1
|
Özdemir ES, Bulut Dİ, Sağlam ASY, İşgör B, Elmas Ç. The effect of folic acid supplementation and folate deficiency on embryo implantation. Reprod Biol 2024; 24:100895. [PMID: 38824709 DOI: 10.1016/j.repbio.2024.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024]
Abstract
Implantation is a critical stage of pregnancy, which occurs in a short period of interaction between the receptive endometrium and the embryo. Folic acid (FA) is a synthetic derivative of folate and is recommended as a pre-conceptional supplement. However, the impact of different doses of FA supplementation and folate deficiency during the early stages of pregnancy requires further investigation. The aim of this study was to investigate the possible effects of FA supplementation and folate deficiency on expression of Estrogen Receptor Alpha (ER-α), Vascular Endothelial Growth Factor-A (VEGFA), and Integrin alpha V and beta3 (Integrin αVβ3). A total of 32, 6-8-week old Wistar albino rats were divided into four groups of control, folate-deficiency, low-dose, and high-dose FA supplement groups. After five weeks of FA supplementation and folate deficiency model formation, mated rats were sacrificed on the 5th gestational day (GD), and implantation sites were collected. The expression of ER- α, VEGFA, and Integrin αVβ3 in the implantation sites were examined with immunohistochemistry and real-time PCR. The results revealed that the mRNA levels of ESR1, VEGFA, and Integrin αV and β3 were significantly increased in the high-dose FA group and significantly decreased in the folate deficiency group compared to the control group (p < 0.05). Based on these results, it can be concluded that FA supplementation before pregnancy has positive effects on the maintenance of pregnancy, and folate deficiency may lead to implantation disorders.
Collapse
Affiliation(s)
- Elif Seda Özdemir
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Deniz İrem Bulut
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Atiye Seda Yar Sağlam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Belgin İşgör
- Department of Chemical Engineering, Atilim University, Ankara, Turkey
| | - Çiğdem Elmas
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Benotmane MA, Trott KR. Epidemiological and experimental evidence for radiation-induced health effects in the progeny after exposure in utero. Int J Radiat Biol 2023; 100:1264-1275. [PMID: 38079348 DOI: 10.1080/09553002.2023.2283088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 08/30/2024]
Abstract
PURPOSE It has been known for many decades that radiation exposure of the developing embryo or fetus may cause two fundamentally different types of severe health effects: on the one hand, radiation may interfere with the normal intrauterine development, on the other hand, radiation may induce leukemia and cancer which become manifest in childhood. A large amount of epidemiological and experimental data has recently been presented which might be used to improve our understanding of underlying mechanisms and setting radiation protection standards. Yet, ecological studies in the populations exposed to increased levels of radiation in regions contaminated by radioactivity released from reactor accidents (Chernobyl, Fukushima) do not provide solid evidence which would contribute to this aim. On the other hand, well designed experimental studies demonstrated the multifactorial mechanisms which lead to different health effects after radiation exposure in utero. CONCLUSION There is no convincing evidence, neither from epidemiological nor experimental data of the existence of a dose threshold for developmental defects after radiation exposure in utero. This must be taken into account in the revision of rules and regulations of radiation protection in medicine.
Collapse
Affiliation(s)
| | - Klaus Ruediger Trott
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Mohan H, Nguyen J, MacKenzie B, Yee A, Laurette EY, Sanghvi T, Tejada O, Dontsova V, Leung KY, Goddard C, De Young T, Sled JG, Greene NDE, Copp AJ, Serghides L. Folate deficiency increases the incidence of dolutegravir-associated foetal defects in a mouse pregnancy model. EBioMedicine 2023; 95:104762. [PMID: 37586112 PMCID: PMC10450420 DOI: 10.1016/j.ebiom.2023.104762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Dolutegravir (DTG) is a recommended first-line regimen for all people with Human Immunodeficiency Virus (HIV) infection. Initial findings from Botswana, a country with no folate fortification program, showed an elevated prevalence of neural tube defects (NTDs) with peri-conceptional exposure to DTG. Here we explore whether a low folate diet influences the risk of DTG-associated foetal anomalies in a mouse model. METHODS C57BL/6 mice fed a folate-deficient diet for 2 weeks, were mated and then randomly allocated to control (water), or 1xDTG (2.5 mg/kg), or 5xDTG (12.5 mg/kg) both administered orally with 50 mg/kg tenofovir disoproxil fumarate 33.3 mg/kg emtricitabine. Treatment was administered once daily from gestational day (GD) 0.5 to sacrifice (GD15.5). Foetuses were assessed for gross anomalies. Maternal and foetal folate levels were quantified. FINDINGS 313 litters (103 control, 106 1xDTG, 104 5xDTG) were assessed. Viability, placental weight, and foetal weight did not differ between groups. NTDs were only observed in the DTG groups (litter rate: 0% control; 1.0% 1xDTG; 1.3% 5xDTG). Tail, abdominal wall, limb, craniofacial, and bleeding defects all occurred at higher rates in the DTG groups versus control. Compared with our previous findings on DTG usage in folate-replete mouse pregnancies, folate deficiency was associated with higher rates of several defects, including NTDs, but in the DTG groups only. We observed a severe left-right asymmetry phenotype that was more frequent in DTG groups than controls. INTERPRETATION Maternal folate deficiency may increase the risk for DTG-associated foetal defects. Periconceptional folic acid supplementation could be considered for women with HIV taking DTG during pregnancy, particularly in countries lacking folate fortification programs. FUNDING This project has been funded by Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN275201800001I and award #R01HD104553. LS is supported by a Tier 1 Canada Research Chair in Maternal-Child Health and HIV. HM is supported by a Junior Investigator award from the Ontario HIV Treatment Network.
Collapse
Affiliation(s)
- Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jessica Nguyen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ben MacKenzie
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Audrey Yee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evelyn Yukino Laurette
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tanvi Sanghvi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Oscar Tejada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Valeriya Dontsova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kit-Yi Leung
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cameron Goddard
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Taylor De Young
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Esmaiel NN, Ashaat EA, Al-Ettribi GM, Fayez A, Alsaiedi SA, El Ruby MO. Association between MTHFR C677T variant and risk for congenital heart defects in Egyptian children: a case–control study including meta-analysis based on 147 cases and 143 controls. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Abstract
Background
Stratification analysis studies showed that ethnicity has a significant association regarding MTHFR C677T variant and congenital heart diseases (CHDs) risk, and many published studies have controversial conclusions toward this association.
Methods
In this study, the association between the MTHFR C677T variant and the risk for CHDs was evaluated in 91 children with CHD and 95 healthy controls, as new cases, by using restriction fragment length polymorphism (RFLP) technique. Besides that, 2 case–control studies in the Egyptian population published before 2021 were included in this meta-analysis. The association was assessed by the odds ratio (OR) with a 95% confidence interval (CI) based on 294 alleles in CHD cases and 286 alleles in controls.
Results
The overall meta-analysis showed a significant association between MTHFR C677T variant and CHDs risk in Egyptian children with heterogeneity (Heterogeneity = 0.001) in all the genetic models with the highly significant association in T versus C allele (pooled OR 1.89, 95% CI 1.31–2.74; p value < 0.0004). The consistency of the genotypes was detected by Hardy–Weinberg equilibrium (HWE).
Conclusions
Our results support the MTHFR -677T allele as a susceptibility factor for CHDs in the Egyptian pediatric patients.
Collapse
|
5
|
Alata Jimenez N, Castellano M, Santillan EM, Boulias K, Boan A, Arias Padilla LF, Fernandino JI, Greer EL, Tosar JP, Cochella L, Strobl-Mazzulla PH. Paternal methotrexate exposure affects sperm small RNA content and causes craniofacial defects in the offspring. Nat Commun 2023; 14:1617. [PMID: 36959185 PMCID: PMC10036556 DOI: 10.1038/s41467-023-37427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Folate is an essential vitamin for vertebrate embryo development. Methotrexate (MTX) is a folate antagonist that is widely prescribed for autoimmune diseases, blood and solid organ malignancies, and dermatologic diseases. Although it is highly contraindicated for pregnant women, because it is associated with an increased risk of multiple birth defects, the effect of paternal MTX exposure on their offspring has been largely unexplored. Here, we found MTX treatment of adult medaka male fish (Oryzias latipes) causes cranial cartilage defects in their offspring. Small non-coding RNA (sncRNAs) sequencing in the sperm of MTX treated males identify differential expression of a subset of tRNAs, with higher abundance for specific 5' tRNA halves. Sperm RNA methylation analysis on MTX treated males shows that m5C is the most abundant and differential modification found in RNAs ranging in size from 50 to 90 nucleotides, predominantly tRNAs, and that it correlates with greater testicular Dnmt2 methyltransferase expression. Injection of sperm small RNA fractions from MTX-treated males into normal fertilized eggs generated cranial cartilage defects in the offspring. Overall, our data suggest that paternal MTX exposure alters sperm sncRNAs expression and modifications that may contribute to developmental defects in their offspring.
Collapse
Affiliation(s)
- Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Mauricio Castellano
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Emilio M Santillan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Agustín Boan
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Luisa F Arias Padilla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Eric L Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Juan P Tosar
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
6
|
Alata Jimenez N, Strobl-Mazzulla PH. Folate Carrier Deficiency Drives Differential Methylation and Enhanced Cellular Potency in the Neural Plate Border. Front Cell Dev Biol 2022; 10:834625. [PMID: 35912103 PMCID: PMC9326018 DOI: 10.3389/fcell.2022.834625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
The neural plate border (NPB) of vertebrate embryos segregates from the neural and epidermal regions, and it is comprised of an intermingled group of multipotent progenitor cells. Folate is the precursor of S-adenosylmethionine, the main methyl donor for DNA methylation, and it is critical for embryonic development, including the specification of progenitors which reside in the NPB. Despite the fact that several intersecting signals involved in the specification and territorial restriction of NPB cells are known, the role of epigenetics, particularly DNA methylation, has been a matter of debate. Here, we examined the temporal and spatial distribution of the methyl source and analyzed the abundance of 5mC/5 hmC and their epigenetic writers throughout the segregation of the neural and NPB territories. Reduced representation bisulfite sequencing (RRBS) on Reduced Folate Carrier 1 (RFC1)-deficient embryos leads to the identification of differentially methylated regions (DMRs). In the RFC1-deficient embryos, we identified several DMRs in the Notch1 locus, and the spatiotemporal expression of Notch1 and its downstream target gene Bmp4 were expanded in the NPB. Cell fate analysis on folate deficient embryos revealed a significant increase in the number of cells coexpressing both neural (SOX2) and NPB (PAX7) markers, which may represent an enhancing effect in the cellular potential of those progenitors. Taken together, our findings propose a model where the RFC1 deficiency drives methylation changes in specific genomic regions that are correlated with a dysregulation of pathways involved in early development such as Notch1 and BMP4 signaling. These changes affect the potency of the progenitors residing in the juncture of the neural plate and NPB territories, thus driving them to a primed state.
