1
|
Torres T, Barros S, Neuparth T, Ruivo R, Santos MM. Using zebrafish embryo bioassays to identify chemicals modulating the regulation of the epigenome: a case study with simvastatin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22913-22928. [PMID: 36307569 DOI: 10.1007/s11356-022-23683-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Contaminants of emerging concern have been increasingly associated with the modulation of the epigenome, leading to potentially inherited and persistent impacts on apical endpoints. Here, we address the performance of the OECD Test No. 236 FET (fish embryo acute toxicity) in the identification of chemicals able to modulate the epigenome. Using zebrafish (Danio rerio) embryos, acute and chronic exposures were performed with the pharmaceutical, simvastatin (SIM), a widely prescribed hypocholesterolemic drug reported to induce inter and transgenerational effects. In the present study, the epigenetic effects of environmentally relevant concentrations of SIM (from 8 ng/L to 2000 ng/L) were addressed following (1) an acute embryo assay based on OECD Test No. 236 FET, (2) a chronic partial life-cycle exposure using adult zebrafish (90 days), and (3) F1 embryos obtained from parental exposed animals. Simvastatin induced significant effects in gene expression of key epigenetic biomarkers (DNA methylation and histone acetylation/deacetylation) in the gonads of exposed adult zebrafish and in 80 hpf zebrafish embryos (acute and chronic parental intergenerational exposure), albeit with distinct effect profiles between biological samples. In the chronic exposure, SIM impacted particularly DNA methyltransferase genes in males and female gonads, whereas in F1 embryos SIM affected mostly genes associated with histone acetylation/deacetylation. In the embryo acute direct exposure, SIM modulated the expression of both genes involved in DNA methylation and histone deacetylase. These findings further support the use of epigenetic biomarkers in zebrafish embryos in a high throughput approach to identify and prioritize epigenome-modulating chemicals.
Collapse
Affiliation(s)
- Tiago Torres
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Susana Barros
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados, Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - Teresa Neuparth
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Raquel Ruivo
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - Miguel Machado Santos
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
Lei Y, Guo J, Chen Q, Mo J, Tian Y, Iwata H, Song J. Transcriptomic Alterations in Water Flea ( Daphnia magna) following Pravastatin Treatments: Insect Hormone Biosynthesis and Energy Metabolism. TOXICS 2022; 10:toxics10030110. [PMID: 35324735 PMCID: PMC8952691 DOI: 10.3390/toxics10030110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Pravastatin, used for lowering cholesterol and further decreasing blood lipid, has been frequently detected in the contaminated freshwaters, whereas its long-term exposure effects on non-target aquatic invertebrates remains undetermined. Therefore, the purpose of this study was to evaluate the toxic effects of pravastatin (PRA) with the concentration gradients (0, 0.5, 50, 5000 μg/L) on a model water flea Daphnia magna (D. magna) over 21 d based on phenotypic and genome-wide transcriptomic analyses. After 21 d, exposure to PRA at 5000 μg/L significantly reduced the body length and increased the number of offspring. The 76, 167, and 499 differentially expressed genes (DEGs) were identified by using absolute log2 fold change < 1 and adj p < 0.05 as a cutoff in the 0.5, 50, and 5000 μg/L PRA treatment groups, respectively. Three pathways, including xenobiotic metabolism, insect hormone biosynthesis pathway, and energy metabolism were significantly (p < 0.05) enriched after exposure to PRA. These suggested that the upregulation of genes in insect biosynthetic hormone pathway increased the juvenile hormone III content, which further reduced the body length of D. magna. The positive effect of methyl farnesoate synthesis on the ovarian may result in the increased number of offspring. Furthermore, energy tended to be allocated to detoxification process and survival under stress conditions, as the amount of energy that an individual can invest in maintenance and growth is limited. Taken together, our results unraveled the toxic mechanism of cardiovascular and lipid pharmaceuticals in aquatic invertebrate.
Collapse
Affiliation(s)
- Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
- Correspondence: (J.G.); (J.S.); Tel.: +86-189-9233-8259 (J.G.); +86-150-0929-4609 (J.S.)
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime Prefecture, Japan;
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (Y.L.); (Q.C.); (Y.T.)
