1
|
Wan L, Li S, Du J, Li A, Zhan Y, Zhu W, Zheng P, Qiao D, Nie C, Pan Q. Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases. ACS Biomater Sci Eng 2025; 11:2502-2527. [PMID: 40276988 DOI: 10.1021/acsbiomaterials.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Polyphenols, which are compounds characterized by the presence of phenolic hydroxyl groups, are abundantly found in natural plants and exist in highly complex forms within living organisms. As some of the most prevalent compounds in nature, polyphenols possess significant medicinal value due to their unique structural features, particularly their therapeutic efficacy in antitumor, anti-inflammatory, and antibacterial applications. In the context of inflammation therapy, polyphenolic compounds can inhibit the excessive release of inflammatory mediators from inflammatory cells, thereby mitigating inflammation. Furthermore, these compounds exhibit strong antioxidant properties, enabling them to scavenge free radicals and reactive oxygen species (ROS), reduce oxidative stress-related damage, and exert anti-inflammatory effects. Due to their multiple phenolic hydroxyl groups and their ability to chelate various metals, polyphenols are extensively utilized in the synthesis of self-assembled nanoparticles for the treatment of various diseases. Numerous studies have demonstrated that the therapeutic profile of nanoparticles formed through self-assembly with metal ions surpasses that of polyphenolic compounds alone. This Review will focus on the self-assembly of different polyphenolic compounds with various metal ions to generate nanoparticles, their characterization, and their therapeutic applications in inflammation-related diseases, providing researchers with new insights into the synthetic study of metal-polyphenol nanocomposites and their biological applications.
Collapse
Affiliation(s)
- Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shizhe Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiawei Du
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cunpeng Nie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
2
|
Behera H, Duncan TJ, Samineni L, Oh H, Jogdand A, Karnik A, Dhiman R, Fica A, Hsieh TY, Ganesan V, Kumar M. Lanthanide-Selective Artificial Channels. ACS NANO 2025; 19:13927-13940. [PMID: 40183770 DOI: 10.1021/acsnano.4c17675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Lanthanides serve as essential elements for modern technology, playing critical roles in batteries, wind turbines, portable electronics, and energy-efficient lighting. Purifying lanthanides from ores and recycling them from end-of-life consumer materials are costly and damaging to the environment due to inefficient separation technologies. In this study, we present a new approach for lanthanide separations using supramolecular membrane channel nanopores based on a pillar[5]arene scaffold with appended diphenylphosphine oxide (DPP) ligands. These channels show high transport selectivity (>18:1) of the middle lanthanides, europium (Eu3+) and terbium (Tb3+) ions, over monovalent K+ ions and also excluded other common mono- and divalent metal ions (Na+, Ca2+, and Mg2+) including protons. These membrane channels also have high lanthanide-lanthanide transport selectivity with Eu3+/La3+ selectivity of >40 and Eu3+/Yb3+ selectivity of ∼30. Additionally, they demonstrated significantly higher selectivities between middle lanthanides and both light and heavy lanthanides: Tb3+/La3+ (∼140), Tb3+/Yb3+ (∼72), Tb3+/Nd3+ (∼58), and Eu3+/Nd3+ (∼17), which are considerably higher than selectivities reported in studies using traditional solvent extraction methods. Molecular dynamics simulations indicate that the high selectivity observed is due to specific water-mediated interactions between the hydrated ions and the channel. Our findings could contribute to ongoing efforts to improve lanthanide separation efficiency and reduce the environmental impact associated with current methods.
Collapse
Affiliation(s)
- Harekrushna Behera
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tyler J Duncan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ankit Jogdand
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arnav Karnik
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aida Fica
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tzu-Yun Hsieh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Sathasivam J, Rajaraman PV, Narayanasamy S. Assessment of cerium adsorption potential of phosphoric acid activated biochar in aqueous system: Modelling and mechanistic insights. ENVIRONMENTAL RESEARCH 2025; 264:120301. [PMID: 39505131 DOI: 10.1016/j.envres.2024.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Cerium pollution in waterbodies by improper industrial waste disposal is a major concern due to its detrimental impacts on the environment. Therefore, treatment of cerium-contaminated water is inevitable. Hence, this study is focused on the remediation of cerium pollution using phosphoric acid-activated biochar (PPMB) as an adsorbent, synthesized upon pyrolytic activation of palmyra palm male flower-based pristine biochar (PMFB) with H3PO4 at 500 °C. The physico-chemical surface properties of PMFB and PPMB were evaluated through various microscopic and spectroscopic analyses. The key parameters such as biochar dosage, pH, temperature, contact time and initial cerium concentration were optimized as 0.5 g/L, 5.0, 303 K, 180 min and 50 mg/L respectively via batch adsorption. Pseudo-second order kinetic and Toth isotherm are the best-fitted models. The thermodynamic parameters including ΔG◦ (-30.4707 ± 0.7618 kJ/mol at 303 K), ΔH◦ (16.1499 ± 0.78 kJ/mol), and ΔS◦ (153.617 ± 3.8404 J/mol/K) conveying that cerium adsorption onto PPMB was spontaneous, endothermic, and highly disordered at PPMB-bulk adsorption medium interface. Precipitation, electrostatic attraction, and surface complexation are predicted to be the predominant mechanisms for the chosen PPMB-cerium adsorption system. Moreover, cerium phytotoxicity on Vigna radiata explains the real-time applicability and feasibility of cerium adsorption using PPMB. Thus, the key findings of this study specified that the higher adsorption capacity of PPMB (141.3484 ± 6.9856 mg/g) contributed by the incorporated phosphate groups, predominant mesoporosity, SSABET of 230.559 m2/g and anionic surface at a wider pH range (pH>3.08) make PPMB as efficient, economically feasible and environmentally friendly adsorbent for cerium adsorption in aqueous system.
Collapse
Affiliation(s)
- Jeevanantham Sathasivam
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | | | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
4
|
Ilgen AG, Sikma RE, Sava Gallis DF, Leung K, Sun C, Song B, Sanchez KMM, Smith JG. Local Coordination Environment of Lanthanides Adsorbed onto Cr- and Zr-based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48536-48546. [PMID: 39186492 DOI: 10.1021/acsami.4c09445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Separating individual lanthanide (Ln) elements in aqueous mixtures is challenging. Ion-selective capture by porous materials, such as metal-organic frameworks (MOFs), is a promising approach. To design ion-selective MOFs, molecular details of the Ln adsorption complexes within the MOFs must be understood. We determine the local coordination environment of lanthanides Nd(III), Gd(III), and Lu(III) adsorbed onto Cr(III)-based terephthalate MOF (Cr-MIL-101) and Zr(IV)-based Universitet in Oslo MOFs (UiO-66 and UiO-68) and their derivatives. In the Cr(III)- and Zr(IV)-based MOFs, Ln adsorb as inner-sphere complexes at the metal oxo clusters, regardless of whether the organic linkers are decorated with amino groups. Missing linkers result in favorable Ln binding sites at oxo clusters; however, Ln can coordinate to metal sites even with linkers in place. MOF functionalization with phosphonate groups led to Ln chemisorption onto these groups, which out-compete metal cluster sites. Ln form monodentate and bidentate and mononuclear and binuclear surface complexes. We conclude that MOFs for ion-selective Ln capture can be designed by a combination of (1) maximizing metal-lanthanide interactions via shared O atoms at the metal oxo cluster sites, where mixed oxo clusters can lead to ion-selective Ln adsorption, and (2) functionalizing MOFs with Ln-selective groups capable of out-completing the metal oxo cluster sites.