Collapse
|
7
|
Sharma J, Rushing BR, Hall MS, Helke KL, McRitchie SL, Krupenko NI, Sumner SJ, Krupenko SA. Sex-Specific Metabolic Effects of Dietary Folate Withdrawal in Wild-Type and Aldh1l1 Knockout Mice. Metabolites 2022; 12:metabo12050454. [PMID: 35629957 PMCID: PMC9143804 DOI: 10.3390/metabo12050454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 12/11/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism, is highly expressed in the liver. It regulates the overall flux of folate-bound one-carbon groups by converting 10-formyltetrahydrofolate to tetrahydrofolate and CO2 in a NADP+-dependent reaction. Our previous study revealed that Aldh1l1 knockout (KO) mice have an altered liver metabotype with metabolic symptoms of folate deficiency when fed a standard chow diet containing 2 ppm folic acid. Here we performed untargeted metabolomic analysis of liver and plasma of KO and wild-type (WT) male and female mice fed for 16 weeks either standard or folate-deficient diet. OPLS-DA, a supervised multivariate technique that was applied to 6595 and 10,678 features for the liver and plasma datasets, respectively, indicated that genotype and diet, alone or in combination, gave distinct metabolic profiles in both types of biospecimens. A more detailed analysis of affected metabolic pathways based on most confidently identified metabolites in the liver and plasma (OL1 and OL2a ontology level) indicated that the dietary folate restriction itself does not fully recapitulate the metabolic effect of the KO. Of note, dietary folate withdrawal enhanced the metabolic perturbations linked to the ALDH1L1 loss only for a subset of metabolites. Importantly, both the ALDH1L1 loss and dietary folate deficiency produced sex-specific metabolic effects.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
| | - Blake R. Rushing
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Madeline S. Hall
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Susan L. McRitchie
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
| | - Natalia I. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susan J. Sumner
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergey A. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA; (J.S.); (B.R.R.); (M.S.H.); (S.L.M.); (N.I.K.); (S.J.S.)
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
8
|
Parental folate deficiency induces birth defects in mice accompanied with increased de novo mutations. Cell Discov 2022; 8:18. [PMID: 35190523 PMCID: PMC8861018 DOI: 10.1038/s41421-021-00364-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/08/2021] [Indexed: 01/06/2023] Open
Abstract
Dietary folate deficiency (FD) is associated with the occurrence of birth defects. However, the mechanisms underlying this association remain elusive. In particular, how FD affects genome stability is unknown. To examine whether a folate-deficient diet can affect genome stability, C57BL/6 mice were maintained on a synthetic diet lacking of folic acid (FA) for two generations. F0 mice received the FD diet beginning at 3 weeks of age, and their offspring (F1) began the FD diet after weaning. Both male and female F1 mice fed the FD diet were intentionally crossed with F1 mice fed the normal diet to produce F2 mice. F2 embryos were dissected and collected at E14.5 and E18.5. The malformation ratio was significantly increased in F2 embryos fed the FD diet for two generations compared to those fed the normal diet. Whole-genome sequencing of multiple sibship with F1 males on the FD diet showed that the de novo mutation (DNM) rate in F2 embryos was three times of the reported spontaneous rate in mice. Furthermore, many DNMs observed in the F2 mice exhibited an allele ratio of 1:3 instead of 2:2, suggesting that these mutations are likely to accumulate in gamete cells as a form of mismatch in the DNA duplex. Our study indicated that FD for two generations significantly enhances DNM accumulation during meiosis, which might contribute to the increased negative birth outcomes among F2 mice. Not only maternal but also paternal FA supplementation is probably also necessary and beneficial to prevent birth defects.
Collapse
|
9
|
Wilkinson AL, Menelaou K, Rakoczy J, Tan XS, Watson ED. Disruption of Folate Metabolism Causes Poor Alignment and Spacing of Mouse Conceptuses for Multiple Generations. Front Cell Dev Biol 2021; 9:723978. [PMID: 34957089 PMCID: PMC8703036 DOI: 10.3389/fcell.2021.723978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal uptake or metabolism of folate increases risk of human pregnancy complications, though the mechanism is unclear. Here, we explore how defective folate metabolism influences early development by analysing mice with the hypomorphic Mtrrgt mutation. MTRR is necessary for methyl group utilisation from folate metabolism, and the Mtrrgt allele disrupts this process. We show that the spectrum of phenotypes previously observed in Mtrrgt/gt conceptuses at embryonic day (E) 10.5 is apparent from E8.5 including developmental delay, congenital malformations, and placental phenotypes. Notably, we report misalignment of some Mtrrgt conceptuses within their implantation sites from E6.5. The degree of misorientation occurs across a continuum, with the most severe form visible upon gross dissection. Additionally, some Mtrrgt/gt conceptuses display twinning. Therefore, we implicate folate metabolism in blastocyst orientation and spacing at implantation. Skewed growth likely influences embryo development since developmental delay and heart malformations (but not defects in neural tube closure or trophoblast differentiation) associate with severe misalignment of Mtrrgt/gt conceptuses. Typically, the uterus is thought to guide conceptus orientation. To investigate a uterine effect of the Mtrrgt allele, we manipulate the maternal Mtrr genotype. Misaligned conceptuses were observed in litters of Mtrr+/+, Mtrr+/gt, and Mtrrgt/gt mothers. While progesterone and/or BMP2 signalling might be disrupted, normal decidual morphology, patterning, and blood perfusion are evident at E6.5 regardless of conceptus orientation. These observations argue against a post-implantation uterine defect as a cause of conceptus misalignment. Since litters of Mtrr+/+ mothers display conceptus misalignment, a grandparental effect is explored. Multigenerational phenotype inheritance is characteristic of the Mtrrgt model, though the mechanism remains unclear. Genetic pedigree analysis reveals that severe conceptus skewing associates with the Mtrr genotype of either maternal grandparent. Moreover, the presence of conceptus skewing after embryo transfer into a control uterus indicates that misalignment is independent of the peri- and/or post-implantation uterus and instead is likely attributed to an embryonic mechanism that is epigenetically inherited. Overall, our data indicates that abnormal folate metabolism influences conceptus orientation over multiple generations with implications for subsequent development. This study casts light on the complex role of folate metabolism during development beyond a direct maternal effect.
Collapse
Affiliation(s)
- Amy L Wilkinson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katerina Menelaou
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Rakoczy
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Xiu S Tan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erica D Watson
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Beydoun S, Fardous AM, Saruna MM, Beydoun AG, Sorge JA, Ma H, Aoun G, Unnikrishnan A, Cabelof DC, Heydari AR. Succinylsulfathiazole modulates the mTOR signaling pathway in the liver of c57BL/6 mice via a folate independent mechanism. Exp Gerontol 2021; 150:111387. [PMID: 33957263 PMCID: PMC8165018 DOI: 10.1016/j.exger.2021.111387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023]
Abstract
Researchers studying the effect of folate restriction on rodents have resorted to the use of the antibiotic succinylsulfathiazole (SST) in the folate depleted diet to induce a folate deficient status. SST has been used extensively in rodent studies since the 1940s. Its localized effect on the gut bacteria as well as its effectiveness in reducing folate producing species is well documented. The possible overlap between the pathways affected by folate depletion and SST could potentially produce a confounding variable in such studies. In our novel study, we analyzed the effect of SST on folate levels in c57Bl/6 male mice fed folate supplemented and deficient diets. We did not observe any significant difference on growth and weight gain at 21 weeks. SST did not significantly affect folate levels in the plasma, liver and colon tissues; however, it did alter energy metabolism and expression of key genes in the mTOR signaling pathway in the liver. This research sheds light on a possible confounding element when using SST to study folate depletion due to the potential overlap with multiple critical pathways such as mTOR. SUMMARY: The antibiotic succinylsulfathiazole (SST) is used to reduce folate producing bacteria in rodent folate depletion studies. SST can modulate critical energy and nutrient sensing pathways converging onto mTOR signaling, and potentially confounding cancer studies.
Collapse
Affiliation(s)
- Safa Beydoun
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ali M Fardous
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Michael M Saruna
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Ali G Beydoun
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Johnathan A Sorge
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Hongzhi Ma
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Ghada Aoun
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Archana Unnikrishnan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health and Science Center, OK 73104, USA
| | - Diane C Cabelof
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Ahmad R Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA; Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
11
|
Maldonado E, Martínez-Sanz E, Partearroyo T, Varela-Moreiras G, Pérez-Miguelsanz J. Maternal Folic Acid Deficiency Is Associated to Developing Nasal and Palate Malformations in Mice. Nutrients 2021; 13:251. [PMID: 33467180 PMCID: PMC7830789 DOI: 10.3390/nu13010251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022] Open
Abstract
Craniofacial development requires extremely fine-tuned developmental coordination of multiple specialized tissues. It has been evidenced that a folate deficiency (vitamin B9), or its synthetic form, folic acid (FA), in maternal diet could trigger multiple craniofacial malformations as oral clefts, tongue, or mandible abnormalities. In this study, a folic acid-deficient (FAD) diet was administered to eight-week-old C57/BL/6J female mouse for 2-16 weeks. The head symmetry, palate and nasal region were studied in 24 control and 260 experimental fetuses. Our results showed a significant reduction in the mean number of fetuses per litter according to maternal weeks on FAD diet (p < 0.01). Fetuses were affected by cleft palate (3.8%) as well as other severe congenital abnormalities, for the first time related to maternal FAD diet, as head asymmetries (4.6%), high arched palate (3.5%), nasal septum malformed (7.3%), nasopharynx duct shape (15%), and cilia and epithelium abnormalities (11.2% and 5.8%). Dysmorphologies of the nasal region were the most frequent, appearing at just four weeks following a maternal FAD diet. This is the first time that nasal region development is experimentally related to this vitamin deficiency. In conclusion, our report offers novel discoveries about the importance of maternal folate intake on midface craniofacial development of the embryos. Moreover, the longer the deficit lasts, the more serious the consequent effects appear to be.
