1
|
Kapare H, Bhosale M, Bhole R. Navigating the future: Advancements in monoclonal antibody nanoparticle therapy for cancer. J Drug Deliv Sci Technol 2025; 104:106495. [DOI: 10.1016/j.jddst.2024.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Debnath R, Ikbal AMA, Ravi NK, Kargarzadeh H, Palit P, Thomas S. Carbon Nanodots-Based Polymer Nanocomposite: A Potential Drug Delivery Armament of Phytopharmaceuticals. Polymers (Basel) 2025; 17:365. [PMID: 39940566 PMCID: PMC11819804 DOI: 10.3390/polym17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Carbon nanodots (CNDs) have garnered significant attention as viable drug delivery vehicles in recent years, especially in the field of phytomedicine. Although there is much promise for therapeutic applications with phytomedicine, its effectiveness is frequently restricted by its low solubility, stability, and bioavailability. This paper offers a thorough synopsis of the developing field of phytomedicine drug delivery based on CND. It explores CND synthesis processes, surface functionalization strategies, and structural and optical characteristics. Additionally, the advantages and difficulties of phytomedicine are examined, with a focus on the contribution of drug delivery methods to the increased effectiveness of phytomedicine. The applications of CNDs in drug delivery are also included in the review, along with the mechanisms that underlie their improved drug delivery capabilities. Additionally, it looks at controlled-release methods, stability augmentation, and phytomedicine-loading tactics onto CNDs. The potential of polymeric carbon nanodots in drug delivery is also covered, along with difficulties and prospective directions going forward, such as resolving toxicity and biocompatibility issues. In summary, the present review highlights the encouraging contribution of CNDs to the field of drug delivery, specifically in enhancing the potential of phytomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Rabin Debnath
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Neeraj Kr. Ravi
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India; (R.D.); (A.M.A.I.); (N.K.R.)
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International, Inter University Centre for Nanoscience and Nantechnology (IIUCNN), Mahatma Gandhi University, Kottayam 686560, India
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg P.O. Box 17011, South Africa
- TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd., Sreekariyam, Trivandrum 695016, India
| |
Collapse
|
3
|
Aydın B, Bozoğlu S, Karatepe N, Güner FS. Synthesis of Bovine Serum Albumin-Coated Magnetic Single-Walled Carbon Nanotubes as a Delivery System for Mitoxantrone. ACS OMEGA 2025; 10:102-113. [PMID: 39829559 PMCID: PMC11740624 DOI: 10.1021/acsomega.3c09608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 01/22/2025]
Abstract
In this study, a bovine serum albumin (BSA)-coated magnetic single-walled carbon nanotube (mCNT) was synthesized using covalent functionalization. Mitoxantrone (MTO) was chosen as a model drug, and loading/release profiles of mCNTs were evaluated. To synthesize BSA-coated mCNT, 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide and N-hydroxysuccinimide were used as cross-linking agents. The success of the functionalization process was demonstrated through various analysis techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and scanning electron microscopy. The saturation magnetization of mCNT-BSA was 15.6 emu/g, indicating its potential for magnetically targeted drug delivery systems. Finally, MTO was physically loaded on the BSA-coated mCNT (mCNT-BSA) and the results were compared to those of mCNT. mCNT-BSA showed less drug loading capacity but more release response than mCNT. Considering drug release and cytotoxicity test results, MTO-loaded mCNT-BSA nanoparticles have great potential for cancer treatment.
