1
|
Zhang Y, Zhao L, Wang L, Yue R, Zhu H, Zhang W, Sun J, Zhang Z, Ma D. Chlorogenic acid compounds from sweetpotato ( Ipomoea batatas L.) leaves facilitate megakaryocyte differentiation and thrombocytopoiesis via PI3K/AKT pathway. Front Pharmacol 2024; 15:1414739. [PMID: 39239661 PMCID: PMC11375679 DOI: 10.3389/fphar.2024.1414739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Idiopathic thrombocytopenic purpura (ITP) is an autoimmune disorder characterized by antiplatelet autoantibodies, thrombocytopenia, and bleeding, however, its treatment options are limited. In this study, a kind of active component, chlorogenic acid compounds (CGAs) from sweetpotato leaves was extracted out to explore its medicinal value and provide novel therapeutic strategies for the treatment of ITP. CGAs was isolated by ionic liquids-ultrasound (IL-UAE), which contains six isomers of chlorogenic acid with total purity of 95.69%. The thrombopoietic effect and mechanism of CGAs were investigated using in silico prediction and experimental validation. The changes of HEL cells morphology in volume and the increase in the total cell percentage of polyploid cells indicated that CGAs could promote megakaryocyte differentiation. Meanwhile, CGAs could promote platelet formation in a murine model of ITP, which was established by injection of antiplatelet antibody. Further quantitative proteomics analysis and Western blot verification revealed that CGAs could activate PI3K/AKT signaling pathway, which confirmed the mechanism prediction. It suggested that CGAs may provide a novel therapeutic strategy that relies on the PI3K/AKT pathway to facilitate megakaryocyte differentiation and platelet production.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liping Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ruixue Yue
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Hong Zhu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Wenting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, China
| |
Collapse
|
2
|
Zhang T, Mo Q, Jiang N, Wu Y, Yang X, Chen W, Li Q, Yang S, Yang J, Zeng J, Huang F, Huang Q, Luo J, Wu J, Wang L. The combination of machine learning and transcriptomics reveals a novel megakaryopoiesis inducer, MO-A, that promotes thrombopoiesis by activating FGF1/FGFR1/PI3K/Akt/NF-κB signaling. Eur J Pharmacol 2023; 944:175604. [PMID: 36804544 DOI: 10.1016/j.ejphar.2023.175604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Radiation-induced thrombocytopenia (RIT) occurs widely and causes high mortality and morbidity in cancer patients who receive radiotherapy. However, specific drugs for treating RIT remain woefully inadequate. Here, we first developed a drug screening model using naive Bayes, a machine learning (ML) algorithm, to virtually screen the active compounds promoting megakaryopoiesis and thrombopoiesis. A natural product library was screened by the model, and methylophiopogonanone A (MO-A) was identified as the most active compound. The activity of MO-A was then validated in vitro and showed that MO-A could markedly induce megakaryocyte (MK) differentiation of K562 and Meg-01 cells in a concentration-dependent manner. Furthermore, the therapeutic action of MO-A on RIT was evaluated, and MO-A significantly accelerated platelet level recovery, platelet activation, megakaryopoiesis, MK differentiation in RIT mice. Moreover, RNA-sequencing (RNA-seq) indicated that the PI3K cascade was closely related to MK differentiation induced by MO-A. Finally, experimental verification demonstrated that MO-A obviously induced the expression of FGF1 and FGFR1, and increased the phosphorylation of PI3K, Akt and NF-κB. Blocking FGFR1 with its inhibitor dovitinib suppressed MO-A-induced MK differentiation, and PI3K, Akt and NF-κB phosphorylation. Similarly, inhibition of