumulated evidence has identified signalling pathways, in particular the family of protein kinase C (PKC) isozymes, as targets for the long-term action of lithium. Chronic lithium administration produces a reduction in the expression of PKC alpha and epsilon, as well as a major PKC substrate, MARCKS, which has been implicated in long-term neuroplastic events in the developing and adult brain. More recently, studies have demonstrated robust effects of lithium on another kinase system, GSK-3beta, and on neuroprotective/neurotrophic proteins in the brain. Given the key roles of these signalling cascades in the amplification and integration of signals in the central nervous system, these findings have clear implications not only for research into the neurobiology of MDI, but also for the future development of novel and innovative treatment strategies.
Collapse
Affiliation(s)
- H K Manji
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|