- Correspondence: (J.G.); (J.S.); Tel.: +86-189-9233-8259 (J.G.); +86-150-0929-4609 (J.S.)
| |
Collapse
|
3
|
Albendín MG, Aranda V, Coello MD, González-Gómez C, Rodríguez-Barroso R, Quiroga JM, Arellano JM. Pharmaceutical Products and Pesticides Toxicity Associated with Microplastics (Polyvinyl Chloride) in Artemia salina. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010773. [PMID: 34682526 PMCID: PMC8536102 DOI: 10.3390/ijerph182010773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Pharmaceutical products, as well as insecticides and antimicrobials, have been extensively studied, but knowledge of their effects-especially those caused by their mixtures with microplastics-on aquatic organisms remains limited. However, it should be borne in mind that the state of knowledge on acute and chronic effects in aquatic organisms for pharmaceuticals and pesticides is not similar. In response, this investigation analyzed the presence of microplastics (polyvinyl chloride) and their impacts on the toxicity of chlorpyrifos (an insecticide) and triclosan (an antibacterial) when they coincide in the environment, alongside the two most consumed drugs of their type (hypolipemic and anticonvulsant, respectively), namely simvastatin and carbamazepine, in Artemia salina. LC50 and cholinesterase enzyme activity were calculated to determine the possible neurotoxicity associated with emergent contaminants in the treatments. The LC50 values obtained were 0.006 mg/dm3 for chlorpyrifos, 0.012 mg/dm3 for chlorpyrifos associated with microplastics, 4.979 mg/dm3 for triclosan, 4.957 mg/dm3 for triclosan associated with microplastics, 9.35 mg/dm3 for simvastatin, 10.29 mg/dm3 for simvastatin associated with microplastics, 43.25 mg/dm3 for carbamazepine and 46.50 mg/dm3 for carbamazepine associated with microplastics in acute exposure. These results indicate that the presence of microplastics in the medium reduces toxicity, considering the LC50 values. However, exposure to chlorpyrifos and carbamazepine, both alone and associated with microplastics, showed a decline in cholinesterase activity, confirming their neurotoxic effect. Nevertheless, no significant differences were observed with the biomarker cholinesterase between the toxicant and the toxicant with microplastics.
Collapse
Affiliation(s)
- María Gemma Albendín
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - Vanessa Aranda
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - María Dolores Coello
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
- Correspondence:
| | - Carmen González-Gómez
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - Rocío Rodríguez-Barroso
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
| | - José María Quiroga
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
| | - Juana María Arellano
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| |
Collapse
|
4
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
5
|
Pereira A, Silva L, Laranjeiro C, Lino C, Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part II-Toxicity and Environmental Risk Assessment. Molecules 2020; 25:molecules25081796. [PMID: 32295269 PMCID: PMC7221825 DOI: 10.3390/molecules25081796] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a review on their toxicity and environmental risk assessment (ERA) in different aquatic compartments, important issues to tackle the water framework directive (WFD). The toxicity data collected reported, with the exception of anxiolytics, at least one toxicity value for concentrations below 1 µg L−1. The results obtained for the ERA revealed risk quotients (RQs) higher than 1 in all the aquatic bodies and for the three trophic levels, algae, invertebrates and fish, posing ecotoxicological pressure in all of these compartments. The therapeutic groups with higher RQs were hormones, antiepileptics, anti-inflammatories and antibiotics. Unsurprisingly, RQs values were highest in wastewaters, however, less contaminated water bodies such as groundwaters still presented maximum values up to 91,150 regarding 17α-ethinylestradiol in fish. Overall, these results present an important input for setting prioritizing measures and sustainable strategies, minimizing their impact in the aquatic environment.