PI3K-Akt signal pathway by its inhibitor LY294002 suppressed MK differentiation, and PI3K, Akt and NF-κB phosphorylation induced by MO-A. Taken together, our study provides an efficient drug discovery strategy for hematological diseases, and demonstrates that MO-A is a novel countermeasure for treating RIT through activation of the FGF1/FGFR1/PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qi Mo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuesong Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Wang Chen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qinyao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shuo Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Yang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qianqian Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts. Int J Mol Sci 2023; 24:ijms24043168. [PMID: 36834579 PMCID: PMC9961075 DOI: 10.3390/ijms24043168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Megakaryocytes (MKs), a kind of functional hematopoietic stem cell, form platelets to maintain platelet balance through cell differentiation and maturation. In recent years, the incidence of blood diseases such as thrombocytopenia has increased, but these diseases cannot be fundamentally solved. The platelets produced by MKs can treat thrombocytopenia-associated diseases in the body, and myeloid differentiation induced by MKs has the potential to improve myelosuppression and erythroleukemia. Currently, ethnomedicine is extensively used in the clinical treatment of blood diseases, and the recent literature has reported that many phytomedicines can improve the disease status through MK differentiation. This paper reviewed the effects of botanical drugs on megakaryocytic differentiation covering the period 1994-2022, and information was obtained from PubMed, Web of Science and Google Scholar. In conclusions, we summarized the role and molecular mechanism of many typical botanical drugs in promoting megakaryocyte differentiation in vivo, providing evidence as much as possible for botanical drugs treating thrombocytopenia and other related diseases in the future.
Collapse
|
4
|
Li H, Jiang X, Shen X, Sun Y, Jiang N, Zeng J, Lin J, Yue L, Lai J, Li Y, Wu A, Wang L, Qin D, Huang F, Mei Q, Yang J, Wu J. TMEA, a Polyphenol in Sanguisorba officinalis, Promotes Thrombocytopoiesis by Upregulating PI3K/Akt Signaling. Front Cell Dev Biol 2021; 9:708331. [PMID: 34485295 PMCID: PMC8416095 DOI: 10.3389/fcell.2021.708331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Thrombocytopenia is closely linked with hemorrhagic diseases, for which induction of thrombopoiesis shows promise as an effective treatment. Polyphenols widely exist in plants and manifest antioxidation and antitumour activities. In this study, we investigated the thrombopoietic effect and mechanism of 3,3′,4′-trimethylellagic acid (TMEA, a polyphenol in Sanguisorba officinalis L.) using in silico prediction and experimental validation. A KEGG analysis indicated that PI3K/Akt signalling functioned as a crucial pathway. Furthermore, the virtual molecular docking results showed high-affinity binding (a docking score of 6.65) between TMEA and mTOR, suggesting that TMEA might target the mTOR protein to modulate signalling activity. After isolation of TMEA, in vitro and in vivo validation revealed that this compound could promote megakaryocyte differentiation/maturation and platelet formation. In addition, it enhanced the phosphorylation of PI3K, Akt, mTOR, and P70S6K and increased the expression of GATA-1 and NF-E2, which confirmed the mechanism prediction. In conclusion, our findings are the first to demonstrate that TMEA may provide a novel therapeutic strategy that relies on the PI3K/Akt/mTOR pathway to facilitate megakaryocyte differentiation and platelet production.