Collapse
Affiliation(s)
- Estela Maldonado
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.-S.); (J.P.-M.)
- Grupo UCM de Investigación nº 920202 “Investigación en Desarrollo del Paladar y Fisura Palatina. Desarrollo Craneofacial”, Facultad de Odontología, Plaza de Ramón y Cajal, 3, 28040 Madrid, Spain
| | - Elena Martínez-Sanz
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.-S.); (J.P.-M.)
- Grupo UCM de Investigación nº 920202 “Investigación en Desarrollo del Paladar y Fisura Palatina. Desarrollo Craneofacial”, Facultad de Odontología, Plaza de Ramón y Cajal, 3, 28040 Madrid, Spain
| | - Teresa Partearroyo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain; (T.P.); (G.V.-M.)
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for life)”, ref: E02/0720, Alcorcón, 28925 Madrid, Spain
| | - Gregorio Varela-Moreiras
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Alcorcón, 28925 Madrid, Spain; (T.P.); (G.V.-M.)
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for life)”, ref: E02/0720, Alcorcón, 28925 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Departamento de Anatomía y Embriología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.M.-S.); (J.P.-M.)
- Grupo UCM de Investigación nº 911308 “Mecanismos Moleculares Cronobiológicos”, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/ del Prof. Martín Lagos, s/n, 28040 Madrid, Spain
| |
Collapse
|
12
|
Sah N, Wu G, Bazer FW. Regulation of Gene Expression by Amino Acids in Animal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:1-15. [PMID: 34251635 DOI: 10.1007/978-3-030-74180-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amino acids have pleiotropic roles in animal biology including protein and glucose synthesis, cellular metabolism, antioxidant reactions, immune enhancers, and inducers or suppressors of gene expression. Recent studies have revealed important roles of amino acids in the regulation of gene expression in animals. Discoveries of cellular amino acid sensors and their mechanistic pathways have broadened our understanding of how the body responds to the deprivation of nutrients and amino acids in particular. Alterations in concentrations of extracellular amino acids can modulate transcription, translation, posttranscriptional modifications, and epigenetic regulation of genes and proteins. Cells have intracellular amino acid sensors, for example, Sestrin2 for leucine and CASTOR2 for arginine, that respond to sufficiency or deficiency in amino acids, thereby inhibiting or activating downstream signals for gene expression, respectively. The sufficiency of an amino acid in cells ensures its binding to cognate sensors and suppression of inhibitors of MTOR, leading to increased global protein synthesis. On the other hand, deprivation of amino acids activates the amino acid response pathway (GCN2-eIF2a-ATF4), leading to increased selective translation of the activating transcription factor 4 (ATF4). Deficiency of an amino acid itself or via the action of ATF4 suppression of MTORC1 activity limits global protein synthesis. ATF4, in response to low concentrations of cellular amino acids, mediates the transcription of groups of genes such as those for amino acid transport and biosynthesis (ASNS, CAT-1, SNAT2), autophagy (ATG3, ATG10, ATG12), and serine-glycine synthesis (PHGDH, PSAT1, PSPH, MTHFD2). Long-term amino acid starvation has a pronounced effect on cells: suppressed expression and translation of genes required for normal cell growth and metabolism and enhanced expression of genes required for cell adaptation and survival. Levels of amino acids also affect the posttranslational modifications of proteins through mechanisms such as acetylation, ADP-ribosylation, disulfide bond formation, glutamylation, and hydroxylation.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Pal A, Oakes J, Elnagheeb M, Ideraabdullah FY. Maternal Microdeletion at the H19/Igf2 ICR in Mice Increases Offspring Susceptibility to In Utero Environmental Perturbation. Epigenet Insights 2020; 13:2516865720970575. [PMID: 33313480 PMCID: PMC7716063 DOI: 10.1177/2516865720970575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022] Open
Abstract
Deficiency of methyl donor nutrients folate, choline, and methionine (methyl deficiency) during gestation can impair fetal development and perturb DNA methylation. Here, we assessed genetic susceptibility to methyl deficiency by comparing effects in wildtype C57BL/6J (B6) mice to mutant mice carrying a 1.3 kb deletion at the H19/Igf2 Imprinting Control Region (ICR) (H19 ICRΔ2,3). The H19 ICRΔ2,3 mutation mimics microdeletions observed in Beckwith-Wiedemann syndrome (BWS) patients, who exhibit epimutations in cis that cause loss of imprinting and fetal overgrowth. Dams were treated during pregnancy with 1 of 4 methyl sufficient (MS) or methyl deficient (MD) diets, with or without the antibiotic commonly used to deplete folate producing gut microbes. As expected, after ~9 weeks of treatment, dams in MD and MD + antibiotic groups exhibited substantially reduced plasma folate concentrations. H19 ICRΔ2,3 mutant lines were more susceptible to adverse pregnancy outcomes caused by methyl deficiency (reduced birth rate and increased pup lethality) and antibiotic (decreased litter size and litter survival). Surprisingly, pup growth/development was only minimally affected by methyl deficiency, while antibiotic treatment caused inverse effects on B6 and H19 ICRΔ2,3 lines. B6 pups treated with antibiotic exhibited increased neonatal and weanling bodyweight, while both wildtype and mutant pups of heterozygous H19 ICRΔ2,3/+ dams exhibited decreased neonatal bodyweight that persisted into adulthood. Interestingly, only antibiotic-treated pups carrying the H19 ICRΔ2,3 mutation exhibited altered DNA methylation at the H19/Igf2 ICR, suggesting ICR epimutation was not sufficient to explain the altered phenotypes. These findings demonstrate that genetic mutation of the H19/Igf2 ICR increases offspring susceptibility to developmental perturbation in the methyl deficiency model, maternal and pup genotype play an essential role, and antibiotic treatment in the model also plays a key independent role.
Collapse
Affiliation(s)
- Anandita Pal
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judy Oakes
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Marwa Elnagheeb
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Folami Y Ideraabdullah
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Bendahan ZC, Escobar LM, Castellanos JE, González-Carrera MC. Effect of folic acid on animal models, cell cultures, and human oral clefts: a literature review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Folate is a naturally occurring, water-soluble B vitamin. The synthetic form of this compound is folic acid (FA), the deficiency of which is linked to neural tube disorders (NTD), which can be prevented by consuming it before, or during the early months of, pregnancy. However, the effect of FA on oral cleft formation remains controversial. The aim of the present study was to review the evidence concerning the effect of FA on the formation of cleft lip and palate (CLP) in both animals and humans, as well as its impact on different cell types. A search was conducted on various databases, including MEDLINE, EMBASE, and Central, for articles published until January 2020.
Main body
Current systematic reviews indicate that FA, alone or in combination with other vitamins, prevents NTD; however, there is no consensus on whether its consumption can prevent CLP formation. Conversely, the protective effect of FA on palatal cleft (CP) induction has been inferred from animal models; additionally, in vitro studies enumerate a cell-type and dose-dependent effect of FA on cell viability, proliferation, and differentiation, hence bolstering evidence from epidemiological studies.
Conclusions
Meta-analysis, animal models, and in vitro studies demonstrated the protective effect of FA against isolated CP; however, the heterogeneity of treatment protocols, doses, and FA administration method, as well as the different cell types used in in vitro studies, does not conclusively establish whether FA prevents CLP formation.
Collapse
|
15
|
Miszewski SG, Trott JF, Berryhill GE, Tat L, Green R, Borowsky AD, Miller JW, Hovey RC. Folate Deficiency Inhibits Development of the Mammary Gland and its Associated Lymphatics in FVB Mice. J Nutr 2020; 150:2120-2130. [PMID: 32510141 PMCID: PMC11913798 DOI: 10.1093/jn/nxaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Folate is essential for DNA synthesis, DNA repair, cell proliferation, development, and morphogenesis. Folic acid (FA) is a nutritional supplement used to fortify human diets. OBJECTIVES We investigated the effects of dietary FA on early mammary gland (MG) development and hyperplasia. METHODS Study 1: nulliparous female FVB wild-type (WT) mice were fed control (Con; 2 mg FA/kg), deficient (Def; 0 mg FA/kg), excess (Ex; 5 mg FA/kg), or super excess (S-Ex; 20 mg FA/kg) diets for 8 wk before mating to WT or heterozygous FVB/N-Tg[mouse mammary tumor virus long terminal repeat (MMTV)-polyomavirus middle T antigen (PyVT)]634Mul/J (MMTV-PyMT+/-) transgenic males. Dams were fed these diets until they weaned WT or MMTV-PyMT+/- pups, which were fed the dam's diet from postnatal day (PND) 21 to 42. Tissues were collected from female progeny at PNDs 1, 21, and 42. Study 2: Con or Def diets were fed to WT intact females and males from PND 21 to 56, or to ovariectomized females from PND 21 to 77; tissues were collected at PND 56 or 77. Growth of all offspring, development of MGs, MG hyperplasia, supramammary lymph nodes, thymus and spleen, cell proliferation, and expression of MG growth factors were measured. RESULTS Study 1: Ex or S-Ex did not affect postnatal MG development or hyperplasia. The rate of isometric MG growth (PND 1-21) was reduced by 69% in Def female progeny (P < 0.0001). Similarly, hyperplastic growth in MGs of Def MMTV-PyMT+/- offspring was 18% of Con (P < 0.05). The Def diet reduced supramammary lymph node size by 20% (P < 0.0001) and increased MG insulin-like growth factor 2 mRNA by 200% (P < 0.05) and protein by 130%-150% (P < 0.05). Study 2: the Def diet did not affect MG growth, but it did reduce supramammary lymph node size (P < 0.05), spleen weight (P < 0.001), and thymic medulla area (P < 0.05). CONCLUSIONS In utero and postnatal folate deficiency reduced the isometric development of the MGs and early MG hyperplasia. Postnatal folate deficiency reduced the development of lymphatic tissues.