Collapse
Affiliation(s)
- Buğçe Aydın
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Türkiye
- Department
of Chemical Engineering, Ondokuz Mayıs
University, Samsun 55139, Türkiye
| | - Serdar Bozoğlu
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Istanbul 34469, Türkiye
| | - Nilgün Karatepe
- Energy
Institute, Renewable Energy Division, Istanbul
Technical University, Istanbul 34469, Türkiye
| | - F. Seniha Güner
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Türkiye
- Sabancı
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Türkiye
| |
Collapse
|
4
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
6
|
Dang H, Guan B, Chen J, Ma Z, Chen Y, Zhang J, Guo Z, Chen L, Hu J, Yi C, Yao S, Huang Z. Research on carbon dioxide capture materials used for carbon dioxide capture, utilization, and storage technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33259-33302. [PMID: 38698095 DOI: 10.1007/s11356-024-33370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
In recent years, climate change has increasingly become one of the major challenges facing mankind today, seriously threatening the survival and sustainable development of mankind. Dramatically increasing carbon dioxide concentrations are thought to cause a severe greenhouse effect, leading to severe and sustained global warming, associated climate instability and unwelcome natural disasters, melting glaciers and extreme weather patterns. The treatment of flue gas from thermal power plants uses carbon capture, utilization, and storage (CCUS) technology, one of the most promising current methods to accomplish significant CO2 emission reduction. In order to implement the technological and financial system of CO2 capture, which is the key technology of CCUS technology and accounts for 70-80% of the overall cost of CCUS technology, it is crucial to create more effective adsorbents. Nowadays, with the development and application of various carbon dioxide capture materials, it is necessary to review and summarize carbon dioxide capture materials in time. In this paper, the main technologies of CO2 capture are reviewed, with emphasis on the latest research status of CO2 capture materials, such as amines, zeolites, alkali metals, as well as emerging MOFs and carbon nanomaterials. More and more research on CO2 capture materials has used a variety of improved methods, which have achieved high CO2 capture performance. For example, doping of layered double hydroxides (LDH) with metal atoms significantly increases the active site on the surface of the material, which has a significant impact on improving the CO2 capture capacity and performance stability of LDH. Although many carbon capture materials have been developed, high cost and low technology scale remain major obstacles to CO2 capture. Future research should focus on designing low-cost, high-availability carbon capture materials.
Collapse
Affiliation(s)
- Hongtao Dang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junyan Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeren Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujun Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhe Zhang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zelong Guo
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Chen
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingqiu Hu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Yi
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunyu Yao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Ndlovu NL, Mdlalose WB, Ntsendwana B, Moyo T. Evaluation of Advanced Nanomaterials for Cancer Diagnosis and Treatment. Pharmaceutics 2024; 16:473. [PMID: 38675134 PMCID: PMC11054857 DOI: 10.3390/pharmaceutics16040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a persistent global disease and a threat to the human species, with numerous cases reported every year. Over recent decades, a steady but slowly increasing mortality rate has been observed. While many attempts have been made using conventional methods alone as a theragnostic strategy, they have yielded very little success. Most of the shortcomings of such conventional methods can be attributed to the high demands of industrial growth and ever-increasing environmental pollution. This requires some high-tech biomedical interventions and other solutions. Thus, researchers have been compelled to explore alternative methods. This has brought much attention to nanotechnology applications, specifically magnetic nanomaterials, as the sole or conjugated theragnostic methods. The exponential growth of nanomaterials with overlapping applications in various fields is due to their potential properties, which depend on the type of synthesis route used. Either top-down or bottom-up strategies synthesize various types of NPs. The top-down only branches out to one method, i.e., physical, and the bottom-up has two methods, chemical and biological syntheses. This review highlights some synthesis techniques, the types of nanoparticle properties each technique produces, and their potential use in the biomedical field, more specifically for cancer. Despite the evident drawbacks, the success achieved in furthering nanoparticle applications to more complex cancer stages and locations is unmatched.
Collapse
Affiliation(s)
- Nkanyiso L. Ndlovu
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Wendy B. Mdlalose
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Bulelwa Ntsendwana
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Thomas Moyo
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
8
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
9
|
Singh N, Anand SK, Sharma A, Singh S, Kakkar P, Srivastava V. Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells. Int J Biol Macromol 2024; 257:128717. [PMID: 38081485 DOI: 10.1016/j.ijbiomac.2023.128717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Biopolymer-based nanoscale drug delivery systems have become a promising approach to overcome the limitations associated with conventional chemotherapeutics used for cancer treatment. Herein, we reported to develop a hydrophilic nanogel (NG) composed of Chitosan (Chi) and sodium alginate (Alg) using the ion gelation method for delivering Berberine hydrochloride (BBR), an alkaloid obtained from Berberis aristata roots. The use of different nanocarriers for BBR delivery has been reported previously, but the bioavailability of these carriers was limited due to phagocytic uptake and poor systemic delivery. The developed NG showed enhanced stability and efficient entrapment of BBR ∼92 %, resulting in a significant increase in bioavailability. The pH-dependent release behavior demonstrated sustained and effective release of ∼86 %, ∼74 % and, ∼53 % BBR at pH 5.5, 6.6, and 7.4 respectively after 72h, indicating its potential as a drug carrier. Additionally, the cellular uptake of BBR was significantly higher ∼19 % in the BBR-NG (25 μM) than in bulk BBR (100 μM), leading to enhanced ROS generation, mitochondrial depolarisation, and inhibition of cell proliferation and colony formation in HepG2 cells. In summary, the results suggest that the Chi/Alg biopolymer-based nano-formulation could be an effective approach for delivering BBR and enhancing its cellular uptake, efficacy, and cytotoxicity.
