1
|
Santos JAM, Caiana RRA, Almeida CLA, Pimenta DC, Farias KJS, de Almeida Júnior RF, Machado PRL, Menezes PH, Freitas JCR. Synthesis, and antitumoral and antiviral evaluation of polyacetylene glycoside derivatives. Org Biomol Chem 2025; 23:410-421. [PMID: 39569683 DOI: 10.1039/d4ob01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A series of novel derivatives of Poliacetylene Glycosides (PAGs) were synthesized, and their antiproliferative and antiviral properties were evaluated. Starting from D-(+)-glucose pentaacetate as a precursor, a commercially available and low-cost starting material, three different strategies were attempted to synthesize the new PAGs, and the desired compounds were obtained in high overall yields after only three steps. The synthesized PAGs exhibited antitumoral activity in concentrations ranging from 68-878 μM and antiviral activities in concentrations ranging from 71-794 μM. Some preliminary structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Jonh A M Santos
- Instituto Federal de Pernambuco - IFPE, Barreiros, PE, Brazil
| | - Robrigo R A Caiana
- Universidade Federal de Pernambuco, Depto. de Antibióticos, Recife, PE, Brazil
| | - Cláudia L A Almeida
- Universidade Federal de Pernambuco, Depto. de Química Fund., Recife, PE, Brazil.
| | - Daniel C Pimenta
- Instituto Butantan, Laboratório de Biofísica e Bioquímica, São Paulo, SP, Brazil
| | - Kleber J S Farias
- Universidade Federal do Rio Grande do Norte, Depto. de Análises Clínicas e Toxicológicas, Natal, RN, Brazil
| | - Renato F de Almeida Júnior
- Universidade Federal do Rio Grande do Norte, Depto. de Análises Clínicas e Toxicológicas, Natal, RN, Brazil
| | - Paula R L Machado
- Universidade Federal do Rio Grande do Norte, Depto. de Análises Clínicas e Toxicológicas, Natal, RN, Brazil
| | - Paulo H Menezes
- Universidade Federal de Pernambuco, Depto. de Química Fund., Recife, PE, Brazil.
| | - Juliano C R Freitas
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Cuité, PB, Brazil.
| |
Collapse
|
2
|
Skeen TL, Gresham RL, Agamaite KA, Molz OM, Westlake IF, Kregenow SM, Romero AK, Flood BM, Mazur LE, Hinkle RJ, Young DD. Elucidation of Antimicrobials and Biofilm Inhibitors Derived from a Polyacetylene Core. Molecules 2024; 29:5945. [PMID: 39770033 PMCID: PMC11677313 DOI: 10.3390/molecules29245945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The development of new antibiotics with unique mechanisms of action is paramount to combating the growing threat of antibiotic resistance. Recently, based on inspiration from natural products, an asymmetrical polyacetylene core structure was examined for its bioactivity and found to have differential specificity for different bacterial species based on the substituents around the conjugated alkyne. This research further probes the structural requirements for bioactivity through a systematic synthesis and investigation of new compounds with variable carbon chain length, alkynyl subunits, and alcohol substitution. Furthermore, the research examines the activity of the new compounds towards the inhibition of biofilm formation. Overall, several key new polyyne compounds have been identified in both decreasing bacterial viability and in disrupting pre-formed biofilms. These properties are key in the fight against bacterial infections and will be helpful in the further development of new antibiotic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Robert J. Hinkle
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA; (T.L.S.); (R.L.G.); (K.A.A.); (O.M.M.); (I.F.W.); (S.M.K.); (B.M.F.); (L.E.M.)
| | - Douglas D. Young
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA; (T.L.S.); (R.L.G.); (K.A.A.); (O.M.M.); (I.F.W.); (S.M.K.); (B.M.F.); (L.E.M.)
| |
Collapse
|
3
|
Piao D, Youn I, Huynh TH, Kim HW, Noh SG, Chung HY, Oh DC, Seo EK. Identification of New Polyacetylenes from Dendropanax morbifera with PPAR-α Activity Study. Molecules 2024; 29:5942. [PMID: 39770031 PMCID: PMC11677830 DOI: 10.3390/molecules29245942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Dendropanax morbifera Leveille is a traditional medicine used to treat migraine headache and dysmenorrhea. In this study, three polyacetylenes, methyl (10E,9R,16R)-16-acetoxy-9-hydroxyoctadeca-10,17-dien-12,14-diynoate (1), methyl (10E,9R,16S)-9,16-dihydroxyoctadeca-10-en-12,14-diynoate (2), and methyl (10Z,9R,16S)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (3), were isolated from the aerial parts of D. morbifera, together with seven known compounds (4-10). Importantly, the isolates (6 and 8) were found in the family Araliaceae for the first time in this study. Compounds 1-10 were evaluated for their binding affinity to AMPK and CTSS receptors using in silico docking simulations. Only compound 7 increased the protein expression levels of PPAR-α, Sirt1, and AMPK when administered to HepG2 cells as a PPAR-α agonist. On the other hand, 7 did not produce any significant reduction in CTSS activity. This study could pave the way for the discovery of novel treatments from D. morbifera targeting PPAR-α and AMPK.