Collapse
Affiliation(s)
- Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xueqin Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, China
| | - Xin Shen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liang Yue
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| |
Collapse
|
5
|
Lee YS, Kwak MK, Moon SA, Choi YJ, Baek JE, Park SY, Kim BJ, Lee SH, Koh JM. Regulation of bone metabolism by megakaryocytes in a paracrine manner. Sci Rep 2020; 10:2277. [PMID: 32042021 PMCID: PMC7010738 DOI: 10.1038/s41598-020-59250-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 01/23/2020] [Indexed: 11/10/2022] Open
Abstract
Megakaryocytes (MKs) play key roles in regulating bone metabolism. To test the roles of MK-secreted factors, we investigated whether MK and promegakaryocyte (pro-MK) conditioned media (CM) may affect bone formation and resorption. K562 cell lines were differentiated into mature MKs. Mouse bone marrow macrophages were differentiated into mature osteoclasts, and MC3T3-E1 cells were used for osteoblastic experiments. Bone formation was determined by a calvaria bone formation assay in vivo. Micro-CT analyses were performed in the femurs of ovariectomized female C57B/L6 and Balb/c nude mice after intravenous injections of MK or pro-MK CM. MK CM significantly reduced in vitro bone resorption, largely due to suppressed osteoclastic resorption activity. Compared with pro-MK CM, MK CM suppressed osteoblastic differentiation, but stimulated its proliferation, resulting in stimulation of calvaria bone formation. In ovariectomized mice, treatment with MK CM for 4 weeks significantly increased trabecular bone mass parameters, such as bone volume fraction and trabecular thickness, in nude mice, but not in C57B/L6 mice. In conclusion, MKs may secrete anti-resorptive and anabolic factors that affect bone tissue, providing a novel insight linking MKs and bone cells in a paracrine manner. New therapeutic agents against metabolic bone diseases may be developed from MK-secreted factors.
Collapse
Affiliation(s)
- Young-Sun Lee
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Mi Kyung Kwak
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, 7, Keunjaebong-gil, Hwaseong-Si, Gyeonggi-Do, 445-907, Korea
| | - Sung-Ah Moon
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Young Jin Choi
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Ji Eun Baek
- Asan Institute for Life Sciences, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
6
|
Kim J, Jin G, Lee J, Lee K, Bae YS, Kim J. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate enhances thrombopoietin–induced megakaryocytic differentiation and plateletogenesis. BMB Rep 2019. [PMID: 30670147 PMCID: PMC6675245 DOI: 10.5483/bmbrep.2019.52.7.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We have previously reported the effects of 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a synthetic phospholipid, on megakaryocytic differentiation of myeloid leukemia cells. Here, we demonstrate that (R)-TEMOSPho enhances megakaryopoiesis and plateletogenesis from primary hematopoietic stem cells (HSCs) induced by thrombopoietin (TPO). Specifically, we demonstrate at sub-saturation levels of TPO, the addition of (R)-TEMOSPho enhances differentiation and maturation of megakaryocytes (MKs) from murine HSCs derived from fetal liver. Furthermore, we show that production of platelets with (R)-TEMOSPho in combination with TPO is also more efficient than TPO alone and that platelets generated in vitro with these two agents are as functional as those from TPO alone. TPO can thus be partly replaced by or supplemented with (R)-TEMOSPho, and this in turn implies that (R)-TEMOSPho can be useful in efficient platelet production in vitro and potentially be a valuable option in designing cell-based therapy.
Collapse
Affiliation(s)
- Jusong Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Guanghai Jin
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Wang Y, Zong S, Li N, Wang Z, Chen B, Cui Y. SERS-based dynamic monitoring of minimal residual disease markers with high sensitivity for clinical applications. NANOSCALE 2019; 11:2460-2467. [PMID: 30671571 DOI: 10.1039/c8nr06929h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Minimal residual disease (MRD) measurement is important for the diagnosis and prognosis of B cell hematological malignancies in the clinic. Thus, a sensitive and accurate method for monitoring the corresponding surface markers is in high demand for early diagnosis and treatment instruction. Herein, we developed a surface enhanced Raman scattering (SERS)-based sandwich-type immunoassay for the simultaneous detection of two surface