1
|
Wagner R, Montoya L, Gao C, Head JR, Remais J, Taylor JW. The air mycobiome is decoupled from the soil mycobiome in the California San Joaquin Valley. Mol Ecol 2022; 31:4962-4978. [PMID: 35933707 PMCID: PMC9624177 DOI: 10.1111/mec.16640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
Dispersal is a key force in the assembly of fungal communities and the air is the dominant route of dispersal for most fungi. Understanding the dynamics of airborne fungi is important for determining their source and for helping to prevent fungal disease. This understanding is important in the San Joaquin Valley of California, which is home to 4.2 million people and where the airborne fungus Coccidioides is responsible for the most important fungal disease of otherwise healthy humans, coccidioidomycosis. The San Joaquin Valley is the most productive agricultural region in the United States, with the principal crops grown therein susceptible to fungal pathogens. Here, we characterize the fungal community in soil and air on undeveloped and agricultural land in the San Joaquin Valley using metabarcoding of the internal transcribed spacer 2 variable region of fungal rDNA. Using 1,002 individual samples, we report one of the most extensive studies of fungi sampled simultaneously from air and soil using modern sequencing techniques. We find that the air mycobiome in the San Joaquin Valley is distinct from the soil mycobiome, and that the assemblages of airborne fungi from sites as far apart as 160 km are far more similar to one another than to the fungal communities in nearby soils. Additionally, we present evidence that airborne fungi in the San Joaquin Valley are subject to dispersal limitation and cyclical intra-annual patterns of community composition. Our findings are broadly applicable to understanding the dispersal of airborne fungi and the taxonomic structure of airborne fungal assemblages.
Collapse
Affiliation(s)
- Robert Wagner
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Liliam Montoya
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Cheng Gao
- Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jennifer R. Head
- Division of EpidemiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Justin Remais
- Division of Environmental Health SciencesUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John W. Taylor
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Conidial heat resistance of various strains of the food spoilage fungus Paecilomyces variotii correlates with mean spore size, spore shape and size distribution. Food Res Int 2020; 137:109514. [PMID: 33233149 DOI: 10.1016/j.foodres.2020.109514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Contamination by spores is often the cause of fungal food spoilage. Some distinct strains of the food spoilage fungus Paecilomyces variotii are able to produce airborne conidia that are more heat-resistant than similar species. These ellipsoid asexual spores can vary in size between strains, but also within strains. Here, we compared four measurement techniques to measure conidia size and distribution of five heat-sensitive and five heat-resistant P. variotii strains. Light microscopy (LM), Scanning Electron Microscopy (SEM) and Coulter Counter (CC) were used to measure and compare the spherical equivalent diameter, while CC and flow cytometry were used to study spore size distributions. The flow cytometry data was useful to study spore size distributions, but only relative spore sizes were obtained. There was no statistic difference between the method used of spore size measurement between LM, SEM and CC, but spore size was significantly different between strains with a 2.4-fold volume difference between the extremes. Various size distribution and shape parameters were correlated with conidial heat resistance. We found significant correlations in mean spore size, aspect ratio, roundness and skewness in relation to heat resistance, which suggests that these parameters are indicative for the conidial heat resistance of a P. variotii strain.
Collapse
|
3
|
Xie Z, Fan C, Lu R, Liu P, Wang B, Du S, Jin C, Deng S, Li Y. Characteristics of ambient bioaerosols during haze episodes in China: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1930-1942. [PMID: 30237031 DOI: 10.1016/j.envpol.2018.09.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 05/22/2023]
Abstract
Frequent low visibility, haze pollution caused by heavy fine particulate matter (PM2.5) loading, has been entailing significant environmental issues and health risks in China since 2013. A substantial fraction of bioaerosols was observed in PM (1.5-15%) during haze periods with intensive pollution. However, systematic and consistent results of the variations of bioaerosol characteristics during haze pollution are lacking. The role of bioaerosols in air quality and interaction with environment conditions are not yet well characterized. The present article provides an overview of the state of bioaerosol research during haze episodes based on numerous recent studies over the past decade, focusing on concentration, size distribution, community structure, and influence factors. Examples of insightful results highlighted the characteristics of bioaerosols at different air pollution levels and their pollution effects. We summarize the influences of meteorological and environmental factors on the distribution of bioaerosols. Further studies on bioaerosols, applying standardized sampling and identification criteria and investigating the influence of mechanisms of environmental or pollution factors on bioaerosols as well as the sources of bioaerosols are proposed.
