1
|
Chang Y, Chiang CK. The Impact of Thallium Exposure in Public Health and Molecular Toxicology: A Comprehensive Review. Int J Mol Sci 2024; 25:4750. [PMID: 38731969 PMCID: PMC11084277 DOI: 10.3390/ijms25094750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a synthesis of the current understanding of the impact of low-dose thallium (Tl) on public health, specifically emphasizing its diverse effects on various populations and organs. The article integrates insights into the cytotoxic effects, genotoxic potential, and molecular mechanisms of thallium in mammalian cells. Thallium, a non-essential heavy metal present in up to 89 different minerals, has garnered attention due to its adverse effects on human health. As technology and metallurgical industries advance, various forms of thallium, including dust, vapor, and wastewater, can contaminate the environment, extending to the surrounding air, water sources, and soil. Moreover, the metal has been identified in beverages, tobacco, and vegetables, highlighting its pervasive presence in a wide array of food sources. Epidemiological findings underscore associations between thallium exposure and critical health aspects such as kidney function, pregnancy outcomes, smoking-related implications, and potential links to autism spectrum disorder. Thallium primarily exerts cellular toxicity on various tissues through mitochondria-mediated oxidative stress and endoplasmic reticulum stress. This synthesis aims to shed light on the intricate web of thallium exposure and its potential implications for public health, emphasizing the need for vigilant consideration of its risks.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
2
|
Huang YY, Paul GV, Hsu T. Thallium(I) induces a prolonged inhibition of (6-4)photoproduct binding and UV damage excision repair activities in zebrafish (Danio rerio) embryos via protein inactivation. Chem Biol Interact 2024; 388:110837. [PMID: 38104746 DOI: 10.1016/j.cbi.2023.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Cyclobutane pyrimidine dimer (CPD) and (6-4)photoproduct (6-4 PP) are two major types of UV-induced DNA lesion and 6-4 PP is more mutagenic than CPD. Activated by lesion detection, nucleotide excision repair (NER) eliminates CPDs and 6-4 PPs. Thallium (Tl) is a toxic metal existing primarily as Tl+ in the aquatic environment. Ingestion of Tl+-contaminated foods and water is a major route of human poisoning. As Tl+ may inhibit enzyme activities via binding to sulfhydryl groups, this study explored if Tl+ could intensify UV mutagenicity by inactivating NER-linked damage recognition factors using zebrafish (Danio rerio) embryo as a model system. Incubation of Tl+ (as thallium nitrate) at 0.1-0.4 μg/mL with zebrafish extracts for 20 min caused a concentration-dependent inhibition of 6-4 PP binding activities as shown by a photolesion-specific band shift assay, while CPD binding activities were insensitive to Tl+. The ability of Tl+ to suppress 6-4 PP detection was stronger than that of Hg2+. Exposure of zebrafish embryos at 1 h post fertilization (hpf) to Tl+ at 0.4-1 μg/mL for 9 or 71 h also specifically inhibited 6-4 PP detection, indicating that Tl+ induced a prolonged inhibition of 6-4 PP sensing ability primarily via its direct interaction with damage recognition molecules. Tl+-mediated inhibition of 6-4 PP binding in embryos at distinct stages resulted in a suppression of NER capacity monitored by a transcription-based DNA repair assay. Our results revealed the potential of Tl+ to enhance UV mutagenicity by disturbing the removal of 6-4 PP through repressing the lesion detection step of NER.
Collapse
Affiliation(s)
- Ya-Yun Huang
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Ganjai Vikram Paul
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
3
|
Ma J, Geng S, Sun Q, Zhang X, Han L, Yao X, Zhang B, Zhu L, Wen J. Exposure to metal mixtures and young children's growth and development: A biomonitoring-based study in Eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115726. [PMID: 37992646 DOI: 10.1016/j.ecoenv.2023.115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Exposure to metal mixtures may affect children's health but the conclusions are controversial. We aimed to investigate the associations of metal mixture exposure with children's physical and behavioral development. 15 metals were detected in the urine samples of 278 preschoolers aged 3-6 years from eastern China. Multiple linear models and restricted cubic splines were used to evaluate dose-response relationships between single metal and children's physical and behavioral development. The Bayesian Kernel Machine Regression (BKMR) models, the weighted quantile sum (WQS) models and Quantile G-Computation were applied to evaluate the joint effects of metal mixtures. The results showed that arsenic (As) was negatively associated with z score of height for age (HAZ) in individual-metal models [β (95%CI): - 0.22 (-0.38, -0.06), P = 0.006]. Concerning children's behavioral development, multiple-metal models demonstrated a negative association with strontium (Sr) [β (95%CI): - 0.82 (-1.38, -0.26), P = 0.004], and a positive association with tin (Sn) [β (95%CI): 0.69 (0.16, 1.21), P = 0.010]. Notably, these associations remained significant or suggestive even after adjustments for multiple tests, sensitivity analyses, and application of different statistical models, including BKMR, WQS, and Quantile G-Computation. Furthermore, the study identified a negative joint effect of the metal mixture on HAZ, as demonstrated by BKMR and Quantile G-Computation models, with As playing an irreplaceable role in this observed impact. In summary, exposure to As appears to have adverse effects on HAZ, while exposure to Sn may hinder children's behavioral development. Conversely, exposure to Sr may have a protective effect on children's behavioral development. Additionally, the combined impact of metal mixtures is implicated in potentially impairing children's physical development, particularly in terms of HAZ.