Collapse
|
6
|
Barros S, Montes R, Quintana JB, Rodil R, André A, Capitão A, Soares J, Santos MM, Neuparth T. Chronic environmentally relevant levels of simvastatin disrupt embryonic development, biochemical and molecular responses in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:47-57. [PMID: 29879595 DOI: 10.1016/j.aquatox.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). Globally, SIM induced several effects that did not follow a dose-response relationship; embryonic development, biochemical and molecular markers, were significantly impacted in the lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of statin effects in teleosts, demonstrating significant impacts at environmentally relevant concentrations and highlight the importance of addressing the effects of chemicals under chronic low-level concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
7
|
Cunha V, Santos MM, Moradas-Ferreira P, Castro LFC, Ferreira M. Simvastatin modulates gene expression of key receptors in zebrafish embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:465-476. [PMID: 28682217 DOI: 10.1080/15287394.2017.1335258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptors (NR) are involved in the regulation of several metabolic processes and it is well known that these constituents may be modulated by different chemicals classes, including pharmaceuticals that may activate or antagonize NR. In mammals, some pharmaceuticals modulate the transcription of pregnane X receptor, Pxr, peroxisome proliferator activated receptor, Ppars, and aryl hydrocarbon receptor, Ahr, affecting mRNA expression of genes belonging to various regulatory pathways, including lipid metabolism and detoxification mechanisms. The aim of this study was to determine the effects of simvastatin (SIM), an anticholesterolemic drug, on selected NR and AhR mRNA transcription levels during zebrafish early development. Embryos were collected at different development stages (0, 2, 6, 14, 24, 48, and 72 hr post fertilization (hpf)) and mRNA of all target NR was detected at all time points. Embryos (1 and 24 hpf) were exposed to different concentrations of SIM (5 or 50 μg/L) in two differing assays with varying exposure times (2 or 80 hr). The transcription levels of ahr2, raraa, rarab, rarga, pparαa, pparβ1, pparγ, pxr, rxraa, rxrab, rxrbb, rxrga, rxrgb, as well as levels of cholesterol (Chol) were measured after exposure. SIM exerted no marked effect on Chol levels, and depending upon exposure duration mRNA levels of NR and AhR either increased or decreased. After 2 hr SIM treatment in 24 hpf embryos, transcription of ppars, pxr, and ahr was up-regulated, while after 80 hr mRNA levels of pxr and ahr were decreased with no marked changes in ppars. Data demonstrate that SIM produced alterations in gene expression of NR which are involved in varying physiological functions and that may disturb regulation of different physiological processes which might impair fish survival and ecosystems regeneration.
Collapse
Affiliation(s)
- V Cunha
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - M M Santos
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - P Moradas-Ferreira
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
- d I3S-Institute for Research and Innovation in Health, University of Porto , Porto , Portugal
| | - L F C Castro
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - M Ferreira
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- e School of Marine Studies, Faculty of Science , Technology and Environment, The University of the South Pacific, Private mail box, Laucala Bay Road , Suva , Fiji Islands
| |
Collapse
|
8
|
Cunha V, Santos MM, Moradas-Ferreira P, Ferreira M. Simvastatin effects on detoxification mechanisms in Danio rerio embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10615-10629. [PMID: 27040680 DOI: 10.1007/s11356-016-6547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
The transcription and protein activity of defence mechanisms such as ABC transporters, phase I and II of cellular detoxification and antioxidant enzymes can be altered in the presence of emerging contaminants such as pharmaceuticals impacting the overall detoxification mechanism. The present work aimed to characterise the effects of simvastatin on the detoxification mechanisms of embryonic stages of Danio rerio. In a first approach, constitutive transcription of key genes involved in detoxification was determined. Embryos were collected at different developmental stages, and transcription patterns of genes coding for ABC transporters, phase I and II and oxidative stress were analysed. With exception of abcc2, all genes seem to be from maternal transfer (0-2 hpf). Embryos were then exposed to different concentrations of simvastatin (5 and 50 μg/L), verapamil and MK571 (10 μM; ABC protein inhibitors) and a combination of simvastatin and ABC inhibitors. mRNA expression levels of abcb4, abcc1, abcc2, abcg2, cyp1a, cyp3a65, gst, sod, cat was evaluated. Accumulation assays to measure ABC proteins activity and activity of EROD, GST, CAT and Cu/ZnSOD, were also undertaken. Simvastatin acted as a weak inhibitor of ABC proteins and increased EROD and GST activity, whereas Cu/ZnSOD and CAT activity were decreased. Simvastatin up-regulated abcb4 and cyp3a65 transcription (both concentrations), as well as abcc1 and abcc2 at 50 μg/L, and down-regulated gst, sod, cat at 5 μg/L. In conclusion, our data revealed the interaction of simvastatin with detoxification mechanisms highlighting the importance of monitoring the presence of this emerging contaminant in aquatic environments.