Collapse
Affiliation(s)
- Zhengsheng Xie
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Chunlan Fan
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Rui Lu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Pengxia Liu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Beibei Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Shengli Du
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China
| | - Cheng Jin
- School of Architecture, Chang'an University, Xi'an, 710061, China
| | - Shunxi Deng
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710054, China
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710054, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China.
| |
Collapse
|
4
|
Araújo CA, Dias LP, Ferreira PC, Mittmann J, Pupin B, Brancini G, Braga GÚ, Rangel DE. Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide. Fungal Biol 2018; 122:621-628. [DOI: 10.1016/j.funbio.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 01/11/2023]
|
5
|
García-Cela ME, Marín S, Reyes M, Sanchis V, Ramos AJ. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2249-2256. [PMID: 26178018 DOI: 10.1002/jsfa.7343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. RESULTS Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. CONCLUSION Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia.
Collapse
Affiliation(s)
- Maria Esther García-Cela
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Monica Reyes
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Vicent Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, 25198, Lleida, Spain
| |
Collapse
|
6
|
Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjøth CA, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo Á. Potential sources of airborne Alternaria spp. spores in South-west Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:165-76. [PMID: 26156135 DOI: 10.1016/j.scitotenv.2015.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/19/2015] [Accepted: 06/07/2015] [Indexed: 05/06/2023]
Abstract
Fungi belonging to the genus of Alternaria are recognised as being significant plant pathogens, and Alternaria allergens are one of the most important causes of respiratory allergic diseases in Europe. This study aims to provide a detailed and original analysis of Alternaria transport dynamics in Badajoz, SW Spain. This was achieved by examining daily mean and hourly observations of airborne Alternaria spores recorded during days with high airborne concentrations of Alternaria spores (>100 s m(-3)) from 2009 to 2011, as well as four inventory maps of major Alternaria habitats, the overall synoptic weather situation and analysis of air mass transport using Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information systems. Land use calculated within a radius of 100 km from Badajoz shows that crops and grasslands are potentially the most important local sources of airborne Alternaria spores recorded at the site. The results of back trajectory analysis show that, during the examined four episodes, the two main directions where Alternaria source areas were located were: (1) SW-W; and (2) NW-NE. Regional scale and long distance transport could therefore supplement the airborne catch recorded at Badajoz with Alternaria conidia originating from sources such as crops and orchards situated in other parts of the Iberian Peninsula.
Collapse
Affiliation(s)
- Santiago Fernández-Rodríguez
- University of Extremadura, Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Avda Elvas s/n, 06071 Badajoz, Spain.
| | - Magdalena Sadyś
- University of Worcester, National Pollen and Aerobiology Research Unit, Henwick Grove, Worcester WR2 6AJ, United Kingdom; Rothamsted Research, West Common, Harpenden AL5 2JQ, United Kingdom
| | - Matt Smith
- Adam Mickiewicz University, Faculty of Biology, Laboratory of Aeropalynology, 61-614 Poznań, Poland
| | - Rafael Tormo-Molina
- University of Extremadura, Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Avda Elvas s/n, 06071 Badajoz, Spain
| | - Carsten Ambelas Skjøth
- University of Worcester, National Pollen and Aerobiology Research Unit, Henwick Grove, Worcester WR2 6AJ, United Kingdom
| | - José María Maya-Manzano
- University of Extremadura, Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Avda Elvas s/n, 06071 Badajoz, Spain
| | - Inmaculada Silva-Palacios
- University of Extremadura, Department of Applied Physics, Engineering Agricultural School, 06071 Badajoz, Spain
| | - Ángela Gonzalo-Garijo
- Hospital Universitario Infanta Cristina, Department of Allergology, 06080 Badajoz, Spain
| |
Collapse
|
7
|
Ojiambo PS, Gent DH, Quesada-Ocampo LM, Hausbeck MK, Holmes GJ. Epidemiology and population biology of Pseudoperonospora cubensis: a model system for management of downy mildews. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:223-246. [PMID: 26002291 DOI: 10.1146/annurev-phyto-080614-120048] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The resurgence of cucurbit downy mildew has dramatically influenced production of cucurbits and disease management systems at multiple scales. Long-distance dispersal is a fundamental aspect of epidemic development that influences the timing and extent of outbreaks of cucurbit downy mildew. The dispersal potential of Pseudoperonospora cubensis appears to be limited primarily by sporangia production in source fields and availability of susceptible hosts and less by sporangia survival during transport. Uncertainty remains regarding the role of locally produced inoculum in disease outbreaks, but evidence suggests multiple sources of primary inoculum could be important. Understanding pathogen diversity and population differentiation is a critical aspect of disease management and an active research area. Underpinning advances in our understanding of pathogen biology and disease management has been the research capacity and coordination of stakeholders, scientists, and extension personnel. Concepts and approaches developed in this pathosystem can guide future efforts when responding to incursions of new or reemerging downy mildew pathogens.