Collapse
Affiliation(s)
- Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| | - R Eric Sikma
- Nanoscale Sciences Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| | - Kevin Leung
- Geochemistry Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| | - Chengjun Sun
- Spectroscopy X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Boyoung Song
- Geochemistry Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| | - Kadie M M Sanchez
- Geochemistry Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| | - Jacob G Smith
- Geochemistry Department, Sandia National Laboratories, 1515 Eubank SE Mailstop 0754, Albuquerque, New Mexico 87185-0754, United States
| |
Collapse
|
5
|
Liang J, Zhang X, Li H, Wen C, Tian L, Chen X, Li Z. Constructing Two-Dimensional (2D) Heterostructure Channels with Engineered Biomembrane and Graphene for Precise Scandium Sieving. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404629. [PMID: 38805571 DOI: 10.1002/adma.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The special properties of rare earth elements (REE) have effectively broadened their application fields. How to accurately recognize and efficiently separate target rare earth ions with similar radii and chemical properties remains a formidable challenge. Here, precise two-dimensional (2D) heterogeneous channels are constructed using engineered E. coli membranes between graphene oxide (GO) layers. The difference in binding ability and corresponding conformational change between Lanmodulin (LanM) and rare earth ions in the heterogeneous channel allows for precisely recognizing and sieving of scandium ions (Sc3+). The engineered E. coli membranes not only can protect the integrity of structure and functionality of LanM, the rich lipids and sugars, but also help the Escherichia coli (E. coli) membranes closely tile on the GO nanosheets through interaction, preventing swelling and controlling interlayer spacing accurately down to the sub-nanometer. Apparently, the 2D heterogeneous channels showcase excellent selectivity for trivalent ions (SFFe /Sc≈3), especially for Sc3+ ions in REE with high selectivity (SFCe/Sc≈167, SFLa/Sc≈103). The long-term stability and tensile strain tests verify the membrane's outstanding stability. Thus, this simple, efficient, and cost-effective work provides a suggestion for constructing 2D interlayer heterogeneous channels for precise sieving, and this valuable strategy is proposed for the efficient extraction of Sc.
Collapse
Affiliation(s)
- Jing Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Chuanxi Wen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, 3 Bayi Middle Road, Xining, 810007, China
| |
Collapse
|
6
|
Smerigan A, Biswas S, Vila FD, Hong J, Perez-Aguilar J, Hoffman AS, Greenlee L, Getman RB, Bare SR. Aqueous Structure of Lanthanide-EDTA Coordination Complexes Determined by a Combined DFT/EXAFS Approach. Inorg Chem 2023; 62:14523-14532. [PMID: 37624729 DOI: 10.1021/acs.inorgchem.3c01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Sustainable production of rare earth elements (REEs) is critical for technologies needed for climate change mitigation, including wind turbines and electric vehicles. However, separation technologies currently used in REE production have large environmental footprints, necessitating more sustainable strategies. Aqueous, affinity-based separations are examples of such strategies. To make these technologies feasible, it is imperative to connect aqueous ligand structure to ligand selectivity for individual REEs. As a step toward this goal, we analyzed the extended X-ray absorption fine structure (EXAFS) of four lanthanides (La, Ce, Pr, and Nd) complexed by a common REE chelator, ethylenediaminetetraacetic acid (EDTA) to determine the aqueous-phase structure. Reference structures from density functional theory (DFT) were used to help fit the EXAFS spectra. We found that all four Ln-EDTA coordination complexes formed 9-coordinate structures with 6 coordinating atoms from EDTA (4 carboxyl oxygen atoms and 2 nitrogen atoms) and 3 oxygen atoms from water molecules. All EXAFS fits were of high quality (R-factor < 0.02) and showed decreasing average first-shell coordination distance across the series (2.62-2.57 Å from La-Nd), in agreement with DFT (2.65-2.56 Å from La-Nd). The insights determined herein will be useful in the development of ligands for sustainable rare earth elements (REE) separation technologies.
Collapse
Affiliation(s)
- Adam Smerigan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sayani Biswas
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jiyun Hong
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jorge Perez-Aguilar
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam S Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lauren Greenlee
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Simon R Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Kulasekara DN, Kajjam AB, Praneeth S, Dittrich TM, Allen MJ. Cryptands on a Solid Support for the Separation of Europium from Gadolinium. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42037-42045. [PMID: 37623310 DOI: 10.1021/acsami.3c06975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
With the great demand for europium in green-energy technologies comes the need for innovative methods to isolate the elements. We introduce a solid-liquid extraction method using a 2.2.2-cryptand-modified solid support to separate europium from gadolinium using their differences in electrochemical potential. The method overcomes challenges associated with the separation of those two ions that have similar coordination chemistry in the +3 oxidation state. A competitive adsorption study in the cryptand system between EuII/EuIII and GdIII shows greater affinity for EuII relative to GdIII. After separation from GdIII, Eu was released by oxidizing EuII to EuIII with 99.3% purity. The purity of separated Eu is unaffected by pH between pH 3.0 and 5.5. Overall, we demonstrate that by modifying a solid support with 2.2.2-cryptand, divalent europium can be separated from trivalent gadolinium based on the differences of affinities of 2.2.2-cryptand for the two ions.
Collapse
Affiliation(s)
- D Nuwangi Kulasekara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Aravind B Kajjam
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sai Praneeth
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Timothy M Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Viana T, Ferreira N, Tavares DS, Abdolvaseei A, Pereira E, Henriques B. Eco-friendly methodology for removing and recovering rare earth elements from saline industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96617-96628. [PMID: 37578580 PMCID: PMC10482783 DOI: 10.1007/s11356-023-29088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
In this study, response surface methodology (RSM) was applied with a Box-Behnken design to optimize the biosorption (removal and bioconcentration) of rare earth elements (REEs) (Y, La, Ce Eu, Gd, Tb) by living Ulva sp. from diluted industrial wastewaters (also containing Pt and the classic contaminants Hg, Pb, Zn, Cu, Co, and Cd). Element concentration (A: 10-190 μg/L), wastewater salinity (B: 15-35), and Ulva sp. dosage (C: 1.0-5.0 g/L) were the operating parameters chosen for optimization. Analysis of the Box-Behnken central point confirmed the reproducibility of the methodology and p-values below 0.0001 validated the developed mathematical models. The largest inter-element differences were observed at 24 h, with most REEs, Cu, Pb and Hg showing removals ≥ 50 %. The factor with the greatest impact (positive) on element removal was the initial seaweed dosage (ANOVA, p < 0.05). The optimal conditions for REEs removal were an initial REEs concentration of 10 μg/L, at a wastewater salinity of 15, and an Ulva sp. dosage of 5.0 g/L, attaining removals up to 88 % in 24 h. Extending the time to 96 h allowed seaweed dosage to be reduced to 4.2 g/L while achieving removals ≥ 90 %. The high concentrations in REE-enriched biomass (∑REEs of 3222 μg/g), which are up to 3000 times higher than those originally found in water and exceed those in common ores, support their use as an alternative source of these critical raw materials.