Collapse
Affiliation(s)
- Neha Singh
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sumit Kumar Anand
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA-71103, USA
| | - Ankita Sharma
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Sukhveer Singh
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kakkar
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Vikas Srivastava
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
10
|
Li J, Wu K, Zhang J, Gao H, Xu X. Progress in the treatment of drug-loaded nanomaterials in renal cell carcinoma. Biomed Pharmacother 2023; 167:115444. [PMID: 37716114 DOI: 10.1016/j.biopha.2023.115444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common urinary tract tumor that arises from the highly heterogeneous epithelium of the renal tubules. The incidence of kidney cancer is second only to the incidence of bladder cancer, and has shown an upward trend over time. Although surgery is the preferred treatment for localized RCC, treatment decisions should be customized to individual patients considering their overall health status and the risk of developing or worsening chronic kidney disease postoperatively. Anticancer drugs are preferred to prevent perioperative and long-term postoperative complications; however, resistance to chemotherapy remains a considerable problem during the treatment process. To overcome this challenge, nanocarriers have emerged as a promising strategy for targeted drug delivery for cancer treatment. Nanocarriers can transport anticancer agents, achieving several-fold higher cytotoxic concentrations in tumors and minimizing toxicity to the remaining parts of the body. This article reviews the use of nanomaterials, such as liposomes, polymeric nanoparticles, nanocomposites, carbon nanomaterials, nanobubbles, nanomicelles, and mesoporous silica nanoparticles, for RCC treatment, and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinmei Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of Nanoparticles in Cancer Treatment: A Concise Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2887. [PMID: 37947732 PMCID: PMC10650201 DOI: 10.3390/nano13212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010-2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Sell
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
| | - Ana Rita Lopes
- Faculty of Dental Medicine, Portuguese Catholic University, 3504-505 Viseu, Portugal;
| | - Maria Escudeiro
- Abel Salazar Biomedical Institute, University of Porto, 4050-313 Porto, Portugal;
| | - Bruno Esteves
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Ana R. Monteiro
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| |
Collapse
|
12
|
Parihar A, Choudhary N, Sharma P, Khan R. Carbon nanomaterials-based electrochemical aptasensor for point-of-care diagnostics of cancer biomarkers. MATERIALS TODAY CHEMISTRY 2023; 30:101499. [DOI: 10.1016/j.mtchem.2023.101499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
13
|
Rostamzadeh F, Jafarinejad-Farsangi S, Ansari-Asl Z, Farrokhi MS, Jafari E. Treatment for Myocardial Infarction: In Vivo Evaluation of Curcumin-Loaded PEGylated-GQD Nanoparticles. J Cardiovasc Pharmacol 2023; 81:361-372. [PMID: 36822208 DOI: 10.1097/fjc.0000000000001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT Curcumin (Cur) has been suggested as a complementary treatment for cardiovascular diseases. Its efficiency, however, is modest due to poor biocompatibility. This study examined the effects of curcumin loaded on polyethylene glycol-graphene quantum dots (Cur-PEG-GQDs) on hemodynamic and cardiac function in rats with myocardial infarction (MI). The study groups included control, MI, MI+Cur-3, MI + Cur-7, MI + Cur-15, MI + PEG-GQDs-5, MI + PEG-GQDs-10, MI + Cur-PEG-GQDs-5, and MI + Cur-PEG-GQDs-10. MI was established by left anterior descending artery ligation. Two weeks after intraperitoneal administration of vehicle, Cur, PEG-GQDs, and Cur-PEG-GQDs, blood pressure and heart contractility indices were measured. Triphenyl tetrazolium chloride, colorimetry, and clinical laboratory methods were used to measure the infarct size, the oxidant and antioxidant content, and the kidney and liver function parameters, respectively. In the MI animals, Cur-7, PEG-GQDs-10, Cur-PEG-GQDs-5, and Cur-PEG-GQDs-10 recovered systolic blood pressure, diastolic blood pressure, left ventricular systolic pressure, and ±dp/dt max disturbances and reduced myocardial infarct size, fibrosis, and left ventricular end-diastolic pressure. Curcumin lowered antioxidant markers