Collapse
Affiliation(s)
- Peter S Ojiambo
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695; ,
| | | | | | | | | |
Collapse
|
8
|
Braga GUL, Rangel DEN, Fernandes ÉKK, Flint SD, Roberts DW. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet 2015; 61:405-25. [PMID: 25824285 DOI: 10.1007/s00294-015-0483-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
Conidia are specialized structures produced at the end of the asexual life cycle of most filamentous fungi. They are responsible for fungal dispersal and environmental persistence. In pathogenic species, they are also involved in host recognition and infection. Conidial production, survival, dispersal, germination, pathogenicity and virulence can be strongly influenced by exposure to solar radiation, although its effects are diverse and often species dependent. UV radiation is the most harmful and mutagenic waveband of the solar spectrum. Direct exposure to solar radiation for a few hours can kill conidia of most fungal species. Conidia are killed both by solar UV-A and UV-B radiation. In addition to killing conidia, which limits the size of the fungal population and its dispersion, exposures to sublethal doses of UV radiation can reduce conidial germination speed and virulence. The focus of this review is to provide an overview of the effects of solar radiation on conidia and on the major systems involved in protection from and repair of damage induced by solar UV radiation. The efforts that have been made to obtain strains of fungi of interest such as entomopathogens more tolerant to solar radiation will also be reviewed.
Collapse
Affiliation(s)
- Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,
| | | | | | | | | |
Collapse
|
9
|
Sunlight and Soil–Litter Mixing: Drivers of Litter Decomposition in Drylands. PROGRESS IN BOTANY 2015. [DOI: 10.1007/978-3-319-08807-5_11] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Niu F, He J, Zhang G, Liu X, Liu W, Dong M, Wu F, Liu Y, Ma X, An L, Feng H. Effects of enhanced UV-B radiation on the diversity and activity of soil microorganism of alpine meadow ecosystem in Qinghai-Tibet Plateau. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1833-1841. [PMID: 25149869 DOI: 10.1007/s10646-014-1314-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
The effects of enhanced UV-B radiation on abundance, community composition and the total microbial activity of soil bacteria in alpine meadow ecosystem of Qinghai-Tibet Plateau were investigated. Traditional counting and 16S rRNA gene sequencing were used to investigate the culturable bacteria and their composition in soil, meanwhile the total microbial activity was measured by microcalorimetry. The population of soil culturable bacteria was slightly reduced with the enhanced UV-B radiation in both of the two depths, 2.46 × 10(6) CFU/g in upper layer (0-10 cm), 1.44 × 10(6) CFU/g in under layer (10-20 cm), comparing with the control (2.94 × 10(6) CFU/g in upper layer, 1.65 × 10(6) CFU/g in under layer), although the difference was not statistically significant (P > 0.05). However, the bacteria diversity decreased obviously due to enhanced UV-B, the number of species for upper layer was decreased from 20 to 13, and from 16 to 13 for the lower layer. The distribution of species was also quite different between the two layers. Another obvious decrease induced by enhanced UV-B radiation was in the total soil microbial activities, which was represented by the microbial growth rate constant (k) in this study. The results indicated that the culturable bacteria community composition and the total activity of soil microbes have been considerably changed by the enhanced UV-B radiation.