Collapse
Affiliation(s)
- V Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - M M Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - P Moradas-Ferreira
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- I3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC, Institute for Molecular and Cell Biology, Porto, Portugal
| | - M Ferreira
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal
- School of Marine Studies, Faculty of Science, Technology and Environment, The University of South Pacific, Laucala Bay Road, Suva, Fiji Islands
| |
Collapse
|
9
|
Santos MM, Ruivo R, Lopes-Marques M, Torres T, de los Santos CB, Castro LFC, Neuparth T. Statins: An undesirable class of aquatic contaminants? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:1-9. [PMID: 26896816 DOI: 10.1016/j.aquatox.2016.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Emerging pollutants, such as pharmaceuticals, may pose a considerable environment risk. Hypocholesterolaemic drugs such as statins are among the most prescribed human pharmaceuticals in western European countries. In vertebrates, this therapeutic class disrupts the cholesterol synthesis by inhibiting the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), responsible for the limiting step in the mevalonate pathway. Recently, functional studies have shown that statins competitively inhibit HMGR in vertebrates and arthropods, two taxa that have diverged over 450 million years ago. Importantly, chronic simvastatin exposure disrupts crustacean reproduction and development at environmentally relevant concentrations. Hence, a fundamental question emerges: what is the taxonomic scope of statins-induced HMGR inhibition across metazoans? Here, we address this central question in a large sampling of metazoans using comparative genomics, homology modelling and molecular docking. Sequence alignment of metazoan HMGRs allowed the annotation of highly conserved catalytic, co-factor and substrate binding sites, including residues highjacked for statin binding. Furthermore, molecular docking shows that the catalytic domains of metazoan HMGRs are highly conserved regarding interactions, not only with HMG-CoA, but also with both simvastatin and atorvastatin, the top prescribed statins in Europe and USA. Hence, the data indicates that both statins are expected to competitively inhibit metazoan's HMGRs, and therefore all metazoan taxa might be at risk. The environmental relevance of these findings are discussed and research priorities established. We believe that the conceptual framework used in this study can be applied to other emerging pollutants and assist in the design of toxicity testing and risk assessment.
Collapse
Affiliation(s)
- Miguel M Santos
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Mónica Lopes-Marques
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Tiago Torres
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Carmen B de los Santos
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| |
Collapse
|
10
|
Ferreira TS, Lanzetti M, Barroso MV, Rueff-Barroso CR, Benjamim CF, de Brito-Gitirana L, Porto LC, Valença SS. Oxidative stress and inflammation are differentially affected by atorvastatin, pravastatin, rosuvastatin, and simvastatin on lungs from mice exposed to cigarette smoke. Inflammation 2015; 37:1355-65. [PMID: 24609836 DOI: 10.1007/s10753-014-9860-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our aim was to investigate the effects of four different statins on acute lung inflammation induced by cigarette smoke (CS). C57BL/6 male mice were divided into a control group (sham-smoked) and mice exposed to CS from 12 cigarettes/day for 5 days. Mice exposed to CS were grouped and treated with vehicle (i.p.), atorvastatin (10 mg/kg), pravastatin (10 mg/kg), rosuvastatin (5 mg/kg), or simvastatin (20 mg/kg). Treatment with statins differentially improved the pulmonary response when compared to the CS group. Atorvastatin and pravastatin demonstrated slightly effects on inflammation and oxidative stress. Rosuvastatin demonstrated the best anti-inflammatory effect, whereas simvastatin demonstrated the best antioxidant response.