and elevated 1 oxidant marker in the heart in a dose-dependent manner. Although Cur-PEG-GQDs-5 and Cur-PEG-GQDs-10 reduced curcumin's oxidative stress effects, the superoxide dismutase, glutathione peroxidase, and total antioxidant capacity levels were significantly lower in Cur-PEG-GQDs-5 and Cur-PEG-GQDs-10 groups compared with the MI group. Malondialdehyde levels were lower in Cur-PEG-GQDs-5 and -10 groups compared with the Cur-3, Cur-7, and Cur-15 groups. The glutathione/glutathione disulfide ratio improved in the groups treated by Cur-7, PEG-GQDs-10, Cur-PEG-GQDs-5, and Cur-PEG-GQDs-10. The findings indicated that Cur-PEG-GQDs mitigated MI-induced cardiac dysfunction. However, because of the increase in oxidative stress in the heart, nonclassic mechanisms may be involved in the beneficial effect of Cur-PEG-GQDs on MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman
| | - Saeideh Jafarinejad-Farsangi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz
| | - Mitra Shadkam Farrokhi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman; and
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
15
|
Kargari Aghmiouni D, Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate-Drug Interaction Properties. Pharmaceutics 2023; 15:1214. [PMID: 37111700 PMCID: PMC10142803 DOI: 10.3390/pharmaceutics15041214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
By utilizing nanoparticles to upload and interact with several pharmaceuticals in varying methods, the primary obstacles associated with loading two or more medications or cargos with different characteristics may be addressed. Therefore, it is feasible to evaluate the benefits provided by co-delivery systems utilizing nanoparticles by investigating the properties and functions of the commonly used structures, such as multi- or simultaneous-stage controlled release, synergic effect, enhanced targetability, and internalization. However, due to the unique surface or core features of each hybrid design, the eventual drug-carrier interactions, release, and penetration processes may vary. Our review article focused on the drug's loading, binding interactions, release, physiochemical, and surface functionalization features, as well as the varying internalization and cytotoxicity of each structure that may aid in the selection of an appropriate design. This was achieved by comparing the actions of uniform-surfaced hybrid particles (such as core-shell particles) to those of anisotropic, asymmetrical hybrid particles (such as Janus, multicompartment, or patchy particles). Information is provided on the use of homogeneous or heterogeneous particles with specified characteristics for the simultaneous delivery of various cargos, possibly enhancing the efficacy of treatment techniques for illnesses such as cancer.
Collapse
Affiliation(s)
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
16
|
Shukla AK, Randhawa S, Saini TC, Acharya A. Carbon nanosphere based bifunctional oxidoreductase nano-catalytic agent to mitigate hypoxia in cancer cells. Int J Biol Macromol 2023; 233:123466. [PMID: 36739044 DOI: 10.1016/j.ijbiomac.2023.123466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Developing metal-free carbon nanozyme for tumor hypoxia is difficult. In biomedical applications, especially in the case of biomolecular detection, extensive research has been done on nanozymes with enzyme-mimicking catalytic activity. However, there are considerably fewer investigations on targeted nano-catalytic tumor therapy. Nano catalytic medicine-enabled chemotherapy is a safe and promising treatment strategy that involves the conversion of excess H2O2 into O2 in a tumor environment. Here we have synthesized carbon nanosphere (CNS) using the Camellia sinensis plant (CS-CNS). Further surface functionalization was achieved via nitrilotriacetic acid conjugation (NTA@CS-CNS). A stability study of synthesized nanozyme in the presence of various cations, anions, and 5 different pH range suggested the robustness of carbon based nanoassembly. The catalytic in vitro study shows that NTA@CS-CNS mimics peroxidase and catalase using TMB and H2O2 as substrates. NTA@CS-CNS showed Km and Vmax values of ~ 193.2 μM and 0.43 μM/s, ~ 413 μM and 1.42 μM/s, and ~ 378 μM and 1.63 μM/s, respectively when H2O2 and TMB was used for CAT and POD activity. Results showed that NTA@CS-CNS in combination with SFN and laser irradiation reduces hypoxia. Hence, our study could pave the path for the development of different non-toxic nano catalytic therapy for tumors in cancerous cells.