Collapse
Affiliation(s)
- Fujun Niu
- State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou, 730000, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kivlin SN, Winston GC, Goulden ML, Treseder KK. Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. FUNGAL ECOL 2014. [DOI: 10.1016/j.funeco.2014.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
|
13
|
|
14
|
Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 2012; 78:8523-30. [PMID: 23001673 DOI: 10.1128/aem.01954-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses have been discovered in numerous fungal species, but unlike most known animal or plant viruses, they are rarely associated with deleterious effects on their hosts. The knowledge about viruses among entomopathogenic fungi is very limited, although their existence is suspected because of the presence of virus-like double-stranded RNA (dsRNA) in isolates of several species. Beauveria bassiana is one of the most-studied species of entomopathogenic fungi; it has a cosmopolitan distribution and is used as a biological control agent against invertebrates in agriculture. We analyzed a collection of 73 isolates obtained at different locations and from different habitats in Spain and Portugal, searching for dsRNA elements indicative of viral infections. The results revealed that the prevalence of viral infections is high; 54.8% of the isolates contained dsRNA elements with viral characteristics. The dsRNA electropherotypes of infected isolates indicated that virus diversity was high in the collection analyzed and that mixed virus infections occurred in fungal isolates. However, a hybridization experiment indicated that dsRNA bands that are similar in size do not always have similar sequences. Particular virus species or dsRNA profiles were not associated with locations or types of habitats, probably because of the ubiquity and efficient dispersion of this fungus as an airborne species. The sequence of one of the most common dsRNA elements corresponded to the 5.2-kbp genome of a previously undescribed member of the Totiviridae family, termed B. bassiana RNA virus 1 (BbRV1).
Collapse
|
15
|
Payne AF, Smith DL. Development and Evaluation of Two Pecan Scab Prediction Models. PLANT DISEASE 2012; 96:1358-1364. [PMID: 30727191 DOI: 10.1094/pdis-03-11-0202-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusicladium effusum (syn. Cladosporium caryigenum), causal agent of pecan scab, is the most economically important pathogen of pecan (Carya illinoinensis). A weather-based advisory is currently used in Oklahoma to assess the need for fungicide application and requires the accumulation of scab hours. A scab hour is defined as an hour with average temperature ≥21.1°C and relative humidity ≥90%. To assess the validity of the thresholds in the advisory, repeated ratings of disease severity were taken on fruit at five locations during the 1994-96 and 2009-10 growing seasons, resulting in a total of eight site years. Hourly weather variables were also examined, including temperature, relative humidity, dew point, dew point depression, total solar radiation, and total rainfall. Rain and disease severity were converted to binomial variables where a rain event (≥2.5 mm) and disease severity (≥25%) were coded as 1 and all other events as 0. Logistic regression models adjusted for correlated data were developed using generalized estimating equations. Two models were developed: a temperature/relative humidity model and a dew point/dew point depression model. For the temperature/relative humidity model, the best fitting model included all main effects. Using this model, validation exercises assuming no rain and total solar radiation of 22.5 MJ m-2 resulted in a 0.45 probability of pecan scab development when the temperature was 21°C and relative humidity was 90%. Findings of this model were further validated during field studies that evaluated different combinations of temperature and relative humidity thresholds for scheduling fungicide applications. These analyses indicated that the current thresholds of temperature and relative humidity are viable, but a modification of the relative humidity component should be considered. For the dew point/dew point depression model, a reduced model, including dew point, dew point depression, and the binomial rain variable, was considered adequate for explaining scab events, which suggests that future model building to describe pecan scab epidemics should include dew point, dew point depression, rain, and total solar radiation as independent variables. This article originally appeared in the January issue, Volume 96, pages 117-123. It was changed to correct errors in a measurement conversion that appeared throughout.