markers (i.e., CD19 and CD20) in Raji cell lines as well as in clinical blood samples. First, to compare with the results obtained by flow cytometry, we evaluated the sensitivity and reproducibility of the SERS immunoassay for real-time detection of CD19 and CD20 expressions in Raji cells and blood samples. Then, we conducted follow-up tests on 13 B cell hematological malignancy patients for one month and dynamically monitored their CD19 and CD20 expressions by the SERS immunoassay. In addition to the improved sensitivity of the SERS method, good linear correlations between the SERS intensities and flow cytometry results were also observed for both CD19 and CD20, which indicated the accuracy of this SERS-based strategy. Therefore, this SERS-based simultaneous detection approach shows great potential for accurate and early diagnosis of MRD in B cell hematological malignancies.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
8
|
Lu J, Zhang Y, Wang S, Bi Y, Huang T, Luo X, Cai YD. Analysis of Four Types of Leukemia Using Gene Ontology Term and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Scores. Comb Chem High Throughput Screen 2019; 23:295-303. [PMID: 30599106 DOI: 10.2174/1386207322666181231151900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/24/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
Abstract
AIM AND OBJECTIVE Leukemia is the second common blood cancer after lymphoma, and its incidence rate has an increasing trend in recent years. Leukemia can be classified into four types: acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML). More than forty drugs are applicable to different types of leukemia based on the discrepant pathogenesis. Therefore, the identification of specific drug-targeted biological processes and pathways is helpful to determinate the underlying pathogenesis among such four types of leukemia. METHODS In this study, the gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were highly related to drugs for leukemia were investigated for the first time. The enrichment scores for associated GO terms and KEGG pathways were calculated to evaluate the drugs and leukemia. The feature selection method, minimum redundancy maximum relevance (mRMR), was used to analyze and identify important GO terms and KEGG pathways. RESULTS Twenty Go terms and two KEGG pathways with high scores have all been confirmed to effectively distinguish four types of leukemia. CONCLUSION This analysis may provide a useful tool for the discrepant pathogenesis and drug design of different types of leukemia.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road, Yantai 264005, China
| | - YuHang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road, Yantai 264005, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
9
|
Li S, Li R, Ma Y, Zhang C, Huang T, Zhu S. Transcriptome analysis of differentially expressed genes and pathways associated with mitoxantrone treatment prostate cancer. J Cell Mol Med 2018; 23:1987-2000. [PMID: 30592148 PMCID: PMC6378179 DOI: 10.1111/jcmm.14100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
The global physiological function of specifically expressed genes of mitoxantrone (MTX)‐resistant prostate cancer (PCa) is unclear. In this study, gene expression pattern from microarray data was investigated for identifying differentially expressed genes (DEGs) in MTX‐resistant PCa xenografts. Human PCa cell lines DU145 and PC3 were cultured in vitro and xenografted into severe combined immunodeficiency (SCID) mice, treated with MTX intragastrically, three times a week until all mice relapsed. Gene expression profiles of the xenografts from castrated mice were performed with Affymetrix human whole genomic oligonucleotide microarray. The Cytoscape software was used to investigate the relationship between proteins and the signalling transduction network. A total of 355 overlapping genes were differentially expressed in MTX‐resistant DU145R and PC3R xenografts. Of these, 16 genes were selected to be validated by quantitative real‐time PCR (qRT‐PCR) in these xenografts, and further tested in a set of formalin‐fixed, paraffin‐embedded and optimal cutting temperature (OCT) clinical tumour samples. Functional and pathway enrichment analyses revealed that these DEGs were closely related to cellular activity, androgen synthesis, DNA damage and repair, also involved in the ERK/MAPK, PI3K/serine‐threonine protein kinase, also known as protein kinase B, PKB (AKT) and apoptosis signalling pathways. This exploratory analysis provides information about potential candidate genes and may bring new insights into the molecular cascade involvement in MTX‐resistant PCa.