Collapse
Affiliation(s)
- Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Asil SM, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido-Padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023; 4:20220056. [PMID: 37426287 PMCID: PMC10328449 DOI: 10.1002/viw.20220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- Department of Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Erick Damian Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georgina Bugarini
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Joshua Cayme
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nydia De Avila
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jaime Garcia
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Adrian Hernandez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julia Mecado
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yazeneth Madero
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Frida Moncayo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rosario Olmos
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - David Perches
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jacob Roman
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Diana Salcido-Padilla
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Efrain Sanchez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Christopher Trejo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Paulina Trevino
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
18
|
Kousar A, Pande I, F. Pascual L, Peltola E, Sainio J, Laurila T. Modulating the Geometry of the Carbon Nanofiber Electrodes Provides Control over Dopamine Sensor Performance. Anal Chem 2023; 95:2983-2991. [PMID: 36700823 PMCID: PMC9909731 DOI: 10.1021/acs.analchem.2c04843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One of the major challenges for in vivo electrochemical measurements of dopamine (DA) is to achieve selectivity in the presence of interferents, such as ascorbic acid (AA) and uric acid (UA). Complicated multimaterial structures and ill-defined pretreatments have been frequently utilized to enhance selectivity. The lack of control over the realized structures has prevented establishing associations between the achieved selectivity and the electrode structure. Owing to their easily tailorable structure, carbon nanofiber (CNF) electrodes have become promising materials for neurobiological applications. Here, a novel yet simple strategy to control the sensitivity and selectivity of CNF electrodes toward DA is reported. It consists of adjusting the lengths of CNF by modulating the growth phase during the fabrication process while keeping the surface chemistries similar. It was observed that the sensitivity of the CNF electrodes toward DA was enhanced with the increase in the fiber lengths. More importantly, the increase in the fiber length induced (i) an anodic shift in the DA oxidation peak and (ii) a cathodic shift in the AA oxidation peak. As the UA oxidation peak remained unaffected at high anodic potentials, the electrodes with long CNFs showed excellent selectivity. Electrodes without proper fibers showed only a single broad peak in the solution of AA, DA, and UA, completely lacking the ability to discriminate DA. Hence, the simple strategy of controlling CNF length without the need to carry out any complex chemical treatments provides us a feasible and robust route to fabricate electrode materials for neurotransmitter detection with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Ayesha Kousar
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Ishan Pande
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Laura F. Pascual
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Emilia Peltola
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland,Department
of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Jani Sainio
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, 00076 Aalto, Finland
| | - Tomi Laurila
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland,Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076 Aalto, Finland,
| |
Collapse
|
19
|
Brindhadevi K, Garalleh HAL, Alalawi A, Al-Sarayreh E, Pugazhendhi A. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
21
|
Yan J, Long X, Liang Y, Li F, Yu H, Li Y, Li Z, Tian Y, He B, Sun Y. Nanodrug delivery systems and cancer stem cells: From delivery carriers to treatment. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
23
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Esrafili MD, Khan AA. Alkali metal decorated C 60 fullerenes as promising materials for delivery of the 5-fluorouracil anticancer drug: a DFT approach. RSC Adv 2022; 12:3948-3956. [PMID: 35425459 PMCID: PMC8981040 DOI: 10.1039/d1ra09153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of effective drug delivery vehicles is essential for the targeted administration and/or controlled release of drugs. Using first-principles calculations, the potential of alkali metal (AM = Li, Na, and K) decorated C60 fullerenes for delivery of 5-fluorouracil (5FU) is explored. The adsorption energies of the 5FU on a single AM atom decorated C60 are -19.33, -16.58, and -14.07 kcal mol-1 for AM = Li, Na, and K, respectively. The results, on the other hand, show that up to 12 Li and 6 Na or K atoms can be anchored on the exterior surface of the C60 fullerene simultaneously, each of which can interact with a 5FU molecule. Because of the moderate adsorption energies and charge-transfer values, the 5FU can be simply separated from the fullerene at ambient temperature. Furthermore, the results show that the 5FU may be easily protonated in the target cancerous tissues, which facilitates the release of the drug from the fullerene. The inclusion of solvent effects tends to decrease the 5FU adsorption energies in all 5FU-fullerene complexes. This is the first report on the high capability of AM decorated fullerenes for delivery of multiple 5FU molecules utilizing a C60 host molecule.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh P. O. Box 55136-553 Maragheh Iran
| | - Adnan Ali Khan
- Centre for Computational Materials Science, University of Malakand Chakdara Pakistan
- Department of Chemistry, University of Malakand Chakdara Pakistan
| |
Collapse
|
25
|
Tumor-Targeted Fluorescence Imaging and Mechanisms of Tumor Cell-Derived Carbon Nanodots. Pharmaceutics 2022; 14:pharmaceutics14010193. [PMID: 35057086 PMCID: PMC8778872 DOI: 10.3390/pharmaceutics14010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/10/2022] Open
Abstract
An ideal cancer diagnostic probe should possess precise tumor-targeted accumulation with negligible sojourn in normal tissues. Herein, tumor cell-derived carbon nanodots (C-CNDU87 and C-CNDHepG2) about 3~7 nm were prepared by a solvothermal method with stable fluorescence and negligible cytotoxicity. More interestingly, due to the differences in gene expression of cancers, C-CND structurally mimicked the corresponding precursors during carbonization in which carbon nanodots were functionalized with α-amino and carboxyl groups with different densities on their edges. With inherent homology and homing effect, C-CND were highly enriched in precursor tumor tissues. Mechanistic studies showed that under the mediation of the original configuration of α-amino and carboxyl groups, C-CND specifically bound to the large neutral amino acid transporter 1 (LAT1, overexpressed in cancer cells), achieving specific tumor fluorescence imaging. This work provided a new vision about tumor cell architecture-mimicked carbon nanodots for tumor-targeted fluorescence imaging.