Collapse
Affiliation(s)
- A F Payne
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078
| | - D L Smith
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078
| |
Collapse
|
16
|
Austin CN, Wilcox WF. Effects of sunlight exposure on grapevine powdery mildew development. PHYTOPATHOLOGY 2012; 102:857-66. [PMID: 22881871 DOI: 10.1094/phyto-07-11-0205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural and artificially induced shade increased grapevine powdery mildew (Erysiphe necator) severity in the vineyard, with foliar disease severity 49 to 75% higher relative to leaves in full sun, depending on the level of natural shading experienced and the individual experiment. Cluster disease severities increased by 20 to 40% relative to those on check vines when ultraviolet (UV) radiation was filtered from sunlight reaching vines in artificial shading experiments. Surface temperatures of leaves in full sunlight averaged 5 to 8°C higher than those in natural shade, and in one experiment, filtering 80% of all wavelengths of solar radiation, including longer wavelengths responsible for heating irradiated tissues, increased disease more than filtering UV alone. In controlled environment experiments, UV-B radiation reduced germination of E. necator conidia and inhibited both colony establishment (hyphal formation and elongation) and maturity (latent period). Inhibitory effects of UV-B radiation were significantly greater at 30°C than at 20 or 25°C. Thus, sunlight appears to inhibit powdery mildew development through at least two mechanisms, i.e., (i) UV radiation's damaging effects on exposed conidia and thalli of the pathogen; and (ii) elevating temperatures of irradiated tissues to a level supraoptimal or inhibitory for pathogen development. Furthermore, these effects are synergistic at temperatures near the upper threshold for disease development.
Collapse
Affiliation(s)
- Craig N Austin
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva.
| | | |
Collapse
|
17
|
Payne AF, Smith DL. Development and Evaluation of Two Pecan Scab Prediction Models. PLANT DISEASE 2012; 96:117-123. [PMID: 30731857 DOI: 10.1094/pdis-03-11-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusicladium effusum (syn. Cladosporium caryigenum), causal agent of pecan scab, is the most economically important pathogen of pecan (Carya illinoinensis). A weather-based advisory is currently used in Oklahoma to assess the need for fungicide application and requires the accumulation of scab hours. A scab hour is defined as an hour of average temperature and relative humidity ≥ 21.1°C and 90%, respectively. To assess the validity of the thresholds in the advisory, repeated ratings of disease severity were taken on fruit each year during the 1994-96 and 2009-10 growing seasons. Hourly weather variables were also examined, including temperature, relative humidity, dew point, dew point depression, total solar radiation, and total rainfall. Rain and disease severity were converted to binomial variables where a rain event (≥2.5mm) and disease severity (≥25%) were coded as 1 and all other events as 0. Logistic regression models adjusted for correlated data were developed using generalized estimating equations. Two models were developed: a temperature/relative humidity model and a dew point/dew point depression model. For the temperature/relative humidity model, the best fitting model included all main effects. Using this model, validation exercises assuming no rain and total solar radiation of 22.5 MJ m-2 resulted in a 0.62 probability of pecan scab development when the temperature was 21°C and relative humidity was 90%. Findings of this model were further validated during field studies that evaluated different combinations of temperature and relative humidity thresholds for scheduling fungicide applications. These analyses indicated that the current thresholds of temperature and relative humidity are viable but a modification of the relative humidity component should be considered. For the dew point/dew point depression model, a reduced model, including dew point, dew point depression, and the binomial rain variable, was considered adequate for explaining scab events, which suggests that future model building to describe pecan scab epidemics should include dew point, dew point depression, rain, and total solar radiation as independent variables.
Collapse
Affiliation(s)
- A F Payne
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078
| | - D L Smith
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater 74078
| |
Collapse
|
18
|
Cockell CS, McKay CP, Warren-Rhodes K, Horneck G. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts – Dosimetric experiments in the hyperarid core of the Atacama Desert. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 90:79-87. [DOI: 10.1016/j.jphotobiol.2007.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/25/2022]
|
19
|
Valero A, Begum M, Leong SL, Hocking AD, Ramos AJ, Sanchis V, Marín S. Effect of germicidal UVC light on fungi isolated from grapes and raisins. Lett Appl Microbiol 2007; 45:238-43. [PMID: 17718833 DOI: 10.1111/j.1472-765x.2007.02175.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To examine how UVC affects the different genera of fungi commonly isolated from grapes, with the aim of understanding changes in mycobiota during grape ripening and possible applications for preventing grape decay during storage. METHODS AND RESULTS Spores of Aspergillus carbonarius, Aspergillus niger, Cladosporium herbarum, Penicillium janthinellum and Alternaria alternata (between 100-250 spores/plate agar) were UVC irradiated for 0 (control), 10, 20, 30, 60, 300 and 600 s. Plates were incubated at 25 degrees C and colonies were counted daily up to 7 days. Alternaria alternata and Aspergillus carbonarius were the most resistant fungi. Conidial germination in these species was reduced by approx. 25% after 10 s of exposure, compared with greater than 70% reduction for the remaining species tested. Penicillium janthinellum spores were the most susceptible at this wavelength. UVC exposures of 300 s prevented growth of all isolates studied, except for Alternaria alternata. CONCLUSIONS UVC irradiation plays a major role in selecting for particular fungi that dominate the mycobiota of drying grapes. SIGNIFICANCE AND IMPACT OF THE STUDY The UVC irradiation of harvested grapes could prevent germination of contaminant fungi during storage or further dehydration.
