1
|
Goel S, Laeini MS, Huang Z, Poudel B, Colby RH, Hickey RJ. Polyzwitterionic Material Structure and Dielectric Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9878-9886. [PMID: 40194299 DOI: 10.1021/acs.langmuir.5c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
There is a growing need for flexible, high-dielectric-constant materials that move beyond current polar solvent swelling and nanofiller approaches to advance energy storage and actuator applications. Here, we synthesized a series of statistical copolymers consisting of polybutyl acrylate-co-poly(2-(dimethylamino)ethyl acrylate), which were then converted into polyzwitterions to explore the impact of zwitterions on the material structure and dielectric properties. The DMAEA residues in each copolymer were quaternized using 1,4-butane sultone to yield polyzwitterions through postpolymerization modification. The functionalization of the copolymers with zwitterions increases the static dielectric constant of the materials (i.e., ∼9.3 at 80 °C) compared with the unquaternized materials. The strong dipolar interactions between zwitterions lead to aggregation, resulting in the appearance of either a second glass-transition temperature or the softening of the zwitterion aggregates. Although the zwitterions increased the dielectric constant of the materials, the zwitterion-rich aggregates are posited to restrict zwitterion mobility, precluding the maximum material dielectric constant. The reported findings position polyzwitterions as promising next-generation dielectric materials, potentially broadening applications in flexible electronics and energy-efficient devices.
Collapse
Affiliation(s)
- Shubhra Goel
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad S Laeini
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zitan Huang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bharat Poudel
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ralph H Colby
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Aoki N, Tang Y, Zeng X, Ichikawa T. Design of Functional Gyroid Minimal Surfaces Transporting Proton Based Solely on Surface Hopping Conduction Mechanism. Macromol Rapid Commun 2025; 46:e2400619. [PMID: 39491048 DOI: 10.1002/marc.202400619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Surface proton hopping conduction (SPHC) mechanisms is an important proton conduction mechanism in conventional polymer electrolytes, along with the Grotthuss and vehicle mechanisms. Due to the small diffusion coefficient of protons in the SPHC mechanism, few studies have focused on the SPHC mechanism. Recently, it has been found that a dense alignment of SO3 - groups significantly lowers the activation energy in the SPHC mechanism, enabling fast proton conduction. In this study, a series of polymerizable amphiphilic-zwitterions is prepared, forming bicontinuous cubic liquid-crystalline assemblies with gyroid symmetry in the presence of suitable amounts of bis(trifluoromethanesulfonyl) imide (HTf2N) and water. In situ polymerization of these compounds yields gyroid-nanostructured polymer films, as confirmed by synchrotron small-angle X-ray scattering experiments. The high proton conductivity of the films on the order of 10-2 S cm-1 at 40 °C and relative humidity of 90% is based solely on the SPHC mechanism.
Collapse
Affiliation(s)
- Nanami Aoki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| |
Collapse
|
3
|
Lange A, Holtzheimer L, Clarke C, Thünemann AF, Taubert A. Complex Self-Organization in n-Alkylammonium Sulfobetaine Zwitterions with High Thermal Stabilities and High Expansion Coefficients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4422-4434. [PMID: 39930617 PMCID: PMC11875396 DOI: 10.1021/acs.langmuir.4c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Sulfobetaine zwitterions made from n-alkyl dimethylamines and butanesultone yield a series of n-alkylammonium sulfobetaine zwitterions with complex self-organization behavior. The compounds are thermally quite stable and the length of the alkyl chain directly affects all phase transition temperatures of the compounds: the longer the alkyl chain, the higher the transition temperature. All compounds exhibit lamellar order and the different phases are characterized by a lower temperature orthorhombic and a higher temperature hexagonal in-plane order. The phase transition from the orthorhombic to the hexagonal phase is always associated with an increase of the long period. The phase transition is also associated with a rather high thermal expansion coefficient.