Collapse
Affiliation(s)
- Donglan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (D.P.); (I.Y.)
| | - Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (D.P.); (I.Y.)
| | - Thanh-Hau Huynh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (D.-C.O.)
| | - Hyun Woo Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.W.K.); (S.G.N.); (H.Y.C.)
| | - Sang Gyun Noh
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.W.K.); (S.G.N.); (H.Y.C.)
| | - Hae Young Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.W.K.); (S.G.N.); (H.Y.C.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (D.-C.O.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (D.P.); (I.Y.)
| |
Collapse
|
4
|
Park S, Park HW, Seo DB, Yoo DS, Bae S. In vitro hair growth-promoting effects of araliadiol via the p38/PPAR-γ signaling pathway in human hair follicle stem cells and dermal papilla cells. Front Pharmacol 2024; 15:1482898. [PMID: 39691387 PMCID: PMC11649413 DOI: 10.3389/fphar.2024.1482898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background Scalp hair plays a crucial role in social communication by expressing personal appearance and self-identity. Consequently, hair loss often leads to a perception of unattractiveness, negatively impacting an individual's life and mental health. Currently, the use of Food and Drug Administration (FDA)-approved drugs for hair loss is associated with several side effects, highlighting the need for identifying new drug candidates, such as plant-derived phytochemicals, to overcome these issues. Objective This study investigated the hair growth-promoting effects of araliadiol, a polyacetylene compound found in plants such as Centella asiatica. Methods We employed an in vitro model comprising human hair follicle stem cells (HHFSCs) and human dermal papilla cells (HDPCs) to evaluate the hair growth-promoting effects of araliadiol. The proliferation-stimulating effects of araliadiol were assessed using water-soluble tetrazolium salt assay, adenosine triphosphate content assay, and crystal violet staining assay. In addition, we performed luciferase reporter assay, polymerase chain reaction analysis, cell fractionation, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to elucidate the mechanism underlying the hair growth-inductive effects of araliadiol. Results Araliadiol exhibited both proliferation- and hair growth-promoting effects in HHFSCs and HDPCs. Specifically, it increased the protein expression of cyclin B1 and Ki67. In HHFSCs, it elevated the expression of hair growth-promoting factors, including CD34, vascular endothelial growth factor (VEGF), and angiopoietin-like 4. Similarly, araliadiol increased the expression of hair growth-inductive proteins such as fibroblast growth factor 7, VEGF, noggin, and insulin-like growth factor 1 in HDPCs. Subsequent Western blot analysis and ELISA using inhibitors such as GW9662 and SB202190 confirmed that these hair growth-promoting effects were dependent on the p38/PPAR-γ signaling in both HHFSCs and HDPCs. Conclusion Araliadiol promotes hair growth through the p38/PPAR-γ signaling pathway in human hair follicle cells. Therefore, araliadiol can be considered a novel drug candidate for the treatment of alopecia.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | | | | | | | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chin WC, Zhou YZ, Wang HY, Feng YT, Yang RY, Huang ZF, Yang YL. Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Nat Prod Rep 2024; 41:977-989. [PMID: 38284321 DOI: 10.1039/d3np00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yang-Zhi Zhou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Hao-Yung Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ru-Yin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Zih-Fang Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
6
|
Ma M, Wu M, Tian B, Mao X, Lin S, Huang C, Hu X. Polyacetylenes with xanthine oxidase inhibitory activity from the medicinal and edible fruits of Cyclocodon lancifolius (Roxburgh) Kurz. Fitoterapia 2023; 170:105631. [PMID: 37536472 DOI: 10.1016/j.fitote.2023.105631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Five new polyacetylene derivatives (1-5), cyclocodonlandiynosides A-E, and eight known analogues (6-13) were isolated and identified from the fruits of Cyclocodon lancifolius. Their structures were established via spectroscopic and chemical methods, including NMR, HRESIMS, enzymatic hydrolysis, Mo2(OAc)4-induced circular dichroism and sugar derivatization. Compound 1 contains a nitrogenous fragment, which was rarely found in C14 polyacetylenes. Compounds 3 and 4 are polyacetylene glucosides possessing novel aglycones. All the isolated polyacetylenes (except 12) were screened for their xanthine oxidase (XO) inhibitory activity. All the tested compounds, at the concentration of 62.5 μg/mL, showed XO inhibiting effects. Among them, 13 and 3 showed the most potent XO inhibitory activity with IC50 values of 87.65 and 96.32 μM, compared to the positive control allopurinol with an IC50 value of 19.25 μM.