Collapse
Affiliation(s)
- Jiehua Ma
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Linxue Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Biqin Zhang
- Dumeng Kindergarten of Suzhou High-tech Zone, Suzhou 215011, Jiangsu, China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, China.
| |
Collapse
|
4
|
Sánchez-Chapul L, Santamaría A, Aschner M, Ke T, Tinkov AA, Túnez I, Osorio-Rico L, Galván-Arzate S, Rangel-López E. Thallium-induced DNA damage, genetic, and epigenetic alterations. Front Genet 2023; 14:1168713. [PMID: 37152998 PMCID: PMC10157259 DOI: 10.3389/fgene.2023.1168713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Thallium (Tl) is a toxic heavy metal responsible for noxious effects in living organisms. As a pollutant, Tl can be found in the environment at high concentrations, especially in industrial areas. Systemic toxicity induced by this toxic metal can affect cell metabolism, including redox alterations, mitochondrial dysfunction, and activation of apoptotic signaling pathways. Recent focus on Tl toxicity has been devoted to the characterization of its effects at the nuclear level, with emphasis on DNA, which, in turn, may be responsible for cytogenetic damage, mutations, and epigenetic changes. In this work, we review and discuss past and recent evidence on the toxic effects of Tl at the systemic level and its effects on DNA. We also address Tl's role in cancer and its control.
Collapse
Affiliation(s)
- Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A. Tinkov
- Yaroslavl State University, Medical University (Sechenov University), Moscow, Russia
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba, Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina Y Enfermería, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Universidad de, Córdoba, Spain
| | - Laura Osorio-Rico
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
5
|
Rangel-López E, Robles-Bañuelos B, Guadiana-Ramírez N, Alvarez-Garduño V, Galván-Arzate S, Zazueta C, Karasu C, Túnez I, Tinkov A, Aschner M, Santamaría A. Thallium Induces Antiproliferative and Cytotoxic Activity in Glioblastoma C6 and U373 Cell Cultures via Apoptosis and Changes in Cell Cycle. Neurotox Res 2022; 40:814-824. [PMID: 35476314 DOI: 10.1007/s12640-022-00514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Thallium (Tl+) is a heavy metal that causes toxicity in several organs, including the brain. Its cytotoxic profile, combined with its affinity for tumor cells when used as a radioligand for labeling these cells, suggests its potential use as antitumor therapy. In this study, glioblastoma cell lines C6 (from rat) and U373 (from human) were exposed to increased concentrations of thallium(I) acetate (5, 10, 50, 100, or 200 µM) and several toxic endpoints were evaluated, including loss of confluence and morphological changes, loss of cell viability, changes in cell cycle, and apoptosis. Tl+ was detected in cells exposed to thallium(I) acetate, demonstrating efficient uptake mechanism. Confluence in both cell lines decreased in a concentration-dependent manner (50-200 µM), while morphological changes (cell shrinkage and decreased cell volume) were more evident at exposures to higher Tl+ concentrations. For both parameters, the effects of Tl+ were more prominent in C6 cells compared to U373 cells. The same trend was observed for cell viability, with Tl+ affecting this parameter in C6 cells at low concentrations, whereas U373 cells showed greater resistance, with significant changes observed only at the higher concentrations. C6 and U373 cells treated with Tl+ also showed morphological characteristics corresponding to apoptosis. The cytotoxic effects of Tl+ were also assessed in neural and astrocytic primary cultures from the whole rat brain. Primary neural and astrocytic cultures were less sensitive than C6 and U373 cells, showing changes in cell viability at 50 and 100 µM concentrations, respectively. Cell cycle in both brain tumor cell lines was altered by Tl+ in G1/G2 and S phases. In addition, when combined with temozolamide (500 µM), Tl+ elicited cell cycle alterations, increasing SubG1 population. Combined, our novel results characterize and validate the cytotoxic and antiproliferative effects of Tl+ in glioblastoma cells.