Collapse
Affiliation(s)
- Thiago Santos Ferreira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ribeiro S, Torres T, Martins R, Santos MM. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:67-74. [PMID: 25615533 DOI: 10.1016/j.ecoenv.2015.01.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 05/17/2023]
Abstract
Early life-stage bioassays have been used as an alternative to short-term adult toxicity tests since they are cost-effective. A single couple can produce hundreds or thousands of embryos and hence can be used as a simple high-throughput approach in toxicity studies. In the present study, zebrafish and sea urchin embryo bioassays were used to test the toxicity of four pharmaceuticals belonging to different therapeutic classes: diclofenac, propranolol, simvastatin and sertraline. Simvastatin was the most toxic tested compound for zebrafish embryo, followed by diclofenac. Sertraline was the most toxic drug to sea urchin embryos, inducing development abnormalities at the ng/L range. Overall, our results highlight the potential of sea urchin embryo bioassay as a promising and sensitive approach for the high-throughput methods to test the toxicity of new chemicals, including pharmaceuticals, and identify several drugs that should go through more detailed toxicity assays.
Collapse
Affiliation(s)
- Sílvia Ribeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Rosário Martins
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
12
|
Neuparth T, Martins C, Santos CBDL, Costa MH, Martins I, Costa PM, Santos MM. Hypocholesterolaemic pharmaceutical simvastatin disrupts reproduction and population growth of the amphipod Gammarus locusta at the ng/L range. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:337-347. [PMID: 25089922 DOI: 10.1016/j.aquatox.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/20/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic drug, is among the most widely used pharmaceuticals worldwide and is therefore of emerging environmental concern. Despite the ubiquitous nature of SIM in the aquatic ecosystems, significant uncertainties exist about sublethal effects of the drug in aquatic organisms. Therefore, here we aimed at investigating a multi-level biological response in the model amphipod Gammarus locusta, following chronic exposures to low levels of SIM (64 ng/L to 8 μg/L). The work integrated a battery of key endpoints at individual-level (survival, growth and reproduction) with histopathological biomarkers in hepatopancreas and gonads. Additionally, an individual-based population modelling was used to project the ecological costs associated with long-term exposure to SIM at the population level. SIM severely impacted growth, reproduction and gonad maturation of G. locusta, concomitantly to changes at the histological level. Among all analysed endpoints, reproduction was particularly sensitive to SIM with significant impact at 320 ng/L. These findings have important implications for environmental risk assessment and disclose new concerns about the effects of SIM in aquatic ecosystems.
Collapse
Affiliation(s)
- Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal.
| | - Carla Martins
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carmen B de Los Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Maria H Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Irene Martins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Pedro M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
13
|
Brausch JM, Connors KA, Brooks BW, Rand GM. Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:1-99. [PMID: 22488604 DOI: 10.1007/978-1-4614-3137-4_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although an increasingly large amount of data exists on the acute and chronic aquatic toxicity of pharmaceuticals, numerous questions still remain. There remains a dearth of information pertaining to the chronic toxicity of bivalves, benthic invertebrates, fish, and endangered species, as well as study designs that examine mechanism-of-action (MOA)-based toxicity, in vitro and computational toxicity, and pharmaceutical mixtures. Studies examining acute toxicity are prolific in the published literature; therefore, we address many of the shortcomings in the literature by proposing "intelligent" well-designed aquatic toxicology studies that consider comparative pharmacokinetics and pharmacodynamics. For example, few studies on the chronic responses of aquatic species to residues of pharmaceuticals have been performed, and very few on variables that are plausibly linked to any therapeutic MOA. Unfortunately, even less is understood about the metabolism of pharmaceuticals in aquatic organisms. Therefore, it is clear that toxicity testing at each tier of an ecological risk assessment scheme would be strengthened for some pharmaceuticals by selecting model organisms and endpoints to address ecologically problematic MOAs. We specifically recommend that future studies employ AOP approaches (Ankley et al. 2010) that leverage mammalian pharmacology information, including data on side effects and contraindications. Use of conceptual AOP models for pharmaceuticals can enhance future studies in ways that assist in the development of more definitive ecological risk assessments, identify chemical classes of concern, and help protect ecosystems that are affected by WWTP effluent discharge.