Collapse
Affiliation(s)
- Alyna Lange
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Lea Holtzheimer
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Coby Clarke
- GSK
Carbon Neutral Laboratory, Jubilee Campus,
The University of Nottingham, Nottingham NG7 2GA, U.K.
| | - Andreas F. Thünemann
- Bundesanstalt
für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
Gao C, Gao Y, Liu Q, Tong J, Sun H. Polyzwitterions: controlled synthesis, soft materials and applications. SOFT MATTER 2025; 21:538-555. [PMID: 39692690 DOI: 10.1039/d4sm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Polyzwitterions refer to polymers containing both positive and negative charged groups in one side chain, which have shown unique physicochemical properties and significant potential in diverse applications due to their amphiphilic and net-neutral charged properties. This review aims to highlight the recent advances in the design and synthesis of polyzwitterions including direct polymerization of zwitterionic monomers and deionization of polymers. Furthermore, the formation of polyzwitterion based soft materials such as nanoparticles by self-assembly, hydrogels, coatings and polyzwitterion brushes, as well as the influence of the microstructure on their properties and applications are discussed. The potential applications of polyzwitterions in drug delivery, antifouling, lubrication, energy storage and antibacterial are also summarized. Finally, the prospects of polyzwitterions are proposed.
Collapse
Affiliation(s)
- Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qin Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jinhua Tong
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Liu CX, Hwang S, Lee Y, Ko YH, Park SS, Lee E. Post-Modification Approach for Self-Exfoliated Synthesis of Pyridinium Sulfobetaine Covalent Organic Frameworks for Enhanced Lithium-Ion Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48203-48210. [PMID: 39213657 DOI: 10.1021/acsami.4c06949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
While covalent organic frameworks (COFs) have been extensively investigated in the field of organic electrolyte materials, there is potential for further enhancement of their room-temperature ionic conductivity. This study introduces a novel methodology to induce self-exfoliation in the parent COF during synthesis through a postmodification technique. This process yields covalent organic nanosheets that feature pyridinium sulfobetaine groups, referred to as PS-CON. Due to the strategic arrangement of pyridinium cations and sulfobetaine anions, the charge distribution in PS-CON varies substantially, leading to a significant enhancement in lithium-ion dissociation. The methodically organized one-dimensional pore channels, along with the linear structure of the pyridinium sulfobetaine groups, facilitate the lithium-ion transport. PS-CON demonstrated a remarkable ionic conductivity of 2.19 × 10-4 S cm-1and a low activation energy (0.26 eV) coupled with a broad electrochemical stabilization window (4.05 V). Furthermore, the symmetrical cell (Li|Li@PS-CON|Li) demonstrates stable Li plating/stripping for more than 1200 h, which highlights the vast potential of pyridinium-sulfobetaine based zwitterionic nanosheets as high-performance organic electrolytes.
Collapse
Affiliation(s)
- Cong-Xue Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Soomin Hwang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeji Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Young Ho Ko
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science, Pohang 37673, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Kaur S, D'Souza RM, Kelly TL, Williams VE, Kaake LG. Electrostatic Correlations Lead to High Capacitance in Zwitterion-Containing Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38290-38299. [PMID: 38990772 DOI: 10.1021/acsami.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A novel zwitterion composed of an imidazolium tethered to an anionic sulfonyl(trifluoromethane sulfonyl)imide group was prepared as an alternative dielectric material to traditional ionic liquids. The zwitterion not only melted below 100 °C but also proved to be nonhygroscopic. High-capacitance organic dielectric materials were obtained by blending this compound with poly(methyl methacrylate) over a range of concentrations and thicknesses. Above a specific temperature and concentration, films exhibit a capacitance nearly equivalent to that of an electrostatic double layer, approximately 10 μF/cm2, regardless of their thickness. Grazing-incidence wide-angle X-ray scattering experiments suggest that the zwitterions adopt a lamellar ordering at their surface above a critical concentration. The observed ordering is correlated with a 1000-fold increase in capacitance. The behavior suggests that the zwitterions exhibit strong electrostatic correlations throughout the film bulk, pointing the way toward a novel class of organic dielectric materials.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Renita M D'Souza
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Vance E Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Loren G Kaake
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
7
|
Nakazono Y, Inoue R, Sumitani R, Mochida T. Solvent-free transformation of protic ionic liquids into zwitterions. Chem Commun (Camb) 2024; 60:5711-5714. [PMID: 38738841 DOI: 10.1039/d4cc01345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
We synthesized several protic ionic liquids (ILs) composed of onium cations and the (trifluoromethylsulfonyl)(vinylsulfonyl)amide anion. The addition of a base catalytically facilitated their transformation into zwitterions (ZIs) under solvent-free conditions, which is a convenient method for synthesizing ZIs from ILs.
