1
|
Adiguzel C, Karaboduk H. Biochemical, Immunohistochemical, Histopathological, and Apoptotic Evaluation of Nickel Oxide Nanoparticle- and Microparticle-Induced Testicular Toxicity in Male Rats. ACS OMEGA 2024; 9:50910-50921. [PMID: 39758642 PMCID: PMC11696382 DOI: 10.1021/acsomega.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 01/07/2025]
Abstract
Nickel oxide nanoparticles are engineered particles that are now widely used in medicine, agriculture, and industry applications. This study aimed to investigate subchronic testicular toxicity induced by nickel oxide (NiO) and nickel oxide nanoparticles (NiONPs) in rats by comparing oral, intraperitoneal (IP), and intravenous (IV) routes of administration. Forty-two male Wistar rats were used for the study, and seven groups were formed: control group, NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg). At the end of the 21 day treatment, we collected the testicular tissue of rats to measure biomarkers such as oxidative stress, apoptotic, and inflammatory levels to observe histopathological and immunohistochemical changes. NiO and NiONP treatment caused a decrease in antioxidant activities and AChE levels, an increase in MDA, IL-1β, IL-6, and 8-OHdG levels, a decrease in Bcl-2 expression, and an increase in caspase-3, Bax, and p53 expressions in apoptotic markers. In addition to histopathologic changes in the testicular tissue, an increase in expression of the endoplasmic reticulum stress marker GRP78 was also observed. In conclusion, NiONPs (especially NiONP IV) increased testicular toxicity by disrupting the oxidant-antioxidant balance more than NiO microparticles.
Collapse
Affiliation(s)
- Caglar Adiguzel
- Faculty of Science, Department
of Biology, Gazi University, Ankara 06500, Türkiye
| | - Hatice Karaboduk
- Faculty of Science, Department
of Biology, Gazi University, Ankara 06500, Türkiye
| |
Collapse
|
2
|
Adiguzel C, Karaboduk H, Uzunhisarcikli M. Protective Role of Melatonin Against Abamectin-Induced Biochemical, Immunohistochemical, and Ultrastructural Alterations in the Testicular Tissues of Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:962-977. [PMID: 39189879 DOI: 10.1093/mam/ozae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
Abamectin is one of the most widely used pesticides due to its strong insecticidal and anthelmintic activities. Melatonin is a neurohormone with potent antioxidant, anti-apoptotic, and anti-inflammatory effects. This study aimed to investigate the potential ameliorative effects of melatonin against abamectin-induced testicular toxicity in rats. Twenty-four rats were divided into four groups: control group (1 mL/kg/day corn oil), melatonin-treated group (10 mg/kg/day), abamectin-treated group (0.5 mg/kg/day), and melatonin plus abamectin-treated group. Test substances were administered via oral gavage once daily for 28 days. While MDA and 8-OHdG levels increased in the testicular tissue of rats treated with abamectin, SOD, CAT, GPx, and GST enzyme activities decreased significantly. While interleukin-17 levels, TNF-α, and caspase3 expression increased in the testicular tissue, acetylcholinesterase activity decreased. At the same time, serum gonadotropins (luteinizing and follicle-stimulating hormones) and testosterone levels decreased. Light microscope examinations of testicular tissues revealed severe histopathological changes, such as atrophic hyalinized seminiferous tubules, basement membrane irregularity, degeneration, spermatogenic cell loss, and necrosis. Electron microscopy examinations revealed large vacuoles in Sertoli and spermatogenic cells, swelling and vacuolization in mitochondria, lysosomal structures, and increased pyknotic nuclei. In contrast, melatonin supplementation significantly ameliorated abamectin-induced testicular toxicity in rats through antioxidant, antiapoptotic, and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Türkiye
| | - Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Türkiye
| | - Meltem Uzunhisarcikli
- Department of Health Care Services, Vocational High School of Health Services, Gazi University, Ankara 06830, Türkiye
| |
Collapse
|
3
|