Collapse
Affiliation(s)
- Sanqiang Li
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Medical College, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yu Ma
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Cong Zhang
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Huang
- Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Sha Zhu
- Key laboratory of Infection and Immunization, Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Collaborative Innovation Center of Cancer Chemoprevention, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Nurhayati RW, Ojima Y, Taya M. Recent developments in ex vivo platelet production. Cytotechnology 2016; 68:2211-2221. [PMID: 27002966 PMCID: PMC5101314 DOI: 10.1007/s10616-016-9963-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/05/2016] [Indexed: 12/23/2022] Open
Abstract
The platelet is a component of blood that functions to initiate blood clotting. Abnormal platelet count and function can lead to a life-threatening condition caused by excessive bleeding. At present, platelet supply for transfusion can be obtained only from platelet donation. However, platelets cannot be stored for longer than 7 days, meaning that routine isolation is required to maintain platelet supply for transfusion. To mitigate for potential platelet shortages, several strategies have been proposed to generate platelets ex vivo. By employing both of natural and artificial approaches, several researchers have successfully generated biomaterials with characteristics similar to human-derived platelets. Their reports indicated that the biomaterials could mimic the aggregation of human-isolated platelets, further suggesting the possibility to substitute or complement human-isolated platelets. The current review summarizes the progress in ex vivo platelet production and gives a prospect for the possible approaches to achieving a feasible platelet factory, based on the Good Manufacturing Practice standards.
Collapse
Affiliation(s)
- Retno Wahyu Nurhayati
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 Japan
| | - Yoshihiro Ojima
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 Japan
| | - Masahito Taya
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
11
|
Han SH, Kim J, Her Y, Seong I, Park S, Bhattarai D, Jin G, Lee K, Chung G, Hwang S, Bae YS, Kim J. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells. BMB Rep 2016; 48:691-5. [PMID: 26077028 PMCID: PMC4791325 DOI: 10.5483/bmbrep.2015.48.12.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure. [BMB Reports 2015; 48(12): 691-695]
Collapse
Affiliation(s)
- Sang Hee Han
- Departments of 1Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jusong Kim
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Yerim Her
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Ikjoo Seong
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Sera Park
- Bio-informatics Science, Ewha Womans University, Seoul 03760, Korea
| | - Deepak Bhattarai
- BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Guanghai Jin
- BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Kyeong Lee
- BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | | | | | - Yun Soo Bae
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jaesang Kim
- Departments of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
12
|
BMS-777607 promotes megakaryocytic differentiation and induces polyploidization in the CHRF-288-11 cells. Hum Cell 2014; 28:65-72. [PMID: 25304900 DOI: 10.1007/s13577-014-0102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022]
Abstract
Introduction of a polyploidy inducer is a promising strategy to achieve a high level of polyploidization during megakaryocytic (MK) differentiation. Here, we report that a multi-kinase inhibitor, BMS-777607, is a potent polyploidy inducer for elevating high ploidy cell formation in the MK-differentiated CHRF-288-11 (CHRF) cells. Our result showed that BMS-777607 strongly inhibited cell division without affecting cell viability when detected at day 1 after treatment. As a consequence, the high ploidy (≥8N) cells were accumulated in culture for 8 days, with an increase from 16.2 to 75.2 % of the total cell population. The elevated polyploidization was accompanied by the increased expression level of MK marker, CD41 (platelet glycoprotein IIb/IIIa, GPIIb/IIIa), suggesting that BMS-777607 promoted both polyploidization and commitment of MK-differentiated CHRF cells. Platelet-like fragments (PFs) were released by mature CHRF cells. Based on a flow cytometry assay, it was found that the PFs produced from BMS-777607-treated cells tended to have larger size and higher expression of GPIIb/IIIa, a receptor for platelet adhesion. Taken together, these results suggested that BMS-777607 promoted MK differentiation of CHRF cells and increased the functional property of platelet-like fragments.
Collapse
|
13
|
Park SJ, Park DR, Bhattarai D, Lee K, Kim J, Bae YS, Lee SY. 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses osteoclast maturation and bone resorption by targeting macrophage-colony stimulating factor signaling. Mol Cells 2014; 37:628-35. [PMID: 25139265 PMCID: PMC4145375 DOI: 10.14348/molcells.2014.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 01/14/2023] Open
Abstract
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.
Collapse
Affiliation(s)
- So Jeong Park
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Doo Ri Park
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
| | | | | | - Jaesang Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Yun Soo Bae
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
| |
Collapse
|