Collapse
|
26
|
Shamim M, Perveen M, Nazir S, Hussnain M, Mehmood R, Khan MI, Iqbal J. DFT study of therapeutic potential of graphitic carbon nitride (g-C3N4) as a new drug delivery system for carboplatin to treat cancer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Loading harmine on nanographene changes the inhibitory effects of free harmine against MCF-7 and fibroblast cells. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02714-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
29
|
Synthesis, Characterization and Toxicity Assessment of the Novel Non covalent Functionalized Multi-walled Carbon Nanotubes with Glycyrrhizin, Curcumin and Rutin. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02026-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Stimuli-responsive natural gums-based drug delivery systems for cancer treatment. Carbohydr Polym 2021; 254:117422. [PMID: 33357903 DOI: 10.1016/j.carbpol.2020.117422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Chemotherapy as the main cancer treatment method has non-specific effects and various side-effects. Accordingly, significant attempts have been conducted to enhance its efficacy through design and development of "smart" drug delivery systems (DDSs). In this context, natural gums, as a nice gift by the nature, can be exploited as stimuli-responsive DDSs for cancer treatment in part due to their renewability, availability, low cost, bioactivity, biocompatibility, low immunogenicity, biodegradability, and acceptable stability in both in vitro and in vivo conditions. However, some shortcomings (e.g., poor mechanical properties and high hydration rate) restrict their biomedical application ranges that can be circumvented through modification process (e.g., grafting of stimuli-responsive polymers or small molecules) to obtain tailored biomaterials. This review article aimed to compile the stimuli-responsive DDSs based on natural gums. In addition, different types of stimuli, the fundamental features of natural gums, as well as their chemical modification approaches are also shortly highlighted.
Collapse
|
31
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
32
|
Khodadadi Yazdi M, Taghizadeh A, Taghizadeh M, Stadler FJ, Farokhi M, Mottaghitalab F, Zarrintaj P, Ramsey JD, Seidi F, Saeb MR, Mozafari M. Agarose-based biomaterials for advanced drug delivery. J Control Release 2020; 326:523-543. [PMID: 32702391 DOI: 10.1016/j.jconrel.2020.07.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Agarose is a prominent marine polysaccharide representing reversible thermogelling behavior, outstanding mechanical properties, high bioactivity, and switchable chemical reactivity for functionalization. As a result, agarose has received particular attention in the fabrication of advanced delivery systems as sophisticated carriers for therapeutic agents. The ever-growing use of agarose-based biomaterials for drug delivery systems resulted in rapid growth in the number of related publications, however still, a long way should be paved to achieve FDA approval for most of the proposed products. This review aims at a classification of agarose-based biomaterials and their derivatives applicable for controlled/targeted drug delivery purposes. Moreover, it attempts to deal with opportunities and challenges associated with the future developments ahead of agarose-based biomaterials in the realm of advanced drug delivery. Undoubtedly, this class of biomaterials needs further advancement, and a lot of critical questions have yet to be answered.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA.
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
33
|
Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics 2020; 12:pharmaceutics12090850. [PMID: 32906852 PMCID: PMC7558911 DOI: 10.3390/pharmaceutics12090850] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.