Karaboduk H, Adiguzel C, Apaydin FG, Kalender S, Kalender Y. Investigating the impact of different routes of nano and micro nickel oxide administration on rat kidney architecture, apoptosis markers, oxidative stress, and histopathology. J Mol Histol 2024; 55:675-686. [PMID: 38990468 DOI: 10.1007/s10735-024-10221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Although the production and use of nickel oxide nanoparticles (NiONP) are widespread, environmental and public health problems are associated with it. The kidney is the primary organ in excretion and is among the target organs in nanoparticle toxicity. This study aimed to compare the renal toxicity of nickel oxide (NiO) microparticles and nickel oxide nanoparticles by different routes of administration, such as oral, intraperitoneal (IP), and intravenous (IV). Seven groups were formed, with 42 male rats and six animals in each group. NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg) was administered for 21 days. After NiO and NiONP administration, a decrease in antioxidant activities and an increase in lipid peroxidation occurred in the kidney tissue of rats. Increased kidney urea, uric acid, and creatinine levels were observed. Inhibition of acetylcholinesterase activity and an increase in interleukin 1 beta were detected. Apoptotic markers, Bax, caspase-3, and p53 up-regulation and Bcl-2 down-regulation were observed. In addition, histopathological changes occurred in the kidney tissue. In general, it was observed that nickel oxide microparticles and nickel oxide nanoparticles cause inflammation by causing oxidative stress in the kidney tissue, and NiONP IV administration is more effective in renal toxicity.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | | | - Suna Kalender
- Department of Science, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
4
|
Singh D, Bist P, Choudhary S. Co-exposure to multiple heavy metals and metalloid induces dose dependent modulation in antioxidative, inflammatory, DNA damage and apoptic pathways progressing to renal dysfunction in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104537. [PMID: 39214194 DOI: 10.1016/j.etap.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants at the same time in the environment rather than single metal. The kidney is often a site of early damage due to high renal contact to these pollutants. This study was done to examine the cumulative toxic effect of multiple elements prevalent in the environment. To explore the effect of subchronic exposure to heavy metal mixture male and female Swiss albino mice were randomly divided into 14 groups and given varying doses [MPL (maximum permissible limit), 1X, 5X, 10X, 50X, or 100X] of the multiple metals and metalloid mixtures via drinking water for 8 weeks. It was determined that metal treatment caused increased metal load in renal tissue. The kidney function deteriorated in response to 10X, 50X, 100X concentration of the dosing mixture was found associated to oxidative stress, glomerular damage, necrosis, cell death and further exacerbation of the inflammation.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
5
|
Karaboduk H, Adiguzel C, Apaydin FG, Uzunhisarcikli M, Kalender S, Kalender Y. The ameliorative effect of Naringenin on fenamiphos induced hepatotoxicity and nephrotoxicity in a rat model: Oxidative stress, inflammatory markers, biochemical, histopathological, immunohistochemical and electron microscopy study. Food Chem Toxicol 2024; 192:114911. [PMID: 39134134 DOI: 10.1016/j.fct.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Fenamiphos (FNP) is an organophospate pesticide that causes many potential toxicities in non-target organisms. Naringenin (NAR) has protective properties against oxidative stress. In this study, FNP (0.76 mg/kg bw) toxicity and the effect of NAR (50 mg/kg bw) on the liver and kidney of rats were investigated via biochemical, oxidative stress, immunohistochemical, cytopathological and histopathologically. As a result of biochemical studies, FNP caused oxidative stress in tissues with a change in total antioxidant/oxidant status. After treatment with FNP, hepatic and renal levels of AChE were significantly reduced while 8-OHdG and IL-17 levels, caspase-3 and TNF-α immunoreactivity increased compared to the control group. It also changed in serum biochemical markers such as ALT, AST, BUN, creatinine. Exposure to FNP significantly induced cytopathological, histopathological and immunohistochemical changes through tissue damage. NAR treatment restored biochemical parameters, renal/hepatic AChE, ultrastructural, histopathological and immunohistochemical changes modulated and blocked the increasing effect of FNP on tissues caspase-3 and TNF-α expressions, 8-OHdG and IL-17 levels. In electron microscopy studies, swelling was observed in the mitochondria of the cells in both tissues of the FNP-treated rats, while less ultrastructural changes in the FNP plus NAR-treated rats.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | | | | | - Suna Kalender