Collapse
Affiliation(s)
- Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - Benjamín Robles-Bañuelos
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Natalia Guadiana-Ramírez
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Valeria Alvarez-Garduño
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Turkey
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Córdoba, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain.,Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| |
Collapse
|
6
|
Varão AM, Silva JDS, Amaral LO, Aleixo LLP, Onduras A, Santos CS, Silva LPD, Ribeiro DE, Filho JLL, Bornhorst J, Stiboller M, Schwerdtle T, Alves LC, Soares FAA, Gubert P. Toxic effects of thallium acetate by acute exposure to the nematode C. elegans. J Trace Elem Med Biol 2021; 68:126848. [PMID: 34479099 DOI: 10.1016/j.jtemb.2021.126848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Thallium (Tl) is a toxic metalloid and an emerging pollutant due to electronic devices and dispersal nearby base-metal mining. Therefore, Tl poses a threat to human health and especially the long-term impact on younger individuals exposed is still unknown. This study aimed to evaluate the toxic effects of thallium acetate in C. elegans in early larval stages, considering physiological and behavioral endpoints, as well as the Tl absorption and bioaccumulation. METHODS Caenorhabditis elegans (C. elegans) was exposed to Thallium acetate (50, 100, 150, 200, 250, 500, and 1000 μM) in the L1 larval stage, with the purpose to observe the toxic effects invoked until adulthood. Transgenic worms strains were transported GFP, reporters to DAF-16 and were used to verify the antioxidant response. ICP-MS quantified total Tl+ concentration to evidence Tl uptake and bioaccumulation. RESULTS Thallium acetate caused a significant reduction in the number of living worms (p < 0.0001 in 100-1000 μM), a delay in larval development (p < 0.01; p < 0.001 and p < 0.0001 in 100-1000 μM) through the larval stages, and egg production in the worm's uterus was reduced. Thallium acetate also induced behavioral changes. Additionally, thallium acetate activated antioxidant pathway responses in C. elegans by translocating the DAF-16 transcription factor and activation of SOD-3::GFP expression. The Tl+ quantification in worms showed its absorption in the L1 larval stage and bioaccumulation in the body after development. CONCLUSIONS Thallium acetate reduced survival, delayed development, caused behavioral changes, induced responses inherent to oxidative stress, and serious damage to the worm's reproduction. In addition, C. elegans absorbed and bioaccumulated Tl+. Together, our results highlight the impacts of Tl+ exposure in the early stages of life, even for a short period.
Collapse
Affiliation(s)
- A M Varão
- MS(4)Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil; Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - J D S Silva
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L O Amaral
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L L P Aleixo
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Onduras
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - C S Santos
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - L P D Silva
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - D E Ribeiro
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J L L Filho
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - M Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - T Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - L C Alves
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil; Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Parasitology, Brazil
| | - F A A Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, 97105900, Santa Maria, RS, Brazil
| | - P Gubert
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil; Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
7
|
Reyes-Rodríguez MDLÁ, Santos-Cruz LF, García-Castro C, Durán-Díaz Á, Castañeda-Partida L, Dueñas-García IE, Heres-Pulido ME, Rodríguez-Mercado JJ. Genotoxicity and cytotoxicity evaluation of two thallium compounds using the Drosophila wing somatic mutation and recombination test. Heliyon 2021; 7:e07087. [PMID: 34136682 PMCID: PMC8176319 DOI: 10.1016/j.heliyon.2021.e07087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Thallium (Tl) is a heavy and toxic metal and a byproduct of several human activities, such as cement production, mining, and coal combustion. Thallium is found in fruits, vegetables, and animal fodder with high Tl contamination; therefore, it is an environmental pollution issue and a toxicological contamination problem for human beings and other organisms when exposed to it. The mutagenic potential of Tl and its compounds is controversial, and there are few in vivo studies on its effects. We conducted the animal bioassay Drosophila wing somatic mutation and recombination test (SMART) to test for genotoxicity and assessed the genotoxic effects of Tl acetate (TlCH3COO) and Tl sulfate (Tl2SO4) on Drosophila melanogaster. Third instar larvae from the SMART standard cross (ST) were fed Tl acetate [0.2, 2, 20, 200, 600 and 1200 μM] and Tl sulfate [0.2, 2, 20, 200, and 600 μM]. Hexavalent chromium [CrO3, 500 μM] served as the positive control, and Milli-Q water served as the negative control. Only the high Tl2SO4 [600 μM] concentration resulted in genotoxicity with 87.6% somatic recombination, and both salts disrupted cell division of wing imaginal disc cells, showing the expected cytotoxic effects. Genotoxic risks due to high metal levels by bioaccumulation of Tl+1 or its compounds require further evaluation with other in vivo and in vitro assays.