Collapse
Affiliation(s)
- John M Brausch
- Ecotoxicology and Risk Assessment Laboratory, Department of Earth and Environment, Southeastern Environmental Research Center, Florida International University, 3000 NE 151st St, North Miami, FL 33181, USA
| | | | | | | |
Collapse
|
14
|
Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2010; 175:45-95. [PMID: 19954887 DOI: 10.1016/j.jhazmat.2009.10.100] [Citation(s) in RCA: 835] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/17/2009] [Accepted: 10/27/2009] [Indexed: 05/02/2023]
Abstract
Pharmaceuticals are biologically active and persistent substances which have been recognized as a continuing threat to environmental stability. Chronic ecotoxicity data as well as information on the current distribution levels in different environmental compartments continue to be sparse and are focused on those therapeutic classes that are more frequently prescribed and consumed. Nevertheless, they indicate the negative impact that these chemical contaminants may have on living organisms, ecosystems and ultimately, public health. This article reviews the different contamination sources as well as fate and both acute and chronic effects on non-target organisms. An extensive review of existing data in the form of tables, encompassing many therapeutic classes is presented.
Collapse
Affiliation(s)
- Lúcia H M L M Santos
- REQUIMTE, Faculty of Pharmacy, University of Porto - Rua Anibal Cunha, 164, 4050-047 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Key PB, Hoguet J, Chung KW, Venturella JJ, Pennington PL, Fulton MH. Lethal and sublethal effects of simvastatin, irgarol, and PBDE-47 on the estuarine fish, Fundulus heteroclitus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2009; 44:379-382. [PMID: 19365754 DOI: 10.1080/03601230902801083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study investigated the effects of simvastatin, a lipid-regulating drug; irgarol, an antifouling biocide; and PBDE-47, a brominated flame retardant, on the estuarine fish, Fundulus heteroclitus. Sublethal effects (changes in glutathione (GSH), lipid peroxidation (LPx), acetylcholinesterase (AChE), and cholesterol (CHL) levels) and lethal effects (survival) were determined after individual exposure to the three compounds. There were no significant differences in GSH or CHL levels in fish exposed to any of the test compounds. LPx levels significantly decreased with increasing irgarol concentrations. AChE levels were significantly lower in fish exposed to simvastatin at the 1.25 mg/L concentration and significantly higher at the PBDE-47 concentration of 0.0125 mg/L. The LC50 values were 2.68, 3.22, and > 0.1 mg/L for simvastatin, irgarol and PBDE-47, respectively.
Collapse
Affiliation(s)
- Peter B Key
- National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, USA.
| | | | | | | | | | | |
Collapse
|
16
|
DeLorenzo ME, Fleming J. Individual and mixture effects of selected pharmaceuticals and personal care products on the marine phytoplankton species Dunaliella tertiolecta. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 54:203-10. [PMID: 17846821 DOI: 10.1007/s00244-007-9032-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) entering the environment may have detrimental effects on aquatic organisms. Simvastatin, clofibric acid, diclofenac, carbamazepine, fluoxetine, and triclosan represent some of the most commonly used and/or detected PPCPs in aquatic environments. This study analyzed the individual and mixture toxicity of these six PPCPs to the marine phytoplankton species Dunaliella tertiolecta using a standard 96-hour static algal bioassay protocol. All PPCPs tested had a significant effect on D. tertiolecta population cell density. However, of the six PPCPs tested, only triclosan yielded toxicity at typical environmental concentrations. The 96-hour EC(50) values for triclosan, fluoxetine, simvastatin, diclofenac, and clofibric acid were 3.55 microg/L, 169.81 microg/L, 22,800 microg/L, 185,690 microg/L, and 224,180 microg/L, respectively. An EC(50) value could not be determined for carbamazepine; however, the highest concentration tested (80,000 microg/L) reduced cell density by 42%. Both mixtures tested-simvastatin-clofibric acid and fluoxetine-triclosan-demonstrated additive toxicity. The presence of PPCP mixtures may decrease the toxicity threshold for phytoplankton populations. Detrimental effects on phytoplankton populations could ultimately impact nutrient cycling and food availability to higher trophic levels. The results of this study are a first step toward identifying the risk of PPCPs to estuarine organisms and may benefit environmental resource managers.
Collapse
Affiliation(s)
- Marie E DeLorenzo
- US Department of Commerce/NOAA, National Ocean Service, Coastal Center for Environmental Health and Biomolecular Research, Charleston, SC 29412, USA.
| | | |
Collapse
|