- Department of Science Education, Gazi Education Faculty, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Omidifar N, Gholami A, Shokripour M, Nourani MA, Mohkam M, Mousavi SM, Hashemi SA, Khorram B, Ahmadabadi AN, Dara M. Protective Effects of Xanthine Derivatives Against Arsenic Trioxide-Induced Oxidative Stress in Mouse Hepatic and Renal Tissues. Drug Res (Stuttg) 2024; 74:133-144. [PMID: 38350632 DOI: 10.1055/a-2247-5232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
In this study, the protective efficacy of pentoxifylline (PTX) as a xanthine derivative against arsenic trioxide (ATO)-induced kidney and liver damage in mice was investigated. Thirty-six mice were divided into six groups, receiving intraperitoneal injections of saline, ATO, PTX, or a combination for four weeks. Blood samples were analyzed for serum biochemistry, while hepatic tissue underwent examination for histopathological changes and assessment of oxidative stress markers and antioxidant gene expression through Real-Time PCR. ATO exposure significantly increased serum markers (creatinine, ALT, BUN, ALP, AST) and induced histopathological changes in the liver. Moreover, it elevated renal and hepatic nitric oxide (NO) and lipid peroxidation (LPO) levels, and reduced antioxidant enzyme expression (CAT, GSR, GPx, MPO, SOD), total thiol groups (TTGs), and total antioxidant capacity (TAC). Conversely, PTX treatment effectively lowered serum hepatic and renal markers, improved antioxidant markers, and induced histopathological alterations. Notably, PTX did not significantly affect renal and hepatic NO levels. These findings suggest that PTX offers therapeutic potential in mitigating liver and acute kidney injuries induced by various insults, including exposure to ATO.
Collapse
Affiliation(s)
- Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Nourani
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Seyyed Alireza Hashemi
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Khorram
- Student Research Committee, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Nili Ahmadabadi
- Department of Pharmacology and Toxicology, Medicinal Plants and Natural Products Research Center, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan
| | - Mahintaj Dara
- Stem Cells and Transgenic Technology Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Tuncer SÇ, Akarsu SA, Küçükler S, Gür C, Kandemir FM. Effects of sinapic acid on lead acetate-induced oxidative stress, apoptosis and inflammation in testicular tissue. ENVIRONMENTAL TOXICOLOGY 2023; 38:2656-2667. [PMID: 37471654 DOI: 10.1002/tox.23900] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
In this study, the effect of lead acetate (PbAc) and sinapic acid (SNP) administration on oxidative stress, apoptosis, inflammation, sperm quality and histopathology in testicular tissue of rats was tried to be determined. PbAc was administered at a dose of 30 mg/kg/bw for 7 days to induce testicular toxicity in rats. Oral doses of 5 and 10 mg/kg/bw SNP were administered to rats for 7 days after PbAc administration. According to our findings, while PbAc administration increased MDA content in rats, it decreased GPx, SOD, CAT activity and GSH content. NF-kB, IL-1β, TNF-α, and COX-2, which are among the inflammation parameters that increased due to PbAc, decreased with the administration of SNP. Nrf2, HO-1, and NQO1 mRNA transcript levels decreased with PbAc, but SNP treatments increased these mRNA levels in a dose-dependent manner. RAGE and NLRP3 gene expression were upregulated in PbAc treated rats. MAPK14, MAPK15, and JNK relative mRNA levels decreased with SNP treatment in PbAc treated rats. While the levels of apoptosis markers Bax, Caspase-3, and Apaf-1 increased in rats treated with PbAc, the level of Bcl-2 decreased, but SNP inhibited this apoptosis markers. PbAc caused histopathological deterioration in testis tissue and negatively affected spermatogenesis. When the sperm quality was examined, the decrease in sperm motility and spermatozoon density caused by PbAc, and the increase in the ratio of dead and abnormal spermatozoa were inhibited by SNP. As a result, while PbAc increased apoptosis and inflammation by inducing oxidative stress in testicles, SNP treatment inhibited these changes and increased sperm quality.