Collapse
Affiliation(s)
- Mengjie Ma
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Man Wu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Bei Tian
- Guizhou Innovation Agriculture Development Co., Ltd., Tongren 554300, China
| | - Xudong Mao
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Shan Lin
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chunyue Huang
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Xiao Hu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
7
|
Niu Y, Zhang J, Shi D, Zang W, Niu J. Glycosides as Potential Medicinal Components for Ulcerative Colitis: A Review. Molecules 2023; 28:5210. [PMID: 37446872 DOI: 10.3390/molecules28135210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific disease of unknown etiology. The disease develops mainly in the rectum or colon, and the main clinical symptoms include abdominal pain, diarrhea, and purulent bloody stools, with a wide variation in severity. The specific causative factors and pathogenesis of the disease are not yet clear, but most scholars believe that the disease is caused by the interaction of genetic, environmental, infectious, immune, and intestinal flora factors. As for the treatment of UC, medications are commonly used in clinical practice, mainly including aminosalicylates, glucocorticoids, and immunosuppressive drugs. However, due to the many complications associated with conventional drug therapy and the tendency for UC to recur, there is an urgent need to discover new, safer, and more effective drugs. Natural compounds with biodiversity and chemical structure diversity from medicinal plants are the most reliable source for the development of new drug precursors. Evidence suggests that glycosides may reduce the development and progression of UC by modulating anti-inflammatory responses, inhibiting oxidative stress, suppressing abnormal immune responses, and regulating signal transduction. In this manuscript, we provide a review of the epidemiology of UC and the available drugs for disease prevention and treatment. In addition, we demonstrate the protective or therapeutic role of glycosides in UC and describe the possible mechanisms of action to provide a theoretical basis for preclinical studies in drug development.
Collapse
Affiliation(s)
- Yating Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Dianhua Shi
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Weibiao Zang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
8
|
Hale EA, Ryan HM, McOsker AM, Funk CM, Green LC, Mazur LE, Uthappa DM, Flood BM, Young DD, Hinkle RJ. Effects of Structural Variations on Antibacterial Properties for Conjugated Diynes Generated through Glaser Hay Couplings. ChemMedChem 2022; 17:e202200455. [PMID: 36194525 PMCID: PMC10092682 DOI: 10.1002/cmdc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Indexed: 01/14/2023]
Abstract
Antibiotic resistance is a growing problem facing global societies today. Many new antibiotics are derivatized versions of already existing antibiotics, which allows for antibiotic resistance to arise. To combat this issue, new antibiotics with different core structures need to be elucidated. Asymmetrical polyacetylenes have been isolated from natural products and they have previously been demonstrated to exhibit antimicrobial and antibacterial activity; however, their synthetic preparation has not made them easily amenable to rapid derivatization for SAR studies. Using a combination of solution and solid-supported chemistries, an array of diynes inspired by a known natural product were prepared and assessed for antibacterial activity. Ultimately, several compounds were identified with improved activity in bacterial viability assays. Moreover, some compounds were discovered that displayed a degree of specificity for E. coli over P. fluorescens and vice versa. These new compounds show promise, and further investigation is needed to pinpoint the specific structural components that elicit biological activity.
Collapse
Affiliation(s)
- Emma A. Hale
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Hannah M. Ryan
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | | | - Cody M. Funk
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Lauren C. Green
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Lauren E. Mazur
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Diya M. Uthappa
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Brian M. Flood
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Douglas D. Young
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| | - Robert J. Hinkle
- Department of ChemistryWilliam & MaryPO Box 8795Williamsburg, VA23187USA
| |
Collapse
|
9
|
Tian MM, Li YX, Liu S, Zhu CH, Lan XB, Du J, Ma L, Yang JM, Zheng P, Yu JQ, Liu N. Glycosides for Peripheral Neuropathic Pain: A Potential Medicinal Components. Molecules 2021; 27:255. [PMID: 35011486 PMCID: PMC8746348 DOI: 10.3390/molecules27010255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain is a refractory disease that occurs across the world and pharmacotherapy has limited efficacy and/or safety. This disease imposes a significant burden on both the somatic and mental health of patients; indeed, some patients have referred to neuropathic pain as being 'worse than death'. The pharmacological agents that are used to treat neuropathic pain at present can produce mild effects in certain patients, and induce many adverse reactions, such as sedation, dizziness, vomiting, and peripheral oedema. Therefore, there is an urgent need to discover novel drugs that are safer and more effective. Natural compounds from medical plants have become potential sources of analgesics, and evidence has shown that glycosides alleviated neuropathic pain via regulating oxidative stress, transcriptional regulation, ion channels, membrane receptors and so on. In this review, we summarize the epidemiology of neuropathic pain and the existing therapeutic drugs used for disease prevention and treatment. We also demonstrate how glycosides exhibit an antinociceptive effect on neuropathic pain in laboratory research and describe the antinociceptive mechanisms involved to facilitate the discovery of new drugs to improve the quality of life of patients experiencing neuropathic pain.
Collapse
Affiliation(s)
- Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China;
| | - Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|