Collapse
Affiliation(s)
- Thainara Viana
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nicole Ferreira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela S Tavares
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Azadeh Abdolvaseei
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- Central Laboratory of Analysis, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Prejanò M, Toscano M, Marino T. Periodicity of the Affinity of Lanmodulin for Trivalent Lanthanides and Actinides: Structural and Electronic Insights from Quantum Chemical Calculations. Inorg Chem 2023; 62:7461-7470. [PMID: 37128767 DOI: 10.1021/acs.inorgchem.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanmodulin (LanM) is the first identified macrochelator that has naturally evolved to sequester ions of rare earth elements (REEs) such as Y and all lanthanides, reversibly. This natural protein showed a 106 times better affinity for lanthanide cations than for Ca, which is a naturally abundant and biologically relevant element. Recent experiments have shown that its metal ion binding activity can be further extended to some actinides, like Np, Pu, and Am. For this reason, it was thought that LanM could be adopted for the separation of REE ions and actinides, thus increasing the interest in its potential use for industry-oriented applications. In this work, a systematic study of the affinity of LanM for lanthanides and actinides has been carried out, taking into account all trivalent ions belonging to the 4f (from La to Lu) and 5f (from Ac to Lr) series, starting from their chemistry in solution. On the basis of a recently published nuclear magnetic resonance structure, a model of the LanM-binding site was built and a detailed structural and electronic description of initial aquo- and LanM-metal ion complexes was provided. The obtained binding energies are in agreement with the available experimental data. A possible reason that could explain the origin of the affinity of LanM for these metal ions is also discussed.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| |
Collapse
|
10
|
Hamza MF, Mira H, Khalafalla MS, Wang J, Wei Y, Yin X, Ning S, Althumayri K, Fouda A. Photocatalytic Performance of Functionalized Biopolymer for Neodymium (III) Sorption and the Recovery from Leachate Solution. Catalysts 2023. [DOI: 10.3390/catal13040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Successive grafting of new sorbent bearing amino phosphonic groups based on chitosan nano magnetite particles was performed through successive coupling with formaldehyde. The produced composite was characterized by the high sorption capacity toward rare earth elements (REEs) and consists of different types of functional groups (phosphonic, hydroxyls and amine groups) that are used for enhancing the sorption properties. The chemical modification and the sorption mechanism were investigated through different analytical tools; i.e., FTIR, SEM, SEM-EDX, TGA, BET (surface area) and pHpzc. The sorption was investigated toward Nd(III) as one of the REE(III) members under ultraviolet (UV) and visible light (VL) conditions. The optimum sorption was found at pH0 4 and the sorption capacity was recorded at 0.871 and 0.779 mmol Nd g−1 under UV and VL respectively. Sorption isotherms and uptake kinetics were fitted by Langmuir and Sips and by pseudo-first order rate equation (PFORE) for the functionalized sorbent, respectively. The sorbent showed a relatively high-speed sorption kinetic (20 min). The bounded metal ions were progressively eluted using 0.2 M HCl solution with a desorption rate 10–15 min, while the loss in the total capacity after a series of sorption recycling (sorption/desorption) (five cycles) was limited (around 3%) with 100% of the desorption efficiency, indicating the high stability of the sorbent toward an acidic medium. The sorbent was used for the recovery of REEs from leach liquor residue after pretreatment for the extraction of particular elements. From these results (high loading capacity, high selectivity and high stability against acid treatments), we can see that the sorbent is a promising tool for the selective recovery of rare earth elements in the field of metal valorization.
Collapse
|
11
|
Manfredi C, Amoruso AJ, Ciniglia C, Iovinella M, Palmieri M, Lubritto C, El Hassanin A, Davis SJ, Trifuoggi M. Selective biosorption of lanthanides onto Galdieria sulphuraria. CHEMOSPHERE 2023; 317:137818. [PMID: 36640971 DOI: 10.1016/j.chemosphere.2023.137818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The recovering of trivalent Lanthanides from aqueous solutions, by biosorption process onto Galdieria sulphuraria lifeless cells, was investigated. Potentiometry, UV-Vis, FTIR-ATR spectroscopy and SEM-EDS analysis were used. All the experiments were performed at 25 °C, in 0.5 M NaCl. Ln3+ biosorption is greater in the 5-6 pH range with values ranging from 80 μmol/g to 130 μmol/g (dry weight). The adsorbed Ln3+ ions can be recovered at higher acidity (pH<1) and the biosorbent can be reused. Specific molecular interactions between Ln3+ ions and the functional groups on G. sulphuraria surface were highlighted. Particularly, proteins are involved if Ln3+=Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Tm3+, while Ce3+, Ho3+, Er3+ form bonds with carbohydrates. Finally, both proteins and carbohydrates are involved if Gd3+ and Yb3+. A Surface Complexation approach, with a good graphical fitting to potentiometric experimental collected data, was used to describe the biosorption mechanism. This study could be of great applicative utility for removing of trivalent actinides, from waste aqueous solutions, by biosorption. As well known the lanthanides were used as model to simulate the chemical behaviour of actinides in the same oxidation state.
Collapse
Affiliation(s)
- C Manfredi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy.
| | - A J Amoruso
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy
| | - C Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Caserta "L.Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - M Iovinella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Caserta "L.Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy; Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - M Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Caserta "L.Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - C Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Caserta "L.Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - A El Hassanin
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy
| | - S J Davis
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK; State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - M Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy
| |
Collapse
|
12
|
Xue T, Wei Y, Yu C, Zhou Z, Zhang F. RAFT polymerization of MMA in channels of different mesoporous materials. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
13
|
Ouazene M, Yahia Cherif F, Guendouzi A, Kaid M, Villemin D, Abdelmouiz A, Guendouzi A. Extraction of Cerium (III) by a Solvent Extraction Technique Using Diaminododecylphosphonic Acid (DADTMTPA): Experimental, Density Functional Theory and Molecular Dynamic Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202202969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mokhtar Ouazene
- Laboratory of Chemistry, Synthesis, properties and applications University of Saïda Algeria
- Department of Process Engineering University of Saida Algeria
| | | | | | - M'hamed Kaid
- Department of Chemistry, Faculty of Sciences University of Saïda Algeria
| | - Didier Villemin
- Laboratory of Molecular and Thioorganic Chemistry, ENSI Caen Caen France
| | - Ahmed Abdelmouiz
- Laboratory of Materials Physico-Chemistry University of Laghouat Algeria
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, properties and applications University of Saïda Algeria
- Department of Chemistry, Faculty of Sciences University of Saïda Algeria
| |
Collapse
|
14
|
Walker O, Rébiscoul D, Odorico M, Tardif S, Pellet-Rostaing S, Arrachart G. Toward a method of understanding the complexation of Rare Earth Element by functionalized organosilanes in aqueous media. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Breijaert TC, Budnyak TM, Kessler VK, Seisenbaeva GA. Tailoring a bio-based adsorbent for sequestration of late transition and rare earth elements. Dalton Trans 2022; 51:17978-17986. [PMID: 36412094 DOI: 10.1039/d2dt03150g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demand for new renewable energy sources, improved energy storage and exhaust-free transportation requires the use of large quantities of rare earth (REE) and late transition (LTM, group 8-12) elements. In order to achieve sustainability in their use, an efficient green recycling technology is required. Here, an approach, a synthetic route and an evaluation of the designed bio-based material are reported. Cotton-derived nano cellulose particles were functionalized with a polyamino ligand, tris(2-aminoethyl) amine (TAEA), achieving ligand content of up to ca. 0.8 mmol g-1. The morphology and structure of the produced adsorbent were revealed by PXRD, SEM-EDS, AFM and FTIR techniques. The adsorption capacity and kinetics of REE and LTM were investigated by conductometric photometric titrations, revealing quick uptake, high adsorption capacity and pronounced selectivity for LTM compared to REE. Molecular insights into the mode of action of the adsorbent were obtained via the investigation of the molecular structure of the Ni(II)-TAEA complex by an X-ray single crystal study. The bio-based adsorbent nanomaterial demonstrated in this work opens up a perspective for tailoring specific adsorbents in the sequestration of REE and LTM for their sustainable recycling.