Collapse
Affiliation(s)
- Yosuke Nakazono
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| | - Ryota Inoue
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| | - Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan.
- Research Center for Membrane and Film Technology, Kobe University, Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
8
|
Alsaedi MK, Like BD, Wieck KW, Panzer MJ. Zwitterionic Materials for Enhanced Battery Electrolytes. Chempluschem 2024; 89:e202300731. [PMID: 38252804 DOI: 10.1002/cplu.202300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Zwitterions (ZIs), which are molecules bearing an equal number of positive and negative charges and typically possessing large dipole moments, can play an important role in improving the characteristics of a wide variety of novel battery electrolytes. Significant Coulombic interactions among ZI charged groups and any mobile ions present can lead to several beneficial phenomena within electrolytes, such as increased salt dissociation, the formation of ordered pathways for ion transport, and enhanced mechanical robustness. In some cases, ZI additives can also boost electrochemical stability at the electrolyte/electrode interface and enable longer battery cycling. Here, a brief summary of selected key historical and recent advances in the use of ZI materials to enrich the performance of three distinct classes of battery electrolytes is presented. These include: ionic liquid-based, conventional solvent-based, and solid matrix-based (non-ceramic) electrolytes. Exploring a greater chemical diversity of ZI types and electrolyte pairings will likely lead to more discoveries that can empower next-generation battery designs in the years to come.
Collapse
Affiliation(s)
- Mossab K Alsaedi
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Bricker D Like
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Karl W Wieck
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Matthew J Panzer
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
9
|
Matuszek K, Piper SL, Brzęczek-Szafran A, Roy B, Saher S, Pringle JM, MacFarlane DR. Unexpected Energy Applications of Ionic Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313023. [PMID: 38411362 DOI: 10.1002/adma.202313023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Ionic liquids and their various analogues are without doubt the scientific sensation of the last few decades, paving the way to a more sustainable society. Their versatile suite of properties, originating from an almost inconceivably large number of possible cation and anion combinations, allows tuning of the structure to serve a desired purpose. Ionic liquids hence offer a myriad of useful applications from solvents to catalysts, through to lubricants, gas absorbers, and azeotrope breakers. The purpose of this review is to explore the more unexpected of these applications, particularly in the energy space. It guides the reader through the application of ionic liquids and their analogues as i) phase change materials for thermal energy storage, ii) organic ionic plastic crystals, which have been studied as battery electrolytes and in gas separation, iii) key components in the nitrogen reduction reaction for sustainable ammonia generation, iv) as electrolytes in aluminum-ion batteries, and v) in other emerging technologies. It is concluded that there is tremendous scope for further optimizing and tuning of the ionic liquid in its task, subject to sustainability imperatives in line with current global priorities, assisted by artificial intelligence.
Collapse
Affiliation(s)
- Karolina Matuszek
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Samantha L Piper
- Institute for Frontier Materials, Deakin University, Burwood Campus, Burwood, Victoria, 3125, Australia
| | - Alina Brzęczek-Szafran
- Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, Gliwice, 44-100, Poland
| | - Binayak Roy
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Saliha Saher
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, Burwood Campus, Burwood, Victoria, 3125, Australia
| | | |
Collapse
|
10
|
ISHIHARA K. Biomimetic polymers with phosphorylcholine groups as biomaterials for medical devices. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:579-606. [PMID: 39662944 PMCID: PMC11704457 DOI: 10.2183/pjab.100.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 12/13/2024]
Abstract
Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
Collapse
Affiliation(s)
- Kazuhiko ISHIHARA
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|