Collapse
Affiliation(s)
- Susan G Miszewski
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Grace E Berryhill
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Lyvin Tat
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Joshua W Miller
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
16
|
Liu PF, Ding B, Zhang JY, Mei XF, Li F, Wu P, Mei CH, Zhou YF, Chen T. Association Between MTHFR C677T Polymorphism and Congenital Heart Disease. Int Heart J 2020; 61:553-561. [PMID: 32418960 DOI: 10.1536/ihj.19-389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many published studies have evaluated the association between the 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T (rs1801133) polymorphism and the risk of congenital heart disease (CHD); however, the specific conclusion is still controversial.To get a more accurate conclusion, we used a meta-analysis to evaluate the association between the MTHFR gene C677T polymorphism and the risk of CHD.Based on the design-based search strategy, a comprehensive literature search was conducted on PubMed, OVID, Cochrane Library, Embase, Wanfang, CNKI, and Web of Science. We selected the Newcastle-Ottawa Scale (NOS) to assess the quality of the included studies. We performed a heterogeneity test on the results of the study and calculated the combined odds ratios (ORs) and its corresponding 95% confidence intervals (95% CIs) under a random- or fixed-effect model. Subgroup analyses were conducted by ethnicity, source of controls, sample size, and genotyping method. Sensitivity analysis was used to insure authenticity of this meta-analysis result. Egger's test and Begg's funnel plot were performed to detect publication bias.Eventually, our meta-analysis included 15 eligible studies. We observed a significant correlation between the MTHFR C677T polymorphism and the development of CHD in the recessive model (OR: 1.35, 95% CI: 1.06-1.71, P = 0.006) for the overall population. In subgroups stratified by ethnicity and source of controls, subgroup analyses indicated similar associations in Asians and hospital-based groups, but not for Caucasians and population-based groups. Egger's test and Begg's funnel plot demonstrated no significant publication bias in our study.Our analysis identified that MTHFR C677T allele is a risk genetic for CHD development, especially in Asians compared with Caucasians.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Bing Ding
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Jun-Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Xiao-Fei Mei
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Fei Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Peng Wu
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Chun-Hao Mei
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Ya-Feng Zhou
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Tan Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| |
Collapse
|
17
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
18
|
Jiang Y, Li J, Ren F, Ji C, Aniagu S, Chen T. PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113331. [PMID: 31614245 DOI: 10.1016/j.envpol.2019.113331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
We previously found that folic acid (FA) attenuated cardiac defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5, but the underlining mechanisms remain to be elucidated. Since DNA methylation is crucial to cardiac development, we hypothesized that EOM-induced aberrant DNA methylation changes could be diminished by FA supplementation. In this study, zebrafish embryos were exposed to EOM in the absence or presence of FA. Genomic-wide DNA methylation analysis identified both DNA hypo- and hyper-methylation changes in CCGG sites in zebrafish embryos exposed to EOM, which were attenuated by FA supplementation. We identified a total of 316 genes with extensive DNA methylation changes in EOM samples but little or no DNA methylation changes in EOM plus FA samples. The genes were involved in critical cellular processes and signaling pathways important for embryo development. In addition, the EOM-decreased SAM/SAH ratio was counteracted by FA supplementation. Furthermore, FA attenuated the EOM-induced changes in the expression of genes involved in the regulation of DNA methylation and in folate biosynthesis. In conclusion, our data suggest that FA supplementation protected zebrafish embryos from the cardiac developmental toxicity of PM2.5 by alleviating EOM-induced DNA methylation changes.
Collapse
Affiliation(s)
- Yan Jiang
- Medical College of Soochow University, Suzhou, China
| | - Jianxiang Li
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Vinaykumar N, Kumar A, Quadros LS, Prasanna LC. Determining the effect of folate diets during pregnancy and lactation on neurobehavioural changes in the adult life of offspring. J Taibah Univ Med Sci 2019; 14:523-530. [PMID: 31908640 PMCID: PMC6940624 DOI: 10.1016/j.jtumed.2019.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Animal and human studies have demonstrated that folic acid (FA) is essential for nervous system and brain development. In humans, insufficient maternal FA intake is known to cause neural tube defects, autism spectrum, and other neurodevelopmental disorders in children. The present study aimed to determine the impact of maternal FA supplementation on psychomotor skills and learning and memory functions in their adult offspring. METHODS Eighteen female Wistar rats were randomly divided into three groups. The animals were fed three different concentrations of FA from preconception to pregnancy and during lactation. The adult offspring were assessed for neurobehavioural changes and histological confirmation by hippocampal neuron quantification. RESULTS Neurobehavioural assessment revealed a significantly smaller number of alternations, a higher percentage bias, and a greater number of working and reference memory errors. The increased time spent in the dark compartment in the FA-supplementation group indicated deficit(s) in learning memory. Hippocampal neuron quantification revealed a higher mean number of viable neurons in the cornu ammonis (CA) region in the control group (CA1 region, 31.2 ± 3.2; CA3 region, 23.2 ± 3.2), with a distinct nucleus in both regions, and least in the FA-supplementation group (CA1 region, 24.2 ± 3.1; CA3 region, 15.2 ± 2.2). CONCLUSION Results of this investigation support the possible negative effect of high levels of maternal FA supplementation during pregnancy and lactation. Such alterations potentially lead to neurobehavioural changes in the adult offspring of Wistar rats.
Collapse
Affiliation(s)
| | - Ashok Kumar
- Department of Neurosurgery, RADBOUD UMC, Nijmegen, Netherlands
| | - Lydia S. Quadros
- Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Lokadolalu C. Prasanna
- Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
20
|
Qiu W, Gobinath AR, Wen Y, Austin J, Galea LAM. Folic acid, but not folate, regulates different stages of neurogenesis in the ventral hippocampus of adult female rats. J Neuroendocrinol 2019; 31:e12787. [PMID: 31478270 DOI: 10.1111/jne.12787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022]
Abstract
Folate is an important regulator of hippocampal neurogenesis, and folic acid is needed prenatally to reduce the risk of neural tube defects. Both high levels of folic acid and low levels of folate can be harmful to health because low levels of folate have been linked to several diseases while high folic acid supplements can mask a vitamin B12 deficiency. Depressed patients exhibit folate deficiencies, lower levels of hippocampal neurogenesis, elevated levels of homocysteine and elevated levels of the stress hormone, cortisol, which may be inter-related. In the present study, we were interested in whether different doses of natural folate or synthetic folic acid diets can influence neurogenesis in the hippocampus, levels of plasma homocysteine and serum corticosterone in adult female rats. Adult female Sprague-Dawley rats underwent dietary interventions for 29 days. Animals were randomly assigned to six different dietary groups: folate deficient + succinylsulphathiazole (SST), low 5-methyltetrahydrofolate (5-MTHF), low 5-MTHF + (SST), high 5-MTHF + SST, low folic acid and high folic acid. SST was added to a subset of the 5-MTHF diets to eliminate folic acid production in the gut. Before and after dietary treatment, blood samples were collected for corticosterone and homocysteine analysis, and brain tissue was collected for neurogenesis analysis. High folic acid and low 5-MTHF without SST increased the number of immature neurones (doublecortin-expressing cells) within the ventral hippocampus compared to folate deficient controls. Low 5-MTHF without SST significantly increased the number of immature neurones compared to low and high 5-MTHF + SST, indicating that SST interfered with elevations in neurogenesis. Low folic acid and high 5-MTHF + SST reduced plasma homocysteine levels compared to controls, although there was no significant effect of diet on serum corticosterone levels. In addition, low folic acid and high 5-MTHF + SST reduced the number of mature new neurones in the ventral hippocampus (bromodeoxyuridine/NeuN-positive cells) compared to folate deficient controls. Overall, folic acid dose-dependently influenced neurogenesis with low levels decreasing but high levels increasing neurogenesis in the ventral hippocampus, suggesting that this region, which is important for regulating stress, is particularly sensitive to folic acid in diets. Furthermore, the addition of SST negated the effects of 5-MTHF to increase neurogenesis in the ventral hippocampus.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Li B, Chang S, Liu C, Zhang M, Zhang L, Liang L, Li R, Wang X, Qin C, Zhang T, Niu B, Wang L. Low Maternal Dietary Folate Alters Retrotranspose by Methylation Regulation in Intrauterine Growth Retardation (IUGR) Fetuses in a Mouse Model. Med Sci Monit 2019; 25:3354-3365. [PMID: 31061382 PMCID: PMC6519683 DOI: 10.12659/msm.914292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Maternal folate deficiency-mediated metabolic disruption is considered to be associated with the risk of intrauterine growth retardation (IUGR), but the exact mechanism remains unclear. The retrotransposon long interspersed nucleotide element-1 (LINE-1), which can induce birth defects via RNA intermediates, plays crucial roles during embryonic development. We investigated potential relationships between maternal folate and DNA methylation, and possible roles of LINE-1 in IUGR. Material/Methods The IUGR model was established by feeding female mice 1 of 3 diets – control diet (CD), folate-deficient diet for 2 weeks (FD2w), and folate-deficient diet for 4 weeks (FD4w) – prior to mating. Maternal serum folate, 5-methyltetrahydrofolate (5-MeTHF), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) concentrations and global DNA methylation were assessed by LC/MS/MS method. LINE-1 methylation levels in fetuses were examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. LINE-1 expression levels were validated by real-time PCR. Results Maternal folate deficiency caused plasma folate and 5-MeTHF levels to decrease and SAH level to increase in the FD4w group. Compared with the CD group, methylation levels of genomic DNA and LINE-1 decreased significantly in placenta and fetal tissues from the FD4w group. Expression of LINE-1 open reading frame 1 (ORF1) protein was elevated in fetal liver tissues. Furthermore, a strong correlation was found between methylation and disrupted one-carbon metabolism, implying that dietary folate plays important roles during embryogenesis. Conclusions Maternal dietary folate deficiency impaired one-carbon metabolism, leading to global DNA and LINE-1 hypomethylation, and then increased retrotransposition in fetuses, which can lead to IUGR.