Collapse
Affiliation(s)
- Troy C Breijaert
- Department of Molecular Sciences, Biocentrum, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Tetyana M Budnyak
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Vadim K Kessler
- Department of Molecular Sciences, Biocentrum, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Biocentrum, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
16
|
Methacrylate-Based Polymeric Sorbents for Recovery of Metals from Aqueous Solutions. METALS 2022. [DOI: 10.3390/met12050814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The industrialization and urbanization expansion have increased the demand for precious and rare earth elements (REEs). In addition, environmental concerns regarding the toxic effects of heavy metals on living organisms imposed an urgent need for efficient methods for their removal from wastewaters and aqueous solutions. The most efficient technique for metal ions removal from wastewaters is adsorption due to its reversibility and high efficiency. Numerous adsorbents were mentioned as possible metal ions adsorbents in the literature. Chelating polymer ligands (CPLs) with adaptable surface chemistry, high affinity towards targeted metal ions, high capacity, fast kinetics, chemically stable, and reusable are especially attractive. This review is focused on methacrylate-based magnetic and non-magnetic porous sorbents. Special attention was devoted to amino-modified glycidyl methacrylate (GMA) copolymers. Main adsorption parameters, kinetic models, adsorption isotherms, thermodynamics of the adsorption process, as well as regeneration of the polymeric sorbents were discussed.
Collapse
|
17
|
Hovey JL, Dittrich TM, Allen MJ. Coordination Chemistry of Surface-Associated Ligands for Solid–Liquid Adsorption of Rare-Earth Elements. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Bouchmila I, Bejaoui Kefi B, Djebali K, Souissi R. Optimization and modeling of solid-phase extraction of rare earth elements with chert using design methodology. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Brewer A, Florek J, Kleitz F. A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:2752-2765. [PMID: 35444492 PMCID: PMC8979348 DOI: 10.1039/d2gc00347c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 05/13/2023]
Abstract
Critical materials (CMs) are a group of elements that have been determined to be important for the modern economy, but which may face current or potential supply limitations. Some examples of metals that have received the CM designation include the rare earth elements, indium, gallium, and lithium. The last decade has seen a major push for the development of new and improved technologies for the recovery and purification of CMs from various traditional and non-traditional resources in an effort to diversify supply. Solid-phase extraction (SPE) is one broad category of these experimental extraction technologies. SPE involves the application of a solid material to preferentially retain in the solid phase one or more specific components of an aqueous solution, leaving the other components behind in the aqueous phase. A wide range of different sorbents has been used for SPE, and many offer significant potential advantages, including low cost, low environmental impact, and high customizability. Hierarchically porous silica monoliths are one example of a cutting-edge sorbent that provides a durable, high surface area foundation that can be functionalized with a variety of targeted ligands for the selective extraction of specific CMs. Despite impressive recent advances in SPE, there remain areas for improvement that are common across the discipline. To demonstrate the practical viability of these innovative CM recovery systems, future SPE studies would benefit from devoting additional focus to the scalability of their material, as well as from focusing on real-world feedstocks and conducting techno-economic analyses and environmental impact studies.
Collapse
Affiliation(s)
- Aaron Brewer
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| | - Justyna Florek
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| |
Collapse
|
20
|
Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep 2022; 12:4861. [PMID: 35318347 PMCID: PMC8941142 DOI: 10.1038/s41598-022-08542-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
The discharge of yttrium containing wastewater is a potential risk to human health. Although biosorption is a promising method to remove yttrium from wastewater, whereas the application of it is limited due to the lack of efficient biosorbents. In this study, the removal of yttrium from wastewater using Serratia marcescens as a biosorbent was conducted. The effects of six parameters including pH (2–5.5), initial yttrium concentration (10–110 mg/L), biosorbent dosage (0.1–0.5 g/L), biosorption time (10–700 min), stirring speed (50–300 rpm) and temperature (20–60 °C) were evaluated. The main parameters were optimized using response surface methodology. The results showed that the adsorption capacity reached 123.65 mg/g at the optimized conditions. The biosorption mechanism was revealed based on a combined analysis using field emission transmission electron microscope-energy dispersion spectrum, Fourier transform infrared spectrophotometer, and X-ray photoelectron spectroscopy. These results revealed that the hydroxyl, carboxyl, and amino groups were the adsorption functional groups for yttrium ions. Biosorption of yttrium by S. marcescens is under the combination of ion exchange, electrostatic attraction and complexation. These findings indicated that S. marcescens can be used as an efficient biosorbent to remove yttrium from wastewater. In addition, its adsorption capacity can be further improved by the enhancement of adsorption functional groups on the surface through chemical modification.
Collapse
|
21
|
Vardanyan A, Guillon A, Budnyak T, Seisenbaeva GA. Tailoring Nanoadsorbent Surfaces: Separation of Rare Earths and Late Transition Metals in Recycling of Magnet Materials. NANOMATERIALS 2022; 12:nano12060974. [PMID: 35335787 PMCID: PMC8950031 DOI: 10.3390/nano12060974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Novel silica-based adsorbents were synthesized by grafting the surface of SiO2 nanoparticles with amine and sulfur containing functional groups. Produced nanomaterials were characterized by SEM-EDS, AFM, FTIR, TGA and tested for adsorption and separation of Rare Earth Elements (REE) (Nd3+ and Sm3+) and Late Transition Metals (LTM) (Ni2+ and Co2+) in single and mixed solutions. The adsorption equilibrium data analyzed and fitted well to Langmuir isotherm model revealing monolayer adsorption process on homogeneously functionalized silica nanoparticles (NPs). All organo-silicas showed high adsorption capacities ranging between 0.5 and 1.8 mmol/g, depending on the function and the target metal ion. Most of these ligands demonstrated higher affinity towards LTM, related to the nature of the functional groups and their arrangement on the surface of nanoadsorbent.
Collapse
Affiliation(s)
- Ani Vardanyan
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden;
- Correspondence: (A.V.); (G.A.S.)
| | - Anna Guillon
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden;
| | - Tetyana Budnyak
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, P.O. Box 35, 75103 Uppsala, Sweden;
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden;
- Correspondence: (A.V.); (G.A.S.)
| |
Collapse
|
22
|
Wilfong WC, Ji T, Duan Y, Shi F, Wang Q, Gray ML. Critical review of functionalized silica sorbent strategies for selective extraction of rare earth elements from acid mine drainage. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127625. [PMID: 34857400 DOI: 10.1016/j.jhazmat.2021.127625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous and growing global reliance on rare earth elements (REEs) for modern technology and the need for reliable domestic sources underscore the rising trend in REE-related research. Adsorption-based methods for REE recovery from liquid waste sources are well-positioned to compete with those of solvent extraction, both because of their expected lower negative environmental impact and simpler process operations. Functionalized silica represents a rising category of low cost and stable sorbents for heavy metal and REE recovery. These materials have collectively achieved high capacity and/or high selective removal of REEs from ideal solutions and synthetic or real coal wastewater and other leachate sources. These sorbents are competitive with conventional materials, such as ion exchange resins, activated carbon; and novel polymeric materials like ion-imprinted particles and metal organic frameworks (MOFs). This critical review first presents a data mining analysis for rare earth element recovery publications indexed in Web of science, highlighting changes in REE recovery research foci and confirming the sharply growing interest in functionalized silica sorbents. A detailed examination of sorbent formulation and operation strategies to selectively separate heavy (HREE), middle (MREE), and light (LREE) REEs from the aqueous sources is presented. Selectivity values for sorbents were largely calculated from available figure data and gauged the success of the associated strategies, primarily: (1) silane-grafted ligands, (2) impregnated ligands, and (3) bottom-up ligand/silica hybrids. These were often accompanied by successful co-strategies, especially bite angle control, site saturation, and selective REE elution. Recognizing the need to remove competing fouling metals to achieve purified REE "baskets," we highlight techniques for eliminating these species from acid mine drainage (AMD) and suggest a novel adsorption-based process for purified REE extraction that could be adapted to different water systems.