Collapse
Affiliation(s)
- María de los Ángeles Reyes-Rodríguez
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Felipe Santos-Cruz
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Carlos García-Castro
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Ángel Durán-Díaz
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Laura Castañeda-Partida
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Irma Elena Dueñas-García
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - María Eugenia Heres-Pulido
- Laboratorio de Genética Toxicológica, Matemáticas, Biología, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), FES Zaragoza, Campus II, UNAM, Iztapalapa, C.P. 15000, CdMx, Mexico
- Corresponding author.
| |
Collapse
|
8
|
Tong J, Liang CM, Huang K, Xiang HY, Qi J, Feng LL, Lai YP, Shao SS, Wu XY, Tao FB. Prenatal serum thallium exposure and 36-month-old children's attention-deficit/hyperactivity disorder symptoms: Ma'anshan birth cohort study. CHEMOSPHERE 2020; 244:125499. [PMID: 32050328 DOI: 10.1016/j.chemosphere.2019.125499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal that has been suggested to be responsible for oxidative stress and mitochondrial dysfunction. However, few studies have focused on the relationship of prenatal Tl exposure with children's neurobehavioural development. The purpose of our study was to investigate the association between prenatal Tl exposure and attention-deficit/hyperactivity disorder (ADHD) symptoms in 36-month-old children. We used data from 2851 mother-newborn pairs from the Ma'anshan Birth Cohort Study (MABC); serum Tl concentration was assessed in the first, second and third trimesters of pregnancy as well as in the umbilical cord blood. We assessed ADHD symptoms in the children using the Chinese version of the Conners abbreviated symptom questionnaire (C-ASQ). The adjusted odds ratio (OR) for the risk of ADHD symptoms was 2.00 [95% confidence interval (CI): 1.20, 3.32] and 2.08 (95% CI: 1.26, 3.43) for the third (60.25-75.21 ng/L) and fourth quartiles of serum Tl (>75.21 ng/L), respectively, in the second trimester of pregnancy, in comparison with the first quartile of serum Tl (<50.86 ng/L). The risk of ADHD symptoms was elevated among boys exposed to the fourth quartile of serum Tl in the second trimester of pregnancy (adjusted OR 2.08, 95% CI: 1.13, 3.83). Our results demonstrated that high levels of Tl exposure in the second trimester of pregnancy were related to a higher risk of ADHD symptoms in 36-month-old children, and the association of higher serum Tl exposure in the second trimester with ADHD symptoms was only found in boys.
Collapse
Affiliation(s)
- Juan Tong
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Kung Huang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Hai-Yun Xiang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Juan Qi
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lan-Lan Feng
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ya-Ping Lai
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shan-Shan Shao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Xiao-Yan Wu
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
9
|
Xu H, Luo Y, Wang P, Zhu J, Yang Z, Liu Z. Removal of thallium in water/wastewater: A review. WATER RESEARCH 2019; 165:114981. [PMID: 31446296 DOI: 10.1016/j.watres.2019.114981] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The frequent occurrence of thallium (Tl) in surface water has led to the imposition of strict environmental regulations. The need for an overview of effective and feasible technology to remove Tl from water/wastewater has therefore become urgently. This review introduced the current available methods for Tl removal, including adsorption, oxidation-reduction precipitation, solvent extraction and ion exchange processes, and summarized their advantages and disadvantages. The results showed that a single treatment technology was difficult to remove Tl to a trace level of "μg L-1", which required combined multi-technology to enhance the removal efficiency. In addition, the potential emergency and feasible technologies for Tl removal were recommended. However, several fundamental issues, such as the comparative toxicity of Tl(I) and Tl(III), the confliction of hydrolysis constants, the interference of complexant ligands as well as the influence of redox potential, were still needed to be addressed, since they would profoundly affect the selection of adopted treatment methods and the behavior of Tl removal. Future research efforts concerning the improvement of existing Tl removal technologies should be devoted to (a) developing multi-functional chemicals and adsorbents, non-toxic extractants, easy-recovery ion exchange resin and high-efficient coupling technology for advanced treatment, (b) carrying out large-scale experiments and economic assessment for real wastewater, and (c) providing safe-disposal treatment for the exhausted adsorption materials or sludge.