Collapse
Affiliation(s)
- Baiyi Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Chi Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Min Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Liang Liang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Rui Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| |
Collapse
|
22
|
Sijilmassi O, López-Alonso JM, Del Río Sevilla A, Murillo González J, Barrio Asensio MDC. Biometric Alterations of Mouse Embryonic Eye Structures Due to Short-Term Folic Acid Deficiency. Curr Eye Res 2018; 44:428-435. [PMID: 30403890 DOI: 10.1080/02713683.2018.1545911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Folic acid (FA) is an essential nutrient for normal embryonic development. FA deficiency (FAD) in maternal diet increases the risk of several defects among the progeny, especially, neural tube defects. The eye begins its development from the neural tube; however, the relationship between FAD and ocular development in the offspring has been little explored and it isn't known how the FAD affects the formation of the eye. Our objective was to analyze the effect of maternal FAD on mouse embryos ocular biometry. METHODS Female mice C57/BL/6J were distributed into three different groups, according to the assigned diet: control group fed a standard FA diet (2 mg FA/kg), FAD group for short term fed (0 mg FA/kg + 1% succinylsulfathiazole) from the day after mating until day 14.5 of gestation, and FAD group for long term fed the same FA-deficient diet for 6 weeks prior mating and continued with this diet during gestation. A total of 57 embryos (19 embryos of each dietary group) at 14.5 gestational days were evaluated. As indicators of changes in ocular biometry, we analyze two parameters: area and circularity of the lens and whole eye, and the area of the retina. The program used in the treatment and selection of the areas of interest was ImageJ. The statistical analysis was performed by IBM SPSS Statistics 19. RESULTS Regarding the measures of the area, FA-deficient lenses and eyes were smaller than that of controls. We have also observed increase in the size of the neural retina, spatially, in embryos from females fed FAD diet during long term. On the other hand, as regard to circularity measures, we have seen that eyes and lenses were more circular than control. CONCLUSION Maternal FAD diet for a very short term generates morphological changes in ocular structures to the offspring.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain.,b Faculty of Optics and Optometry, Optics Department , Universidad Complutense De Madrid , Madrid , Spain
| | - José Manuel López-Alonso
- b Faculty of Optics and Optometry, Optics Department , Universidad Complutense De Madrid , Madrid , Spain
| | - Aurora Del Río Sevilla
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| | - Jorge Murillo González
- c Faculty of medicine, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| | - María Del Carmen Barrio Asensio
- a Faculty of Optics and Optometry, Anatomy and Human Embryology Department , Universidad Complutense De Madrid , Madrid , Spain
| |
Collapse
|
23
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
24
|
Alata Jimenez N, Torres Pérez SA, Sánchez-Vásquez E, Fernandino JI, Strobl-Mazzulla PH. Folate deficiency prevents neural crest fate by disturbing the epigenetic Sox2 repression on the dorsal neural tube. Dev Biol 2018; 444 Suppl 1:S193-S201. [PMID: 30098999 DOI: 10.1016/j.ydbio.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Folate deficiency has been known to contribute to neural tube and neural crest defects, but why these tissues are particularly affected, and which are the molecular mechanisms involved in those abnormalities are important human health questions that remain unanswered. Here we study the function of two of the main folate transporters, FolR1 and Rfc1, which are robustly expressed in these tissues. Folate is the precursor of S-adenosylmethionine, which is the main donor for DNA, protein and RNA methylation. Our results show that knockdown of FolR1 and/or Rfc1 reduced the abundance of histone H3 lysine and DNA methylation, two epigenetic modifications that play an important role during neural and neural crest development. Additionally, by knocking down folate transporter or pharmacologically inhibiting folate transport and metabolism, we observed ectopic Sox2 expression at the expense of neural crest markers in the dorsal neural tube. This is correlated with neural crest associated defects, with particular impact on orofacial formation. By using bisulfite sequencing, we show that this phenotype is consequence of reduced DNA methylation on the Sox2 locus at the dorsal neural tube, which can be rescued by the addition of folinic acid. Taken together, our in vivo results reveal the importance of folate as a source of the methyl groups necessary for the establishment of the correct epigenetic marks during neural and neural crest fate-restriction.
Collapse
Affiliation(s)
- Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Sergio A Torres Pérez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Estefanía Sánchez-Vásquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Juan I Fernandino
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Int Marino 8200, Chascomús 7130, Argentina.
| |
Collapse
|
25
|
Maldonado E, López Y, Herrera M, Martínez-Sanz E, Martínez-Álvarez C, Pérez-Miguelsanz J. Craniofacial structure alterations of foetuses from folic acid deficient pregnant mice. Ann Anat 2018; 218:59-68. [DOI: 10.1016/j.aanat.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
|
26
|
Stokes BA, Sabatino JA, Zohn IE. High levels of iron supplementation prevents neural tube defects in the Fpn1 ffe mouse model. Birth Defects Res 2018; 109:81-91. [PMID: 28008752 DOI: 10.1002/bdra.23542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/11/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Periconception maternal nutrition and folate in particular are important factors influencing the incidence of neural tube defects (NTDs). Many but not all NTDs are prevented by folic acid supplementation and there is a pressing need for additional strategies to prevent these birth defects. Other micronutrients such as iron are potential candidates, yet a clear role for iron deficiency in contributing to NTDs is lacking. Our previous studies with the flatiron (ffe) mouse model of Ferroportin1 (Fpn1) deficiency suggest that iron is required for neural tube closure and forebrain development raising the possibility that iron supplementation could prevent NTDs. METHODS We determined the effect of periconception iron and/or folic acid supplementation on the penetrance of NTDs in the Fpn1ffe mouse model. Concurrently, measurements of folate and iron were made to ensure supplementation had the intended effects. RESULTS High levels of iron supplementation significantly reduced the incidence of NTDs in Fpn1ffe mutants. Fpn1 deficiency resulted in reduced folate levels in both pregnant dams and embryos. Yet folic acid supplementation did not prevent NTDs in the Fpn1ffe model. Similarly, forebrain truncations were rescued with iron. Surprisingly, the high levels of iron supplementation used in this study caused folate deficiency in wild-type dams and embryos. CONCLUSION Our results demonstrate that iron supplementation can prevent NTDs and forebrain truncations in the Fpn1ffe model. Surprisingly, high levels of iron supplementation and iron overload can cause folate deficiency. If iron is essential for neural tube closure, it is possible that iron deficiency might contribute to NTDs. Birth Defects Research 109:81-91, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bethany A Stokes
- Department of Biology, The George Washington University, Washington, DC.,Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| | - Julia A Sabatino
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| | - Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC
| |
Collapse
|
27
|
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations of the central nervous system. The etiology is complex, with both genetic and environmental factors having important contributions. Researchers have known for the past two decades that maternal periconceptional use of the B vitamin folic acid can prevent many NTDs. Though this finding is arguably one of the most important recent discoveries in birth defect research, the mechanism by which folic acid exerts this benefit remains unknown. Research to date has focused on the hypothesis that an underlying genetic susceptibility interacts with folate-sensitive metabolic processes at the time of neural tube closure. Little progress has been made searching for risk-causative variants in candidate genes; therefore, more complex genetic and epigenetic methodologies are now being considered. This article reviews the research to date that has been targeted on this important gene-nutrient locus.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, The University of Dublin, 2 Ireland;
| | - Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892; ,
| |
Collapse
|
28
|
Tsuji A, Noguchi R, Nakamura T, Shibata K. Folic Acid Deficiency Does Not Adversely Affect Oocyte Meiosis in Mice. J Nutr Sci Vitaminol (Tokyo) 2017; 62:375-379. [PMID: 28202841 DOI: 10.3177/jnsv.62.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spindle defect and chromosome misalignment occuring in oocyte meiosis induce nondisjunction. Nondisjunction causes Down syndrome, also known as trisomy 21. Folic acid (FA) is an essential nutrient composition for fetal growth and development. It has been reported that FA nutritional status is associated with the risk of Down syndrome. However, to our knowledge, little is known about the effect of FA deficiency on abnormal oocytes (spindle defects, chromosome misalignments and immature oocyte) in vivo. In the present study, we investigate the effects of FA deficiency on oocyte meiosis in female mice. In order to induce FA deficiency in mice, female Crl:CD1 mice were fed a FA-free diet for 58 d. The diet also contained an antibiotic which has functions on limiting FA formation by intestinal microorganisms. The level of FA deficiency was determined by measuring the concentration of FA in the liver, hemocyte, uterus, ovary, and urine. FA concentrations in these samples from the FA-deficient group were 50-90% lower. Despite this, the frequency of abnormal oocytes was no different between the FA-deficient and control groups (20.0% vs 14.6%). According to the past research, FA transporter was strongly expressed in oocytes. Hence, it is possible that FA-free diets may not affect the concentration of oocyte FA in mice. To sum up these data, our study concluded that FA deficiency did not adversely affect oocyte meiosis.