Collapse
Affiliation(s)
- Walter C Wilfong
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA.
| | - Tuo Ji
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Yuhua Duan
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Fan Shi
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - Qiuming Wang
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA; NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| | - McMahan L Gray
- National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
| |
Collapse
|
23
|
Dong Z, Mattocks JA, Deblonde GJP, Hu D, Jiao Y, Cotruvo JA, Park DM. Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements. ACS CENTRAL SCIENCE 2021; 7:1798-1808. [PMID: 34841054 PMCID: PMC8614107 DOI: 10.1021/acscentsci.1c00724] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 05/20/2023]
Abstract
The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy.
Collapse
Affiliation(s)
- Ziye Dong
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A. Mattocks
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gauthier J.-P. Deblonde
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn
T. Seaborg Institute, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Yongqin Jiao
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A. Cotruvo
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- E-mail:
| | - Dan M. Park
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- E-mail:
| |
Collapse
|
24
|
Dybczyński RS, Samczyński Z, Chajduk E. Comparison of Usefulness of Four Chelating Agents (EDTA, NTA, ODA and IDA) for the Chromatographic Separation of Micro and Macro Amounts of Rare Earth Elements. Crit Rev Anal Chem 2021; 53:1012-1026. [PMID: 34796769 DOI: 10.1080/10408347.2021.2000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Literature on the use of four chelating agents namely: ethylenediaminetetraacetic acid, nitrilotriacetic acid, diglycolic acid and iminodiacetic acid for the chromatographic separation of micro and macro amounts of rare earth elements was critically reviewed and supplemented with some new unpublished data from our Laboratory. Advantages and disadvantages of ion exchange chromatography both in cation and anion mode as well as ion interaction chromatography techniques, which were used for rare earth elements separation, are discussed. The usefulness of some of the chromatographic systems for micro-macro separations was discussed and demonstrated. The importance of resilience of the separation method to column overloading in some analytical and larger scale separations was emphasized. The methods described in this article might suit well for recovering of individual lanthanides and yttrium from e-waste and other industrial wastes which were fast accumulating in recent years.
Collapse
Affiliation(s)
- Rajmund S Dybczyński
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Warszawa, Poland
| | - Zbigniew Samczyński
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Warszawa, Poland
| | - Ewelina Chajduk
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Warszawa, Poland
| |
Collapse
|
25
|
Paderni D, Giorgi L, Macedi E, Formica M, Paoli P, Rossi P, Fusi V. A selective fluorescent probe for gadolinium III in water based on a Pd II-preorganized chromone-receptor. Dalton Trans 2021; 50:15433-15440. [PMID: 34664572 DOI: 10.1039/d1dt01753e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, solution studies, photochemical properties and the X-ray structure of a chromone based fluorescent PdII complex are reported. The ligand contains two chromone units linked as side arms to an ethylenediamine moiety; in the PdII complex the metal ion preorganizes the two hydroxychromone units forming a rigid structure with a negatively charged pocket formed by four oxygen atoms that is able to interact with hard metal cations, such as ions, giving rise to stable bimetallic complexes. Upon interaction with LaIII and GdIII, in particular, the emission intensity at 423 nm increases by a factor of 2 and 8, respectively, while the other rare earth ions quench the fluorescence. Spectrofluorimetric studies on real matrices showed the possibility to use this system as a selective fluorescence probe to detect and trace the presence of Gadolinium in environmental water acting as an OFF-ON chemosensor, with a LOD of 0.4 ppm and a LOQ of 1.2 ppm.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino, Italy.
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino, Italy.
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", via della Stazione 4, 61029 Urbino, Italy.
| |
Collapse
|
26
|
Patel M, Karamalidis AK. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Immobilization of hexamolybdate onto carbon-coated Fe3O4 nanoparticle: A novel catalyst with high activity for oxidation of alcohols. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Abaeezadeh S, Beni AS, Zarnegaryan A, Nabavizadeh M. Immobilization of Polyoxometalate onto Modified Magnetic Nanoparticles: A New Catalyst for the Synthesis of Dihydropyranopyrazole Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Ali Zarnegaryan
- Department of Chemistry Yasouj University Yasouj 75918-74831 Iran
| | | |
Collapse
|
29
|
Butcher TA, Prendeville L, Rafferty A, Trtik P, Boillat P, Coey JMD. Neutron Imaging of Paramagnetic Ions: Electrosorption by Carbon Aerogels and Macroscopic Magnetic Forces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21831-21839. [PMID: 34676016 PMCID: PMC8521529 DOI: 10.1021/acs.jpcc.1c06031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The electrosorption of Gd3+ ions from an aqueous 70 mM Gd(NO3)3 solution in monolithic carbon aerogel electrodes was recorded by dynamic neutron imaging. The aerogels have a bimodal pore size distribution consisting of macropores and mesopores centered at 115 and 15 nm, respectively. After the uptake of Gd3+ ions by the negatively charged surface of the porous structure, an inhomogeneous magnetic field was applied to the system of discharging electrodes. This led to a convective flow and confinement of Gd(NO3)3 solution in the magnetic field gradient. Thus, a way to desalt and capture paramagnetic ions from an initially homogeneous solution is established.
Collapse
Affiliation(s)
- Tim A. Butcher
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | | | - Aran Rafferty
- AMBER
Centre and School of Chemistry, Trinity
College, Dublin 2, Ireland
| | - Pavel Trtik
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, Villigen CH-5232, Switzerland
| | - Pierre Boillat
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, Villigen CH-5232, Switzerland
- Electrochemistry
Laboratory, Paul Scherrer Institut, Villigen CH-5232, Switzerland
| | - J. M. D. Coey
- School
of Physics and CRANN, Trinity College, Dublin 2, Ireland
| |
Collapse
|
30
|
Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques. MINERALS 2021. [DOI: 10.3390/min11101051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The need for rare earths elements (REEs) in high tech electrical and electronic based materials are vital. In the global economy, deposits of natural REEs are limited except for countries such as China, which has prompted current attempts to seek alternative resources of REEs. This increased the dependence on major secondary rare earth-bearing sources such as scrap alloy, battery waste, spent catalysts, fly ash, spent magnets, waste light-emitting diodes (LEDs), and phosphogypsum (PG) for a substantial recovery of REEs for use. Recycling of REEs from these alternative waste sources through hydrometallurgical processes is becoming a sustainable and viable approach due to the low energy consumption, low waste generation, few emissions, environmentally friendliness, and economically feasibility. Industrial wastes such as the PG generated from the production of phosphoric acid is a potential secondary resource of REEs that contains a total REE concentration of over 2000 mg/kg depending upon the phosphate ore from which it is generated. Due to trace concentration of REEs in the PG (normally < 0.1% wt.) and their tiny and complex occurrence as mineral phases the recovery process of REE from PG would be highly challenging in both technology and economy. Various physicochemical pre-treatments approaches have been used up to date to up-concentrate REEs from PG prior to their extraction. Methods such as carbonation, roasting, microwave heating, grinding or recrystallization have been widely used for this purpose. This present paper reviews recent literature on various techniques that are currently employed to up-concentrate REs from PG to provide preliminary insight into further critical raw materials recovery. In addition, the advantages and disadvantages of the different strategies are discussed as avenues for realization of REE recovery from PG at a larger scale. In all the different approaches, recrystallization of PG appears to show promising advantages due to both high REE recovery as well as the pure PG phase that can be obtained.