Collapse
|
34
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
35
|
Naringenin-Functionalized Multi-Walled Carbon Nanotubes: A Potential Approach for Site-Specific Remote-Controlled Anticancer Delivery for the Treatment of Lung Cancer Cells. Int J Mol Sci 2020; 21:ijms21124557. [PMID: 32604979 PMCID: PMC7348916 DOI: 10.3390/ijms21124557] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Multi-walled carbon nanotubes functionalized with naringenin have been developed as new drug carriers to improve the performance of lung cancer treatment. The nanocarrier was characterized by Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy, Raman Spectroscopy, and Differential Scanning Calorimetry (DSC). Drug release rates were determined in vitro by the dialysis method. The cytotoxic profile was evaluated using the MTT assay, against a human skin cell line (hFB) as a model for normal cells, and against an adenocarcinomic human alveolar basal epithelial (A569) cell line as a lung cancer in vitro model. The results demonstrated that the functionalization of carbon nanotubes with naringenin occurred by non-covalent interactions. The release profiles demonstrated a pH-responsive behavior, showing a prolonged release in the tumor pH environment. The naringenin-functionalized carbon nanotubes showed lower cytotoxicity on non-malignant cells (hFB) than free naringenin, with an improved anticancer effect on malignant lung cells (A549) as an in vitro model of lung cancer.
Collapse
|
36
|
Mohammadi E, Zeinali M, Mohammadi-Sardoo M, Iranpour M, Behnam B, Mandegary A. The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Hum Exp Toxicol 2020; 39:1147-1167. [PMID: 31957491 DOI: 10.1177/0960327119899988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon nanotubes (CNTs) have emerged as a new class of multifunctional nanoparticles in biomedicine, but their multiple in vivo effects remain unclear. Also, the impact of various functionalization types and duration of exposures are still unidentified. Herein, we report a complete toxicological study to evaluate the effects of single- and multiwalled carbon nanotubes (SWCNTs and MWCNTs) with either amine or carboxylic acid (COOH) surface functional groups. The results showed that significant oxidative stress and the subsequent cell apoptosis could be resulted in both acute and, mainly, in chronic intravenous administrations. Also, male reproductive parameters were altered during these exposures. The amino-functionalized CNTs had more toxic properties compared with the COOH functionalized group, and also, in some groups, the multiwalled nanotubes were more active in eliciting cytotoxicity than the single-walled nanotubes. Interestingly, the SWCNTs-COOH had the least alterations in most of the parameters. Evidently, it is concluded that the toxicity of CNTs in specific organs can be minimized through particular surface functionalizations.
Collapse
Affiliation(s)
- E Mohammadi
- Student Research Committee, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - M Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - M Mohammadi-Sardoo
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - M Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - B Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - A Mandegary
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
37
|
Liu Y, Wang T, Cao J, Zang Z, Wu Q, Wang H, Tai F, He R. Quaternary Ammonium Salts of Iminofullerenes: Fabrication and Effect on Seed Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13509-13517. [PMID: 31725280 DOI: 10.1021/acs.jafc.9b04783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, novel water-soluble quaternary ammonium salts of iminofullerenes (IFQA) were synthesized by nitrene chemistry in combination with quaternization and identified as [C60(NCH2CH2NH3+·CF3COO-)4·10H2O]n by various spectroscopies. Maize and Arabidopsis seeds were used to test the bioactivity of IFQA in seed germination. Compared with the control, maize seed exposure to 50 mg/L IFQA (normal: 73.1% vs 58.7%; drought: 66.7% vs 50.0% at the second day) and Arabidopsis seed exposure to 20 mg/L IFQA (normal: 77.5% vs 58.8%; drought: 63.3% vs 36.7% at the second day) had higher germination rates and quicker germination. The results of two-dimensional gel electrophoresis combined with mass spectroscopy showed that the abundance of 21 proteins in embryo proteome of maize seeds was significantly changed (>1.5 fold). The downregulated six storage proteins and upregulated four proteins induced by IFQA for energy production and sugar metabolism indicated a faster metabolic activity of maize seed germination. The upregulated eight stress-related proteins and antioxidant enzymes suggested that the role of IFQA was to activate the metabolic processes in seed germination and also increase seed stress response. The results provide important information to understand the mechanism of seed germination enhancement by carbon nanomaterials.
Collapse
|
38
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
39
|
De Maio F, Palmieri V, De Spirito M, Delogu G, Papi M. Carbon nanomaterials: a new way against tuberculosis. Expert Rev Med Devices 2019; 16:863-875. [PMID: 31550943 DOI: 10.1080/17434440.2019.1671820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Tuberculosis (TB) remains one of the most alarming worldwide infectious diseases primarily in low-income countries, where the infection shows a higher and unvaried prevalence. In the last years, the emergence and spread of Mycobacterium tuberculosis (Mtb) strains resistant to first-line anti-TB drugs are the cause of major concern and prompted the implementation of new treatments, including the development of new drugs and the repurposing of old ones. Areas covered: In this review, we discuss solutions against TB based on nanomaterials (NMTs), alone or combined with current anti-TB drugs. We will summarize drug delivery platforms tested in in vivo or in vitro models and their activity against mycobacteria. We will describe how the new nanotechnologies based on carbon nanomaterials, like carbon nanotubes and graphene oxide are now facing the panorama of the medical fight against TB. Expert opinion: We foresee that in the next decade carbon nanomaterials will be at the forefront in fighting emerging antibiotic-resistant Mtb strains by shortening treatment periods, reducing adverse effects and mitigating antibiotic use. However, toxicity and biodegradation studies should be done prior to the clinical translation of carbon nanomaterials.