Collapse
Affiliation(s)
- Ai Tsuji
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture
| | | | | | | |
Collapse
|
29
|
McKay JA, Xie L, Adriaens M, Evelo CT, Ford D, Mathers JC. Maternal folate depletion during early development and high fat feeding from weaning elicit similar changes in gene expression, but not in DNA methylation, in adult offspring. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Jill A. McKay
- Human Nutrition Research Centre; Institute for Health and Society; Newcastle University; UK
| | - Long Xie
- Human Nutrition Research Centre, Institute of Cellular Medicine; Newcastle University; UK
| | - Michiel Adriaens
- Maastricht Centre for Systems Biology; Maastricht The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT; Maastricht University; Maastricht The Netherlands
| | - Dianne Ford
- Human Nutrition Research Centre, Institute for Cell and Molecular Biosciences; Newcastle University; UK
- Faculty of Health and Life Sciences; Northumbria University; UK
| | - John C. Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine; Newcastle University; UK
| |
Collapse
|
30
|
Organ-Specific Gene Expression Changes in the Fetal Liver and Placenta in Response to Maternal Folate Depletion. Nutrients 2016; 8:nu8100661. [PMID: 27782079 PMCID: PMC5084047 DOI: 10.3390/nu8100661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023] Open
Abstract
Growing evidence supports the hypothesis that the in utero environment can have profound implications for fetal development and later life offspring health. Current theory suggests conditions experienced in utero prepare, or "programme", the fetus for its anticipated post-natal environment. The mechanisms responsible for these programming events are poorly understood but are likely to involve gene expression changes. Folate is essential for normal fetal development and inadequate maternal folate supply during pregnancy has long term adverse effects for offspring. We tested the hypothesis that folate depletion during pregnancy alters offspring programming through altered gene expression. Female C57BL/6J mice were fed diets containing 2 mg or 0.4 mg folic acid/kg for 4 weeks before mating and throughout pregnancy. At 17.5 day gestation, genome-wide gene expression was measured in male fetal livers and placentas. In the fetal liver, 989 genes were expressed differentially (555 up-regulated, 434 down-regulated) in response to maternal folate depletion, with 460 genes expressed differentially (250 up-regulated, 255 down-regulated) in the placenta. Only 25 differentially expressed genes were common between organs. Maternal folate intake during pregnancy influences fetal gene expression in a highly organ specific manner which may reflect organ-specific functions.
Collapse
|
31
|
McKay JA, Adriaens M, Evelo CT, Ford D, Mathers JC. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy. Mol Nutr Food Res 2016; 60:2031-42. [PMID: 27133805 PMCID: PMC5031189 DOI: 10.1002/mnfr.201600079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Early-life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long-term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. METHODS AND RESULTS Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5-day gestation, genome-wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. CONCLUSION In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver.
Collapse
Affiliation(s)
- Jill A McKay
- Human Nutrition Research Centre, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK.
| | - Michiel Adriaens
- Maastricht Centre for Systems Biology-MaCSBio, Maastricht University, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, the Netherlands
| | - Dianne Ford
- Human Nutrition Research Centre, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Sudiwala S, De Castro SCP, Leung KY, Brosnan JT, Brosnan ME, Mills K, Copp AJ, Greene NDE. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects. Biochimie 2016; 126:63-70. [PMID: 26924399 PMCID: PMC4909716 DOI: 10.1016/j.biochi.2016.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Neural tube defects in curly tail (ct/ct) embryos are not preventable by folic acid. Expression of Mthfd1L is diminished in ct/ct (Grhl3 hypomorph) embryos. Mthfd1L acts in mitochondrial folate one-carbon metabolism to generate formate. Supplemental formate reduces the frequency of neural tube defects in ct/ct embryos. Formate alters folate profiles of maternal liver and embryos and enhances folate-dependent nucleotide biosynthesis.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Sandra C P De Castro
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Kevin Mills
- Genetics & Genomic Medicine Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
33
|
Denny KJ, Kelly CF, Kumar V, Witham KL, Cabrera RM, Finnell RH, Taylor SM, Jeanes A, Woodruff TM. Autoantibodies against homocysteinylated protein in a mouse model of folate deficiency-induced neural tube defects. ACTA ACUST UNITED AC 2016; 106:201-7. [PMID: 26900104 DOI: 10.1002/bdra.23483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Periconceptional supplementation with folic acid results in a significant reduction in the incidence of neural tube defects (NTDs). Nonetheless, NTDs remain a leading cause of perinatal morbidity and mortality worldwide, and the mechanism(s) by which folate exerts its protective effects are unknown. Homocysteine is an amino acid that accumulates under conditions of folate-deficiency, and is suggested as a risk factor for NTDs. One proposed mechanism of homocysteine toxicity is its accumulation into proteins in a process termed homocysteinylation. METHODS & RESULTS Herein, we used a folate-deficient diet in pregnant mice to demonstrate that there is: (i) a significant inverse correlation between maternal serum folate levels and serum homocysteine; (ii) a significant positive correlation between serum homocysteine levels and titers of autoantibodies against homocysteinylated protein; and (iii) a significant increase in congenital malformations and NTDs in mice deficient in serum folate. Furthermore, in mice administered the folate-deplete diet before conception, supplementation with folic acid during the gestational period completely rescued the embryos from congenital defects, and resulted in homocysteinylated protein titers at term that are comparable to that of mice administered a folate-replete diet throughout both the pre- and postconception period. These results demonstrate that a low-folate diet that induces NTDs also increases protein homocysteinylation and the subsequent generation of autoantibodies against homocysteinylated proteins. CONCLUSION These data support the hypotheses that homocysteinylation results in neo-self antigen formation under conditions of maternal folate deficiency, and that this process is reversible with folic acid supplementation.
Collapse
Affiliation(s)
- Kerina J Denny
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Christina F Kelly
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Katey L Witham
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Robert M Cabrera
- Department of Nutritional Sciences, The University of Texas, Austin, Texas
| | - Richard H Finnell
- Department of Nutritional Sciences, The University of Texas, Austin, Texas
| | - Stephen M Taylor
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Angela Jeanes
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Dickinson AJG. Using frogs faces to dissect the mechanisms underlying human orofacial defects. Semin Cell Dev Biol 2016; 51:54-63. [PMID: 26778163 DOI: 10.1016/j.semcdb.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
In this review I discuss how Xenopus laevis is an effective model to dissect the mechanisms underlying orofacial defects. This species has been particularly useful in studying the understudied structures of the developing face including the embryonic mouth and primary palate. The embryonic mouth is the first opening between the foregut and the environment and is critical for adult mouth development. The final step in embryonic mouth formation is the perforation of a thin layer of tissue covering the digestive tube called the buccopharyngeal membrane. When this tissue does not perforate in humans it can pose serious health risks for the fetus and child. The primary palate forms just dorsal to the embryonic mouth and in non-amniotes it functions as the roof of the adult mouth. Defects in the primary palate result in a median oral cleft that appears similar across the vertebrates. In humans, these median clefts are often severe and surgically difficult to repair. Xenopus has several qualities that make it advantageous for craniofacial research. The free living embryo has an easily accessible face and we have also developed several new tools to analyze the development of the region. Further, Xenopus is readily amenable to chemical screens allowing us to uncover novel gene-environment interactions during orofacial development, as well as to define underlying mechanisms governing such interactions. In conclusion, we are utilizing Xenopus in new and innovative ways to contribute to craniofacial research.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, 1000 West Main St., Richmond, VA 23284, United States.
| |
Collapse
|
35
|
Caviedes L, Iñiguez G, Hidalgo P, Castro JJ, Castaño E, Llanos M, Hirsch S, Ronco AM. Relationship between folate transporters expression in human placentas at term and birth weights. Placenta 2015; 38:24-8. [PMID: 26907378 DOI: 10.1016/j.placenta.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Adequate folate levels are essential for successful pregnancy outcomes. We aimed to study the relationship between placental mRNA and protein levels of folate transporters to birth weight. METHODS Placental folate transporters (FOLR1, RFC1 and HCP1/PCFT) mRNA and protein levels in basal (BP) and chorionic plate (CP) of small (SGA), appropriate (AGA) and large (LGA) for gestational age term infants (≥37 weeks gestation, n = 111) were determined by real-time PCR and Western blot respectively. RESULTS FOLR1 and HCP1/PCFT mRNA were lower in both plates of SGA and LGA placentas compared to AGA (p < 0.01) and RFC1 mRNA was lower only in CP (p < 0.02). RFC1 protein levels were lower in BP of SGA (p < 0.05) and LGA (p < 0.01), and FOLR1 protein levels were lower in CP of SGA (p < 0.02) and LGA (p < 0.01) groups compared to AGA. HCP1/PCFT protein levels remained unchanged in all groups. CONCLUSION Placentas of SGA and LGA groups showed a reduced mRNA expression and protein levels of folate transporters, with some differences depending on the location within the placenta (BP or CP). This suggests the presence of specific placental regulation mechanisms in gene expression that may be associated to birth weight.
Collapse
Affiliation(s)
- Lorena Caviedes
- Laboratorio de Nutrición y Regulación Metabólica, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Germán Iñiguez
- Instituto de Investigaciones Materno-Infantil (IDIMI), División Ciencias Médicas Centro, Facultad de Medicina, Universidad de Chile, Chile
| | - Paulina Hidalgo
- Laboratorio de Nutrición y Regulación Metabólica, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Juan José Castro
- Instituto de Investigaciones Materno-Infantil (IDIMI), División Ciencias Médicas Centro, Facultad de Medicina, Universidad de Chile, Chile
| | - Erika Castaño
- Laboratorio de Nutrición y Regulación Metabólica, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Miguel Llanos
- Laboratorio de Nutrición y Regulación Metabólica, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Sandra Hirsch
- Laboratorio de Nutrición y Regulación Metabólica, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile
| | - Ana María Ronco
- Laboratorio de Nutrición y Regulación Metabólica, Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Chile.
| |
Collapse
|
36
|
Murray TVA, Dong X, Sawyer GJ, Caldwell A, Halket J, Sherwood R, Quaglia A, Dew T, Anilkumar N, Burr S, Mistry RK, Martin D, Schröder K, Brandes RP, Hughes RD, Shah AM, Brewer AC. NADPH oxidase 4 regulates homocysteine metabolism and protects against acetaminophen-induced liver damage in mice. Free Radic Biol Med 2015; 89:918-30. [PMID: 26472193 PMCID: PMC4698376 DOI: 10.1016/j.freeradbiomed.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
Abstract
Glutathione is the major intracellular redox buffer in the liver and is critical for hepatic detoxification of xenobiotics and other environmental toxins. Hepatic glutathione is also a major systemic store for other organs and thus impacts on pathologies such as Alzheimer's disease, Sickle Cell Anaemia and chronic diseases associated with aging. Glutathione levels are determined in part by the availability of cysteine, generated from homocysteine through the transsulfuration pathway. The partitioning of homocysteine between remethylation and transsulfuration pathways is known to be subject to redox-dependent regulation, but the underlying mechanisms are not known. An association between plasma Hcy and a single nucleotide polymorphism within the NADPH oxidase 4 locus led us to investigate the involvement of this reactive oxygen species- generating enzyme in homocysteine metabolism. Here we demonstrate that NADPH oxidase 4 ablation in mice results in increased flux of homocysteine through the betaine-dependent remethylation pathway to methionine, catalysed by betaine-homocysteine-methyltransferase within the liver. As a consequence NADPH oxidase 4-null mice display significantly lowered plasma homocysteine and the flux of homocysteine through the transsulfuration pathway is reduced, resulting in lower hepatic cysteine and glutathione levels. Mice deficient in NADPH oxidase 4 had markedly increased susceptibility to acetaminophen-induced hepatic injury which could be corrected by administration of N-acetyl cysteine. We thus conclude that under physiological conditions, NADPH oxidase 4-derived reactive oxygen species is a regulator of the partitioning of the metabolic flux of homocysteine, which impacts upon hepatic cysteine and glutathione levels and thereby upon defence against environmental toxins.