Collapse
|
31
|
Nkinahamira F, Alsbaiee A, Wang Y, Yang X, Chen TY, Cao M, Feng M, Sun Q, Yu CP. Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite of β-cyclodextrin and silica doped with PC88A. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Bilodeau S, Florek J, Kleitz F. Reassessing the Physicochemical Properties of Ordered Mesoporous Polymer and Copolymer Nanocasts. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Bilodeau
- Laval University Department of Chemistry G1V 0A6 Quebec City Canada
| | - Justyna Florek
- University of Vienna Department of Inorganic Chemistry – Functional Materials Faculty of Chemistry Währinger Straße 42 1090 Vienna Austria
| | - Freddy Kleitz
- University of Vienna Department of Inorganic Chemistry – Functional Materials Faculty of Chemistry Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
33
|
Artiushenko O, Zaitsev V, Rojano WS, Freitas GA, Nazarkovsky M, Saint'Pierre TD, Kai J. Rationally designed dipicolinate-functionalized silica for highly efficient recovery of rare-earth elements from e-waste. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124976. [PMID: 33429146 DOI: 10.1016/j.jhazmat.2020.124976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Composition of the immobilized layer plays a crucial role in metal adsorption properties of complexing organo-mineral materials. Ignoring the specific features of chemical reactions on solid surface can lead to a significant deterioration in the target properties of the resulted materials. In this research we demonstrated that rationally designed surface-assembling synthesis of organo-silica with covalently immobilized fragments of dipicolinic acid (DPA) resulted in the adsorbent that is capable quantitively recover almost all Rare Earth elements (REEs) from multielement solution with pH > 1.7. In ten consecutive adsorption/desorption cycles no noticeable loss of its efficiency was found, with a mean value of REEs recovery larger than 97%. The adsorbent has been used to recover REEs from model solutions (22 metal ions in 0.5 mol L-1 NaCl) and real leaching solution of waste of fluorescent lamps. It was demonstrated that even 3200-fold excess of Fe and Cu ions only slightly reduces REEs recovery. The adsorbent is capable to recover above 80% of all (except La) REEs from acidic leaching solution from fluorescent lamps with enrichment factors above 600. After adsorption of Eu3+ and Tb3+, the resulting materials exhibited strong red and green luminescence, respectively, indicating chelating mechanism of REEs adsorption on SiO2-DPA.
Collapse
Affiliation(s)
- Olena Artiushenko
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil
| | - Vladimir Zaitsev
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil; National University of Kyiv-Mohyla Academy, 2 Skovorody vul., Kyiv 04070, Ukraine.
| | - Wendy S Rojano
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil
| | - Gabriel A Freitas
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil
| | - Michael Nazarkovsky
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil
| | - Tatiana D Saint'Pierre
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil
| | - Jiang Kai
- Pontifical Catholic University of Rio de Janeiro, Marquês de São Vicente St. 225, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
34
|
Seisenbaeva GA, Ali LMA, Vardanyan A, Gary-Bobo M, Budnyak TM, Kessler VG, Durand JO. Mesoporous silica adsorbents modified with amino polycarboxylate ligands - functional characteristics, health and environmental effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124698. [PMID: 33321316 DOI: 10.1016/j.jhazmat.2020.124698] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
A series of hybrid adsorbents were produced by surface modification with amino polycarboxylate ligands of industrially available microparticles (MP) of Kromasil® mesoporous nanostructured silica beads, bearing grafted amino propyl ligands. Produced materials, bearing covalently bonded functions as EDTA and TTHA, original Kromasil®, bearing amino propyl ligands, and bare particles, obtained by thermal treatment of Kromasil® in air, were characterized by SEM-EDS, AFM, FTIR, TGA and gas sorption techniques. Adsorption kinetics and capacity of surface-modified particles to adsorb Rare Earth Elements (REE), crucial for extraction in recycling processes, were evaluated under dynamic conditions, revealing specificity matching the ligand nature and the size of REE cations. A detailed comparison with earlier reported adsorbents for REE extraction was presented. The cytotoxicity was assessed using four different types of healthy cells, human skeletal muscles derived cells (SKMDC), fibroblast cells, macrophage cells (RAW264.7), and human umbilical vein endothelial cells (HUVECs), indicating lower toxicity of ligand-free MP than MP bearing amino poly-carboxylate functions. Internalization of the MP inside the cells and release of nitric oxide were observed. In addition, zebrafish embryos were exposed to high concentrations of MP and did not show any pronounced toxicity.
Collapse
Affiliation(s)
- Gulaim A Seisenbaeva
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden.
| | - Lamiaa M A Ali
- ICGM, Univ. Montpellier, CNRS, ENSCM, Case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France; Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt; IBMM, Univ Montpellier, CNRS, ENSCM, Montpelleir, France
| | - Ani Vardanyan
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden
| | | | - Tetyana M Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden; Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
| | - Vadim G Kessler
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-75007 Uppsala, Sweden
| | - Jean-Olivier Durand
- ICGM, Univ. Montpellier, CNRS, ENSCM, Case 1701, Place Eugène Bataillon, CEDEX 05, 34095 Montpellier, France.
| |
Collapse
|
35
|
Self-separation of the adsorbent after recovery of rare-earth metals: Designing a novel non-wettable polymer. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Tan H, Zhang X, Li Z, Liang Q, Wu J, Yuan Y, Cao S, Chen J, Liu J, Qiu H. Nitrogen-doped nanoporous graphene induced by a multiple confinement strategy for membrane separation of rare earth. iScience 2020; 24:101920. [PMID: 33385117 PMCID: PMC7772569 DOI: 10.1016/j.isci.2020.101920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022] Open
Abstract
Rare earth separation is still a major challenge in membrane science. Nitrogen-doped nanoporous graphene (NDNG) is a promising material for membrane separation, but it has not yet been tested for rare earth separation, and it is limited by multi-complex synthesis. Herein, we developed a one-step, facile, and scalable approach to synthesize NDNG with tunable pore size and controlled nitrogen content using confinement combustion. Nanoporous hydrotalcite from Zn(NO3)2 is formed between layers of graphene oxide (GO) absorbed with phenylalanine via confinement growth, thus preparing the sandwich hydrotalcite/phenylalanine/GO composites. Subsequently, area-confinement combustion of hydrotalcite nanopores is used to etch graphene nanopores, and the hydrotalcite interlayer as a closed flat nanoreactor induces two-dimensional space confinement doping of planar nitrogen into graphene. The membrane prepared by NDNG achieves separation of Sc3+ from the other rare earth ions with excellent selectivity (∼3.7) through selective electrostatic interactions of pyrrolic-N, and separation selectivity of ∼1.7 for Tm3+/Sm3+. A multiple confinement strategy is constructed to achieve the synthesis of NDNG Planar nitrogen-doped NDNG with tunable pore size is obtained by one-step synthesis NDNG membrane presents excellent selectivity for rare earth in strong acidic media
Collapse
Affiliation(s)
- Hongxin Tan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinsheng Wu
- Lanzhou Ecology and Environment Monitoring Center of Gansu Province, Lanzhou 730000, China
| | - Yanli Yuan
- Lanzhou Ecology and Environment Monitoring Center of Gansu Province, Lanzhou 730000, China
| | - Shiwei Cao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
37
|
|
38
|
Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption. J Colloid Interface Sci 2020; 579:489-507. [PMID: 32622098 DOI: 10.1016/j.jcis.2020.05.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022]
Abstract
Over the last two decades, in parallel to the rise of ordered mesoporous silica, porous nanostructured polymer-silica composites have attracted the interest of material scientists due to their promising perspectives of application as sorbents, ion-exchangers, supports, and catalysts. While knowledge is available regarding their synthesis and applications, understanding and controlling their pore properties in order to rationalize their performances remain challenging tasks. Greater knowledge is therefore needed regarding their precise characterization, especially using gas adsorption. To this aim, mesoporous polymer-silica nanocomposites were synthesized from two ordered mesoporous silica materials using a pore-surface restricted polymerization technique. Hydrophobic polystyrene, PS, and hydrophilic poly(2-hydroxyethyl methacrylate), PHEMA, were specifically confined and polymerized in the pores of high-quality SBA-15 and KIT-6 silicas of different pore sizes. The physico-chemical characteristics of the resulting hybrid materials were probed in detail using gas physisorption at cryogenic temperatures (Ar at 87 K and N2 at 77 K). The polymer loadings and the interactions between the silica host and the polymer were investigated using thermogravimetric analysis coupled with differential thermal analysis (TGA-DTA) and attenuated total reflection infrared spectroscopy (ATR-FTIR). The effects of the pore structure, mode pore size and presence or absence of intra-wall pores in the silica hosts on the final composite characteristics were assessed as a function of the polymer type and loading. Two different polymer filling mechanisms were identified as a function of the polymer-silica interactions, resulting in important changes on the pore topology of the composites. The results of this study allow a better understanding of the nature of the confined interactions between hydrophilic and hydrophobic polymers and large pore mesoporous silicas and shed some light on fundamental aspects regarding the design of silica-based composites.