Collapse
Affiliation(s)
- Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuanling Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Changsha Environmental Protection College, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
10
|
Qi J, Lai Y, Liang C, Yan S, Huang K, Pan W, Feng L, Jiang L, Zhu P, Hao J, Tong S, Tao F. Prenatal thallium exposure and poor growth in early childhood: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2019; 123:224-230. [PMID: 30537637 DOI: 10.1016/j.envint.2018.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/13/2018] [Accepted: 12/04/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Thallium (Tl) exposure remains a public health problem with potential impacts on humans. Studies have suggested that prenatal exposure to thallium may be associated with fetal growth, but no studies are known have explored its association with early childhood anthropometry. OBJECTIVE To investigate the effects of prenatal Tl exposures on early child growth and development aged 0-2 years in a prospective birth cohort study. METHODS 3080 pregnant women and their children participated in the study, which were recruited from a birth cohort in China. Serum samples collected in the first and second trimester of pregnant subjects and umbilical cord blood of infants were analyzed for Tl exposure assessment. Infant length or standing height and weight were obtained from medical records and 2 years planned visits. We used length/height and weight to calculate z-scores for weight-for-age (WAZ), height-for-age (HAZ), weight-for-height (WHZ), and body mass index-for-age (zBMI) based on World Health Organization standards. Linear mixed model was used to investigate the association between serum concentrations of Tl and the children's anthropometric characteristics (WAZ, HAZ, WHZ, and zBMI), and stratification analysis by sex was also examined. RESULTS The median (P25-P75) of Tl levels in the first trimester, second trimester and umbilical cord serum were 61.7 (50.7-77.0), 60.1 (50.9-74.8) and 38.4 (33.6-43.9) ng/L, respectively. Paired Mann-Whitney tests found Tl concentrations in umbilical cord serum were significantly less than that in maternal serum during the first and second trimesters (all p < 0.01). Using adjusted linear mixed model, no significant relationships were observed between maternal Tl exposure and child growth parameters. However, the umbilical cord serum Tl levels may contributed to decreased WAZ (β = -0.382, 95% confidence interval (CI): -0.670, -0.095) and HAZ (β = -0.427, 95% CI: -0.702, -0.152). When stratified by sex, the umbilical cord serum Tl levels were negatively related to WAZ (β = -0.450, 95% CI: -0.853, -0.048) and HAZ (β = -0.775, 95% CI: -1.160, -0.391) for girls. Among boys, overall Tl exposures were not significantly associated with early children anthropometric outcomes. CONCLUSIONS In the present study, our results suggested that prenatal Tl exposures may have a sex specific effect on child anthropometric measurements in the first 2 years of life. Umbilical cord serum Tl levels tended to be reduced child's stature and weight in young girls.
Collapse
Affiliation(s)
- Juan Qi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Yaping Lai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, People's Republic of China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China
| | - Weijun Pan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, People's Republic of China
| | - Lanlan Feng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Liu Jiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Shanghai Children's Medical Centre, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China.
| |
Collapse
|
11
|
Panek J, Frąc M, Bilińska-Wielgus N. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System. PLoS One 2016; 11:e0147605. [PMID: 26815302 PMCID: PMC4729462 DOI: 10.1371/journal.pone.0147605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
Spoilage of heat processed food and beverage by heat resistant fungi (HRF) is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700), the other from thermal processed strawberry product in 2012 (KC179765), used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I) acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.
Collapse
Affiliation(s)
- Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Department of Plant and Soil System, Laboratory of Molecular and Environmental Microbiology, Doświadczalna 4, 20–290 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Department of Plant and Soil System, Laboratory of Molecular and Environmental Microbiology, Doświadczalna 4, 20–290 Lublin, Poland
- * E-mail:
| | - Nina Bilińska-Wielgus
- Institute of Agrophysics, Polish Academy of Sciences, Department of Plant and Soil System, Laboratory of Molecular and Environmental Microbiology, Doświadczalna 4, 20–290 Lublin, Poland
| |
Collapse
|