Collapse
Affiliation(s)
- A Valero
- Food Technology Department, University of Lleida, UTPV-CeRTA. Av., Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 2007; 6:252-66. [PMID: 17344961 DOI: 10.1039/b700019g] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting research emphasizes the importance of indirect UV radiation effects on plants, pathogens, herbivores, soil microbes and ecosystem processes below the surface. Although photosynthesis of higher plants and mosses is seldom affected by enhanced or reduced UV-B radiation in most field studies, effects on growth and morphology (form) of higher plants and mosses are often manifested. This can lead to small reductions in shoot production and changes in the competitive balance of different species. Fungi and bacteria are generally more sensitive to damage by UV-B radiation than are higher plants. However, the species differ in their UV-B radiation sensitivity to damage, some being affected while others may be very tolerant. This can lead to changes in species composition of microbial communities with subsequent influences on processes such as litter decomposition. Changes in plant chemical composition are commonly reported due to UV-B manipulations (either enhancement or attenuation of UV-B in sunlight) and may lead to substantial reductions in consumption of plant tissues by insects. Although sunlight does not penetrate significantly into soils, the biomass and morphology of plant root systems of plants can be modified to a much greater degree than plant shoots. Root mass can exhibit sizeable declines with more UV-B. Also, UV-B-induced changes in soil microbial communities and biomass, as well as altered populations of small invertebrates have been reported and these changes have important implications for mineral nutrient cycling in the soil. Many new developments in understanding the underlying mechanisms mediating plant response to UV-B radiation have emerged. This new information is helpful in understanding common responses of plants to UV-B radiation, such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such as growth, DNA damage, oxidative damage and induction of changes in secondary chemicals. Thus, use of a single BSWF for plant or ecosystem response is not appropriate. This brief review emphasizes progress since the previous report toward the understanding of solar ultraviolet radiation effects on terrestrial systems as it relates to ozone column reduction and the interaction of climate change factors.
Collapse
Affiliation(s)
- M M Caldwell
- Division of Environmental Biology, National Science Foundation, 4201 Wilson Blvd, Arlington, Virginia 22230, USA
| | | | | | | | | |
Collapse
|
21
|
Meyling NV, Eilenberg J. Isolation and characterisation of Beauveria bassiana isolates from phylloplanes of hedgerow vegetation. ACTA ACUST UNITED AC 2005; 110:188-95. [PMID: 16378721 DOI: 10.1016/j.mycres.2005.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 09/30/2005] [Indexed: 11/20/2022]
Abstract
A leaf imprinting technique combined with a selective medium was used to document the natural occurrence of Beauveria bassiana on phylloplanes of typical hedgerow plants (grasses, stinging nettle and hawthorn) in May, July and September in a hedgerow in Denmark. The density of B. bassiana (as measured by numbers of colony forming units) was greatest in September and on lower nettle leaves. B. bassiana was isolated from phylloplanes in a different hedgerow the following year and a similar picture of occurrence was found. Genetic diversity of selected in vitro isolates were characterised by Universally Primed (UP) PCR, and 13 distinguishable banding patterns were found at the two localities. Of these, four were shared between the field sites and all plant species harboured isolates of B. bassiana with at least two different banding patterns. The isolation method described represents a valuable tool for studying naturally occurring B. bassiana and for rapid isolation of indigenous strains of the fungus for future development of biocontrol agents. The significance of the findings for the life-cycle of B. bassiana is discussed.
Collapse
Affiliation(s)
- Nicolai V Meyling
- Department of Ecology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | |
Collapse
|