Collapse
|
39
|
Hamdy MS, Al-Shehri BM, Al-Namshah KS, Shkir M. Synthesis, characterization, and photoluminescence property of Nd-TUD-1. LUMINESCENCE 2020; 36:192-199. [PMID: 32803842 DOI: 10.1002/bio.3934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 11/08/2022]
Abstract
Here, five different samples of neodymium (Nd) incorporated 3D-mesoporous siliceous materials were fabricated using a single-step hydrothermal technique. Typically, all samples were subjected to several qualitative elemental and quantitative analyses such as X-ray diffraction, N2 -adsorption/desorption, scanning electron microscopy, energy dispersive X-ray, mapping, high resolution transmission electron microscopy, diffuse reflectance ultraviolet-visible, and Raman spectroscopy. The characterization results showed that at small loading of Nd (i.e. Si/Nd < 20), only isolated centres of trivalent neodymium ions were tetrahedrally coordinated in the TUD-1 matrix. However, with increasing neodymium loading, additional nanoparticles of neodymium oxide with size 10-20 nm were embedded into silica host pores. Detailed photoluminescence (PL) analysis of all samples was carried out by recording the emission profiles at two diverse excitation wavelengths, 333 and 343 nm, to understand the effect of the Nd3+ environment on the PL emission spectra with special attention to the area between 400 and 600 nm. Most importantly, different peaks of the emission spectrum of each sample exhibited a distinct shape based on the Nd3+ environment. This performance was superior evidence that PL can be applied as a simple and efficient characterization tool to understand the nature of Nd3+ ion linkage with a silica matrix.
Collapse
Affiliation(s)
- Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Badria M Al-Shehri
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Khadijah S Al-Namshah
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Mohd Shkir
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
40
|
Abstract
Commercially available oxidized (carboxylic groups) and nonoxidized multiwalled carbon nanotubes were studied as adsorbents of cerium(III) in batch operation mode. Several variables affecting the rare earth adsorption were investigated, including: the stirring speed applied to the system, the pH of the solution, and the metal concentration and carbon dosages. Although the removal of cerium from the solution is different and dependent upon the adsorbent type—(i) adsorption in nonoxidized multiwalled carbon nanotubes, (ii) cation exchange in the case of using oxidized multiwalled carbon nanotubes—the adsorption kinetics, the rate law and the isotherm models are the same for both adsorbents: pseudo-second order, film diffusion, and Langmuir Type-1, respectively. Cerium is desorbed from loaded adsorbents using acidic solutions.
Collapse
|
41
|
Costa TBD, Silva MGCD, Vieira MGA. Recovery of rare-earth metals from aqueous solutions by bio/adsorption using non-conventional materials: a review with recent studies and promising approaches in column applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Archer WR, Fiorito A, Heinz-Kunert SL, MacNicol PL, Winn SA, Schulz MD. Synthesis and Rare-Earth-Element Chelation Properties of Linear Poly(ethylenimine methylenephosphonate). Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William R. Archer
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Agustin Fiorito
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherrie L. Heinz-Kunert
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Piper L. MacNicol
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha A. Winn
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
43
|
Pramanik BK, Nghiem LD, Hai FI. Extraction of strategically important elements from brines: Constraints and opportunities. WATER RESEARCH 2020; 168:115149. [PMID: 31604175 DOI: 10.1016/j.watres.2019.115149] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Strategically important elements are those that are vital to advanced manufacturing, low carbon technologies and other growing industries. Ongoing depletion and supply risks to these elements are a critical concern, and thus, recovery of these elements from low-grade ores and brines has generated significant interest worldwide. Among the strategically important elements, this paper focuses on rare earth elements (REEs), the platinum-group metals and lithium due to their wide application in the advanced industrial economics. We critically review the current methods such as precipitation, ion exchange and solvent extraction for extracting these elements from low-grade ores and brines and provide insight into the technical challenges to the practical realisation of metal extraction from these low-grade sources. The challenges include the low concentration of the target elements in brines and inadequate selectivity of the existing methods. This review also critically analyzes the potential applicability of an integrated clean water production and metal extraction process based on conventional pressure-driven membrane and emerging membrane technologies (e.g., membrane distillation). Such a process can first enrich the strategically important elements in solution for their subsequent recovery along with clean water production.
Collapse
Affiliation(s)
- Biplob Kumar Pramanik
- Civil and Infrastructure Engineering Discipline, School of Engineering, RMIT University, VIC, 3001, Australia.
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
44
|
Brewer A, Dohnalkova A, Shutthanandan V, Kovarik L, Chang E, Sawvel AM, Mason HE, Reed D, Ye C, Hynes WF, Lammers LN, Park DM, Jiao Y. Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13888-13897. [PMID: 31702144 DOI: 10.1021/acs.est.9b04608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rare earth elements (REEs) are indispensable components of many green technologies and of increasing demand globally. However, refining REEs from raw materials using current technologies is energy intensive and enviromentally damaging. Here, we describe the development of a novel biosorption-based flow-through process for selective REE recovery from electronic wastes. An Escherichia coli strain previously engineered to display lanthanide-binding tags on the cell surface was encapsulated within a permeable polyethylene glycol diacrylate (PEGDA) hydrogel at high cell density using an emulsion process. This microbe bead adsorbent contained a homogenous distribution of cells whose surface functional groups remained accessible and effective for selective REE adsorption. The microbe beads were packed into fixed-bed columns, and breakthrough experiments demonstrated effective Nd extraction at a flow velocity of up to 3 m/h at pH 4-6. The microbe bead columns were stable for reuse, retaining 85% of the adsorption capacity after nine consecutive adsorption/desorption cycles. A bench-scale breakthrough curve with a NdFeB magnet leachate revealed a two-bed volume increase in breakthrough points for REEs compared to non-REE impurities and 97% REE purity of the adsorbed fraction upon breakthrough. These results demonstrate that the microbe beads are capable of repeatedly separating REEs from non-REE metals in a column system, paving the way for a biomass-based REE recovery system.