Collapse
Affiliation(s)
- Flavio De Maio
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Giovanni Delogu
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Microbiology, Università Cattolica del Sacro Cuore , Roma , Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS , Roma , Italy.,Institute of Physics, Università Cattolica del Sacro Cuore , Roma , Italy
| |
Collapse
|
40
|
Zhao Y, Jin L, Wang Y, Kong Y, Wang D. Prolonged exposure to multi-walled carbon nanotubes dysregulates intestinal mir-35 and its direct target MAB-3 in nematode Caenorhabditis elegans. Sci Rep 2019; 9:12144. [PMID: 31434956 PMCID: PMC6704117 DOI: 10.1038/s41598-019-48646-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
In nematode Caenorhabditis elegans, some microRNAs (miRNAs) could be dysregulated by multi-walled carbon nanotubes (MWCNTs), suggesting their involvement in regulating the response of nematodes to MWCNTs. Among these dysregulated miRNAs induced by MWCNT exposure, prolonged exposure to MWCNTs increased mir-35 expression. mir-35 further acted in the intestine to regulate the response to MWCNTs. In the intestine, a transcription factor MAB-3 was identified as its target in regulating the response to MWCNTs. Moreover, during the control of response to MWCNTs, MAB-3 acted upstream of DAF-16, a fork head transcriptional factor in insulin signaling pathway. Therefore, MWCNTs exposure potentially dysregulates intestinal mir-35 and its direct target MAB-3, which may activate a protective intestinal response of nematodes against the MWCNTs toxicity.
Collapse
Affiliation(s)
- Yunli Zhao
- Department of Preventive Medicine, Bengbu Medical College, Bengbu, 233030, China.
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Ling Jin
- Department of Preventive Medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Yuan Wang
- Department of Preventive Medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Yan Kong
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Hama Aziz KH, Omer KM, Hamarawf RF. Lowering the detection limit towards nanomolar mercury ion detection via surface modification of N-doped carbon quantum dots. NEW J CHEM 2019. [DOI: 10.1039/c9nj01333d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Surface modification of carbon dots can lower the detection limit of trace analysis which is challenging in analytical chemistry and environmental analysis.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| | - Khalid M. Omer
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry
- College of Science University of Sulaimani
- Sulaimani-
- Sulaimani City
- Iraq
| |
Collapse
|
42
|
Kepinska M, Kizek R, Milnerowicz H. Metallothionein and Superoxide Dismutase-Antioxidative Protein Status in Fullerene-Doxorubicin Delivery to MCF-7 Human Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19103253. [PMID: 30347787 PMCID: PMC6214080 DOI: 10.3390/ijms19103253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
Doxorubicin (DOX) is one of the most frequently used anticancer drugs in breast cancer treatment. However, clinical applications of DOX are restricted, largely due to the fact that its action disturbs the pro/antioxidant balance in both cancerous and non-cancerous cells. The aim of this study was to investigate the influence of fullerene (C60) in cell treatment by DOX on the proliferation of human breast cancer cells (MCF-7), concentration of metallothionein (MT) and superoxide dismutase (SOD), and SOD activity in these cells. The use of C60 in complexes with DOX causes a change in the level of cell proliferation of about 5% more than when caused by DOX alone (from 60–65% to 70%). The use of C60 as a DOX nanotransporter reduced the MT level increase induced by DOX. C60 alone caused an increase of SOD1 concentration. On the other hand, it led to a decrease of SOD activity. C60 in complex with DOX caused a decrease of the DOX-induced SOD activity level. Exposure of MCF-7 cells to DOX-C60 complexes results in a decrease in viable cells and may become a new therapeutic approach to breast cancer. The effects of C60 in complexes with DOX on MCF-7 cells included a decreased enzymatic (SOD activity) and nonenzymatic (MT) antioxidant status, thus indicating their prooxidant role in MCF-7 cells.
Collapse
Affiliation(s)
- Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho nam. 1949, 612 42 Brno, Czech Republic.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|