Collapse
Affiliation(s)
- Thomas V A Murray
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Xuebin Dong
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Greta J Sawyer
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Anna Caldwell
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street London E1 9NH
| | - John Halket
- Mass Spectrometry Facility, King's College London, FWB, 150 Stamford Street London E1 9NH
| | - Roy Sherwood
- NHS Foundation Trust, King's College Hospital, Denmark Hill, London SE5 9RS
| | - Alberto Quaglia
- Institute of Liver Studies, King's College London, Denmark Hill, London SE5 9RS
| | - Tracy Dew
- NHS Foundation Trust, King's College Hospital, Denmark Hill, London SE5 9RS
| | - Narayana Anilkumar
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Simon Burr
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Rajesh K Mistry
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Daniel Martin
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60596 Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, 60596 Frankfurt am Main, Germany
| | - Robin D Hughes
- Institute of Liver Studies, King's College London, Denmark Hill, London SE5 9RS
| | - Ajay M Shah
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD
| | - Alison C Brewer
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London E5 0AD.
| |
Collapse
|
37
|
Geng Y, Gao R, Chen X, Liu X, Liao X, Li Y, Liu S, Ding Y, Wang Y, He J. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice. Mol Hum Reprod 2015; 21:844-56. [PMID: 26246607 DOI: 10.1093/molehr/gav045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Existing evidence suggests that adverse pregnancy outcomes are closely related with dietary factors. Previous studies in mice have focused on the harm of folate deficiency (FD) on development of embryo, while the effect of low maternal folate levels on maternal intrauterine environment during early pregnancy remains unclear. Since our previous study found that FD treatment of mice causes no apparent defects in embryo implantation but is accompanied by female subfertility, we next chose to investigate a potential role of FD on molecular events after implantation. We observed that the decidual bulges began to be stunted on pregnancy day 6. The results of functional experiments in vivo and in vitro showed that FD inhibited the process of endometrial decidualization. It has been confirmed that DNA methylation participates in decidualization, and folate as a methyl donor could change the methylation patterns of genes. Thus, we hypothesized that FD impairs maternal endometrial decidualization by altering the methylation profiles of related genes. Reduced representation bisulphite sequencing was carried out to detect the methylation profiles of endometrium on pregnancy day 6-8, which is equivalent to the decidualization period in mice. The results confirmed that FD changes the methylation patterns of genome, and GO analysis of the differentially methylated regions revealed that the associated genes mainly participate in biological adhesion, biological regulation, cell proliferation, development, metabolism and signalling. In addition, we found some candidates for regulators of decidual transformation, such as Nr1h3 and Nr5a1. The data indicate that FD inhibits decidualization, possibly by altering methylation patterns of the genome in mice.
Collapse
Affiliation(s)
- Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Xinggui Liao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yanli Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Shangjing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China
| |
Collapse
|
38
|
The role of folate metabolism in orofacial development and clefting. Dev Biol 2015; 405:108-22. [PMID: 26144049 DOI: 10.1016/j.ydbio.2015.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022]
Abstract
Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects.
Collapse
|
39
|
Barua S, Kuizon S, Junaid MA. Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci 2014; 21:77. [PMID: 25135350 PMCID: PMC4237823 DOI: 10.1186/s12929-014-0077-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
Maternal exposure to dietary factors during pregnancy can influence embryonic development and may modulate the phenotype of offspring through epigenetic programming. Folate is critical for nucleotide synthesis, and preconceptional intake of dietary folic acid (FA) is credited with reduced incidences of neural tube defects in infants. While fortification of grains with FA resulted in a positive public-health outcome, concern has been raised for the need for further investigation of unintended consequences and potential health hazards arising from excessive FA intakes, especially following reports that FA may exert epigenetic effects. The objective of this article is to discuss the role of FA in human health and to review the benefits, concerns and epigenetic effects of maternal FA on the basis of recent findings that are important to design future studies.
Collapse
Affiliation(s)
- Subit Barua
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island 10314, NY, USA
| | - Salomon Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island 10314, NY, USA
| | - Mohammed A Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island 10314, NY, USA
| |
Collapse
|
40
|
Sahiner UM, Alanay Y, Alehan D, Tuncbilek E, Alikasifoglu M. Methylene tetrahydrofolate reductase polymorphisms and homocysteine level in heart defects. Pediatr Int 2014; 56:167-72. [PMID: 24112451 DOI: 10.1111/ped.12222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND While several single nucleotide polymorphisms are known to influence the metabolism of folate, the methylene tetrahydrofolate reductase (MTHFR) gene has been the most extensively studied. The aim of this study was to investigate the relationship between the MTHFR polymorphisms 1298A>C and 677C>T and congenital heart disease. In addition, the relationship between these gene polymorphisms and homocysteine level was determined in Turkish subjects. METHODS Patients with non-syndromic congenital heart defects who were admitted to the Pediatric Cardiology Unit at Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara, Turkey between June 2002 and June 2003 were recruited for the study. A total of 163 children with congenital heart defects (mean age, 7.63 ± 6.03 years; M/F, 93/70) and 93 healthy controls were analyzed. RESULTS When evaluated either separately or together, there were no differences in the frequency of MTHFR 677C>T or 1298A>C polymorphisms between the children with congenital heart defects and the control group. The results were the same when considering only conotruncal defects. Those with the 677C>T polymorphism had significantly lower homocysteine level (P = 0.004), but the 1298A>C polymorphism was not related to homocysteine level. CONCLUSION No relationship was found between congenital heart defects and 1298A>C or 677C>T polymorphisms. The 677C>T polymorphism was related to low homocysteine level. Because there is often much heterogeneity between populations, this study should be conducted in different populations and with larger numbers of participants.
Collapse
Affiliation(s)
- Umit M Sahiner
- Pediatric Cardiology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
41
|
Voss KA, Riley RT, Gelineau-van Waes J. Fumonisin B1induced neural tube defects were not increased in LM/Bc mice fed folate-deficient diet. Mol Nutr Food Res 2014; 58:1190-8. [DOI: 10.1002/mnfr.201300720] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth A. Voss
- Toxicology and Mycotoxin Research Unit; Agricultural Research Service, USDA; Athens GA USA
| | - Ronald T. Riley
- Toxicology and Mycotoxin Research Unit; Agricultural Research Service, USDA; Athens GA USA
| | | |
Collapse
|
42
|
McKay JA, Xie L, Manus C, Langie SAS, Maxwell RJ, Ford D, Mathers JC. Metabolic effects of a high-fat diet post-weaning after low maternal dietary folate during pregnancy and lactation. Mol Nutr Food Res 2014; 58:1087-97. [PMID: 24425434 DOI: 10.1002/mnfr.201300615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022]
Abstract
SCOPE Investigate the influence of low-folate supply during pregnancy and lactation on obesity and markers of the metabolic syndrome in offspring, and how provision of a high-fat diet post weaning may exacerbate the resultant phenotype. METHODS AND RESULTS Female C57Bl/6 mice were randomized to low or normal folate diets (0.4 or 2 mg folic acid/kg diet) prior to and during pregnancy and lactation. At 4 wk of age, offspring were randomized to high- or low-fat diets, weighed weekly and food intake assessed at 9 and 18 wk old. Adiposity was measured at 3 and 6 months. Plasma glucose and triacylglycerol (TAG) concentrations were measured at 6 months. Maternal folate supply did not influence adult offspring body weight or adiposity. High-fat feeding post weaning increased body weight and adiposity at 3 and 6 months (p > 0.001). Maternal low folate lowered plasma glucose (p = 0.010) but increased plasma TAG (p = 0.048). High-fat feeding post weaning increased plasma glucose and TAG (p = 0.023, p = 0.049 respectively). Offspring from folate-depleted (but not folate-adequate) dams had 30% higher TAG concentration when fed the high-fat diet from weaning (p = 0.005 for interaction). CONCLUSION Inadequate maternal folate intake has long-term effects on offspring metabolism, manifested as increased circulating TAG, particularly in offspring with high-fat intake post weaning.
Collapse
Affiliation(s)
- Jill A McKay
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK; Institute for Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|
44
|
Copp AJ, Stanier P, Greene NDE. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol 2013; 12:799-810. [PMID: 23790957 DOI: 10.1016/s1474-4422(13)70110-8] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neural tube defects are severe congenital malformations affecting around one in every 1000 pregnancies. An innovation in clinical management has come from the finding that closure of open spina bifida lesions in utero can diminish neurological dysfunction in children. Primary prevention with folic acid has been enhanced through introduction of mandatory food fortification in some countries, although not yet in the UK. Genetic predisposition accounts for most of the risk of neural tube defects, and genes that regulate folate one-carbon metabolism and planar cell polarity have been strongly implicated. The sequence of human neural tube closure events remains controversial, but studies of mouse models of neural tube defects show that anencephaly, open spina bifida, and craniorachischisis result from failure of primary neurulation, whereas skin-covered spinal dysraphism results from defective secondary neurulation. Other malformations, such as encephalocele, are likely to be postneurulation disorders.