Collapse
Affiliation(s)
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Vaithiyalingam Shutthanandan
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Elliot Chang
- Department of Environmental Science, Policy, and Management , University of California Berkeley , Berkeley , California 94270 , United States
| | | | | | - David Reed
- Department of Biological and Chemical Processing Department , Idaho National Laboratory , Idaho Falls , Idaho 83415 , United States
| | | | | | - Laura N Lammers
- Department of Environmental Science, Policy, and Management , University of California Berkeley , Berkeley , California 94270 , United States
| | | | | |
Collapse
|
45
|
Callura JC, Perkins KM, Baltrus JP, Washburn NR, Dzombak DA, Karamalidis AK. Adsorption kinetics, thermodynamics, and isotherm studies for functionalized lanthanide-chelating resins. J Colloid Interface Sci 2019; 557:465-477. [PMID: 31541916 DOI: 10.1016/j.jcis.2019.08.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/06/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Conventional ion exchange resins are widely utilized to remove metals from aqueous solutions, but their limited selectivity precludes dilute ion extraction. This research investigated the adsorption performance of ligand-functionalized resins towards rare earth elements (REE). Functionalized resin particles were synthesized by grafting different ligands (diethylenetriaminepentaacetic dianhydride (DTPADA), phosphonoacetic acid (PAA), or N,N-bis(phosphonomethyl)glycine (BPG)) onto pre-aminated polymeric adsorbents (diameter ∼ 0.6 mm). Lanthanide uptake trends were evaluated for the functionalized resins using batch adsorption experiments with a mixture of three REEs (Nd, Gd, and Ho at 0.1-1000 mg/L each). Resin physical-chemical properties were determined by measuring their surface area, ligand concentrations, and acidity constants. The aminated supports contained 4.0 mmol/g primary amines, and ligand densities for the functionalized resins were 0.33 mmol/g (PAA), 0.22 mmol/g (BPG), and 0.42 mmol/g (DTPADA). Kinetic studies revealed that the functionalized resins followed pseudo-second order binding kinetics with rates limited by intraparticle diffusion. Capacity estimates for total REE adsorption based on Langmuir qMax were 0.12 mg/g (amine; ≈ 0.77 µmol/g), 5.0 mg/g (PAA; ≈ 32.16 µmol/g), 3.0 mg/g (BPG; ≈ 19.30 µmol/g), and 2.9 mg/g (DTPADA; ≈ 18.65 µmol/g). Attaching ligands to the aminated resins greatly improved their REE binding strength and adsorption efficiency.
Collapse
Affiliation(s)
- Jonathan C Callura
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA
| | - Kedar M Perkins
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, USA
| | - John P Baltrus
- U.S. DOE National Energy Technology Laboratory, Pittsburgh, PA, USA
| | - Newell R Washburn
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, USA
| | - David A Dzombak
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA
| | - Athanasios K Karamalidis
- Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA, USA; Pennsylvania State University, Department of Energy and Mineral Engineering, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Gujar RB, Mohapatra PK, Verboom W. Two novel extraction chromatographic resins containing benzene-centered tripodal diglycolamide ligands: Actinide uptake, kinetic modeling and isotherm studies. J Chromatogr A 2019; 1598:58-66. [PMID: 30987785 DOI: 10.1016/j.chroma.2019.03.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
Two novel extraction chromatographic resins (EC), termed as RL-1 and RL-2, were prepared by impregnating two benzene-centered tripodal iglycolamide ligands (Bz-T-DGA) containing different spacer groups where the ligands are termed as L-1 and L-2, respectively. They were employed for the uptake of actinide and fission product ions, viz. Am3+, Eu3+, UO22+, Np4+, Pu4+, Sr2+, and Cs+, from acidic feeds. Weight distribution coefficient (Kd) values were measured by the batch method and the loaded metal ions were back extracted using a 0.01 M EDTA solution at pH 4. Kinetic modeling of the sorption data of Am(III) on both resins suggested pseudo-second order rate kinetics with rate constants of 1.68 × 10-6 and 2.47 × 10-6 g/cpm.min for the resins containing L-1 and L-2, respectively. Sorption isotherm studies indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) experimentally determined saturation uptake capacities of 6.02 ± 0.11 and 5.49 ± 0.14 mg per g of RL-1 and RL-2 resins, respectively. As the batch uptake study results appeared encouraging, column studies were also carried out using both resins. The resin reusability data indicated a marginal change in the Kd values for the RL-1 resin up to three repeat runs beyond which a steady decrease of the Kd value was seen. On the other hand, in the case of RL-2 a steady decrease in the Kd values was observed for three repeat runs beyond which there was marginal change.
Collapse
Affiliation(s)
- Rajesh B Gujar
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, Trombay, 400 085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, Trombay, 400 085, India.
| | - Willem Verboom
- Laboratory of Molecular Nanofabrication, MESA(+)Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, the Netherlands
| |
Collapse
|
47
|
Hu Y, Misal Castro LC, Drouin E, Florek J, Kählig H, Larivière D, Kleitz F, Fontaine FG. Size-Selective Separation of Rare Earth Elements Using Functionalized Mesoporous Silica Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23681-23691. [PMID: 31117444 DOI: 10.1021/acsami.9b04183] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The separation and preconcentration of rare earth elements (REEs) from mineral concentrates in an economically and environmentally sustainable manner are difficult tasks due to their similar physicochemical properties. Herein, a series of tetradentate phenylenedioxy diamide (PDDA) ligands were synthesized and grafted on large-pore three-dimensional KIT-6 mesoporous silica. In solid-phase extraction, the hybrid sorbents enable a size-selective separation of REEs on the basis of the bite angles of the ligands. In particular, smaller REE3+ ions are preferentially extracted by KIT-6-1,2-PDDA, whereas light REEs with larger ionic radius are favored by KIT-6-1,3-PDDA. The exposure of bauxite residue digestion solution containing REEs as well as a number of types of competitive ions (including Th and U) to the sorbents results in selective recovery of target REEs. The possibility of regenerating the mesoporous sorbents through a simple loading-stripping-regeneration process is demonstrated over up to five cycles with no significant loss in REE extraction capacity, suggesting adequate chemical and structural stability of the new sorbent materials.
Collapse
Affiliation(s)
- Yimu Hu
- Department of Chemistry , Université Laval , Québec G1V 0A6 , QC , Canada
- Centre en Catalyse et Chimie Verte (C3V) , Université Laval , Québec G1V 0A6 , QC , Canada
| | - Luis C Misal Castro
- Department of Chemistry , Université Laval , Québec G1V 0A6 , QC , Canada
- Centre en Catalyse et Chimie Verte (C3V) , Université Laval , Québec G1V 0A6 , QC , Canada
| | - Elisabeth Drouin
- Department of Chemistry , Université Laval , Québec G1V 0A6 , QC , Canada
- Centre en Catalyse et Chimie Verte (C3V) , Université Laval , Québec G1V 0A6 , QC , Canada
| | | | | | - Dominic Larivière
- Department of Chemistry , Université Laval , Québec G1V 0A6 , QC , Canada
- Centre en Catalyse et Chimie Verte (C3V) , Université Laval , Québec G1V 0A6 , QC , Canada
| | | | - Frédéric-Georges Fontaine
- Department of Chemistry , Université Laval , Québec G1V 0A6 , QC , Canada
- Centre en Catalyse et Chimie Verte (C3V) , Université Laval , Québec G1V 0A6 , QC , Canada
- Canada Research Chair in Green Catalysis and Metal-Free Processes , Québec G1V 0A6 , Canada
| |
Collapse
|