Collapse
Affiliation(s)
- Andrew J Copp
- Neural Development Unit and Newlife Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| | | | | |
Collapse
|
45
|
Wood-Bradley RJ, Henry SL, Vrselja A, Newman V, Armitage JA. Maternal dietary intake during pregnancy has longstanding consequences for the health of her offspring. Can J Physiol Pharmacol 2013; 91:412-20. [DOI: 10.1139/cjpp-2012-0352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past 100 years, advances in pharmaceutical and medical technology have reduced the burden of communicable disease, and our appreciation of the mechanisms underlying the development of noncommunicable disease has broadened. During this time, a number of studies, both in humans and animal models, have highlighted the importance of maintaining an optimal diet during pregnancy. In particular, a number of studies support the hypothesis that suboptimal maternal protein and fat intake during pregnancy can have long-term effects on the growing fetus, and increase the likelihood of these offspring developing cardiovascular, renal, or metabolic diseases in adulthood. More recently, it has been shown that dietary intake of a number of micronutrients may offset or reverse the deleterious effects of macronutrient imbalance. Furthermore, maternal fat intake has also been identified as a major contributor to a healthy fetal environment, with a beneficial role for unsaturated fats during development as well as a beneficial impact on cell membrane physiology. Together these studies indicate that attempts to optimise maternal nutrition may prove to be an efficient and cost-effective strategy for preventing the development of cardiovascular, renal, or metabolic diseases.
Collapse
Affiliation(s)
- Ryan James Wood-Bradley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah Louise Henry
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Amanda Vrselja
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Victoria Newman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James Andrew Armitage
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- School of Medicine (Optometry), Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
46
|
Billington CJ, Schmidt B, Zhang L, Hodges JS, Georgieff MK, Schotta G, Gopalakrishnan R, Petryk A. Maternal diet supplementation with methyl donors and increased parity affect the incidence of craniofacial defects in the offspring of twisted gastrulation mutant mice. J Nutr 2013; 143:332-9. [PMID: 23343680 PMCID: PMC3713022 DOI: 10.3945/jn.112.168906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diets rich in methyl-donating compounds, including folate, can provide protection against neural tube defects, but their role in preventing craniofacial defects is less clear. Mice deficient in Twisted gastrulation (TWSG1), an extracellular modulator of bone morphogenetic protein signaling, manifest both midline facial defects and jaw defects, allowing study of the effects of methyl donors on various craniofacial defects in an experimentally tractable animal model. The goal of this study was to examine the effects of maternal dietary supplementation with methyl donors on the incidence and type of craniofacial defects among Twsg1(-/-) offspring. Nulliparous and primiparous female mice were fed an NIH31 standard diet (control) or a methyl donor supplemented (MDS) diet (folate, vitamin B-12, betaine, and choline). Observed defects in the pups were divided into those derived mostly from the first branchial arch (BA1) (micrognathia, agnathia, cleft palate) and midline facial defects in the holoprosencephaly spectrum (cyclopia, proboscis, and anterior truncation). In the first pregnancy, offspring of mice fed the MDS diet had lower incidence of BA1-derived defects (12.8% in MDS vs. 32.5% in control; P = 0.02) but similar incidence of midline facial defects (6.4% in MDS vs. 5.2% in control; P = 1.0). Increased maternal parity was independently associated with increased incidence of craniofacial defects after adjusting for diet (from 37.7 to 59.5% in control, P = 0.04 and from 19.1 to 45.3% in MDS, P = 0.045). In conclusion, methyl donor supplementation shows protective effects against jaw defects, but not midline facial defects, and increased parity can be a risk factor for some craniofacial defects.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Biostatistical Design and Analysis Center
| | | | | | - Gunnar Schotta
- Adolf-Butenandt-Institute, Ludwig-Maximilian-University, Munich, Germany; and
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Anna Petryk
- Department of Pediatrics,,Department of Genetics, Cell Biology and Development,,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Lewandowski LB, Sanghavi D. Lack of association between folate receptor autoantibodies and conotruncal congenital heart defects. Pediatr Cardiol 2013; 34:512-7. [PMID: 22915140 DOI: 10.1007/s00246-012-0485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/06/2012] [Indexed: 11/26/2022]
Abstract
Conotruncal cardiac defects are partially prevented by maternal folic acid supplementation. However, the biochemical mechanism is unknown. Maternal autoantibodies to folate receptors, previously associated with increased risk for neural tube defects, also may account for this effect. This study aimed to examine the titers of folate receptor-blocking autoantibodies in mothers of children with conotruncal congenital heart defects and to compare them with those in the general population. Serum samples were obtained from 22 women whose pregnancies were complicated by conotruncal congenital heart malformations. Groups of samples were analyzed for autoantibodies against [(3)H] folic acid-labeled folate receptors, quantitative amounts of immunoglobulin G (IgG) and IgM autoantibodies to the folate receptor, and for ability to block-bind folic acid to receptors. No elevated levels of antibodies binding to [(3)H] folic acid-labeled folate receptors were found. No difference was found in antifolate receptor alpha-IgG or IgM median levels between cases (261 vs. 240 μg/mL) and control subjects (773 vs. 924 μg/mL). There was no increased blocking of folic acid binding between cases [0.69 ng/mL; 95 % confidence interval (CI), 0.006-0.01] and control subjects (0.69 ng/mL; 95 % CI, 0.003-0.013). Although epidemiologic evidence suggests that periconceptual folic acid may prevent many conotruncal congenital heart defects, the current study suggests that this effect is unlikely to be explained by the presence of maternal autoantibodies to folate receptor. These data suggest that a strategy of screening women for such autoantibodies will not identify a high-risk group of women to target for supplemental folic acid to prevent congenital heart defects.
Collapse
Affiliation(s)
- Laura B Lewandowski
- Division of Pediatric Rheumatology, Department of Pediatrics, Duke University Medical Center, 55 Lake Avenue, North, Worcester, MA 01655, USA
| | | |
Collapse
|
48
|
Denny KJ, Coulthard LG, Jeanes A, Lisgo S, Simmons DG, Callaway LK, Wlodarczyk B, Finnell RH, Woodruff TM, Taylor SM. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3493-9. [PMID: 23420882 DOI: 10.4049/jimmunol.1203072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.
Collapse
Affiliation(s)
- Kerina J Denny
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wehby GL, Goco N, Moretti-Ferreira D, Felix T, Richieri-Costa A, Padovani C, Queiros F, Guimaraes CVN, Pereira R, Litavecz S, Hartwell T, Chakraborty H, Javois L, Murray JC. Oral cleft prevention program (OCPP). BMC Pediatr 2012. [PMID: 23181832 PMCID: PMC3532199 DOI: 10.1186/1471-2431-12-184] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Oral clefts are one of the most common birth defects with significant medical, psychosocial, and economic ramifications. Oral clefts have a complex etiology with genetic and environmental risk factors. There are suggestive results for decreased risks of cleft occurrence and recurrence with folic acid supplements taken at preconception and during pregnancy with a stronger evidence for higher than lower doses in preventing recurrence. Yet previous studies have suffered from considerable design limitations particularly non-randomization into treatment. There is also well-documented effectiveness for folic acid in preventing neural tube defect occurrence at 0.4 mg and recurrence with 4 mg. Given the substantial burden of clefting on the individual and the family and the supportive data for the effectiveness of folic acid supplementation as well as its low cost, a randomized clinical trial of the effectiveness of high versus low dose folic acid for prevention of cleft recurrence is warranted. Methods/design This study will assess the effect of 4 mg and 0.4 mg doses of folic acid, taken on a daily basis during preconception and up to 3 months of pregnancy by women who are at risk of having a child with nonsyndromic cleft lip with/without palate (NSCL/P), on the recurrence of NSCL/P. The total sample will include about 6,000 women (that either have NSCL/P or that have at least one child with NSCL/P) randomly assigned to the 4 mg and the 0.4 mg folic acid study groups. The study will also compare the recurrence rates of NSCL/P in the total sample of subjects, as well as the two study groups (4mg, 0.4 mg) to that of a historical control group. The study has been approved by IRBs (ethics committees) of all involved sites. Results will be disseminated through publications and presentations at scientific meetings. Discussion The costs related to oral clefts are high, including long term psychological and socio-economic effects. This study provides an opportunity for huge savings in not only money but the overall quality of life. This may help establish more specific clinical guidelines for oral cleft prevention so that the intervention can be better tailored for at-risk women. ClinicalTrials.gov Identifier NCT00397917
Collapse
|
50
|
Zohn IE. Mouse as a model for multifactorial inheritance of neural tube defects. ACTA ACUST UNITED AC 2012; 96:193-205. [PMID: 22692891 DOI: 10.1002/bdrc.21011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tube defects (NTDs) such as spina bifida and anencephaly are some of the most common structural birth defects found in humans. These defects occur due to failures of neurulation, a process where the flat neural plate rolls into a tube. In spite of their prevalence, the causes of NTDs are poorly understood. The multifactorial threshold model best describes the pattern of inheritance of NTDs where multiple undefined gene variants interact with environmental factors to cause an NTD. To date, mouse models have implicated a multitude of genes as required for neurulation, providing a mechanistic understanding of the cellular and molecular pathways that control neurulation. However, the majority of these mouse models exhibit NTDs with a Mendelian pattern of inheritance. Still, many examples of multifactorial inheritance have been demonstrated in mouse models of NTDs. These include null and hypomorphic alleles of neurulation genes that interact in a complex fashion with other genetic mutations or environmental factors to cause NTDs. These models have implicated several genes and pathways for testing as candidates for the genetic basis of NTDs in humans, resulting in identification of putative pathogenic mutations in some patients. Mouse models also provide an experimental paradigm to gain a mechanistic understanding of the environmental factors that influence NTD occurrence, such as folic acid and maternal diabetes, and have led to the discovery of additional preventative nutritional supplements such as inositol. This review provides examples of how multifactorial inheritance of NTDs can be modeled in the mouse.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|