Collapse
Affiliation(s)
- Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
8
|
Vukelić D, Djordjevic AB, Anđelković M, Antonijević Miljaković E, Baralić K, Živančević K, Bulat P, Radovanović J, Đukić-Ćosić D, Antonijević B, Bulat Z. Subacute Exposure to Low Pb Doses Promotes Oxidative Stress in the Kidneys and Copper Disturbances in the Liver of Male Rats. TOXICS 2023; 11:256. [PMID: 36977021 PMCID: PMC10056143 DOI: 10.3390/toxics11030256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Recent data indicate that lead (Pb) can induce adverse effects even at low exposure levels. Moreover, the corresponding mechanisms of low Pb toxicity have not been well identified. In the liver and the kidneys, Pb was found to induce various toxic mechanisms leading to organ physiological disruption. Therefore, the purpose of the study was to simulate low-dose Pb exposure in an animal model with the aim of assessing oxidative status and essential element levels as the main mechanism of Pb toxicity in the liver and kidneys. Furthermore, dose-response modelling was performed in order to determine the benchmark dose (BMD). Forty-two male Wistar rats were divided into seven groups: one control group, and six groups treated for 28 days with 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg b.w./day, respectively. Oxidative status parameters (superoxide dismutase activity (SOD), superoxide anion radical (O2-), malondialdehyde (MDA), total sulfhydryl groups (SHG), and advanced oxidation protein products (AOPP)) and Pb, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels were measured. Lowering Cu levels (BMD: 2.7 ng/kg b.w./day), raising AOPP levels (BMD: 0.25 µg/kg b.w./day) in the liver, and inhibiting SOD (BMD: 1.3 ng/kg b.w./day) in the kidneys appear to be the main mechanisms of Pb toxicity. The lowest BMD was derived for a decrease in Cu levels in liver, indicating that this effect is the most sensitive.
Collapse
Affiliation(s)
- Dragana Vukelić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
- Health Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
- Institute of Physiology and Biochemistry “Ivan Djaja”, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Petar Bulat
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Institute of Occupational Health, 11000 Belgrade, Serbia
| | - Jelena Radovanović
- Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
9
|
Li Y, Song Y, Liu L, Wang X, Zhou Z, Zhang N, Wang Z, Chen P, Shi H, Huo Y, Xu X, Li J. Inverse Association Between Baseline Plasma Selenium Concentrations and Risks of Renal Function Decline in Hypertensive Adults. J Nutr 2022; 152:2754-2760. [PMID: 36083982 PMCID: PMC9839988 DOI: 10.1093/jn/nxac211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The kidney has the highest level of selenium (Se) in the body, but the role of plasma Se in chronic kidney disease is uncertain. OBJECTIVE We aimed to investigate the longitudinal association between baseline plasma Se and renal function decline in adults with hypertension and to explore possible effect modifiers. METHODS This was a post hoc analysis of 935 men and women with hypertension aged 40 to 75 years from a folic-acid intervention trial (the China Stroke Primary Prevention Trial) in China. The baseline plasma Se was analyzed both as a continuous variable and as tertiles. The primary outcome was a rapid decline in renal function, defined as a mean decline in the estimated glomerular filtration rate of ≥ 5 mL/(min × 1.73 m2) per year. RESULTS The median follow-up duration from baseline to outcome was 4.4 years. After multivariate adjustment, there was an inverse association between plasma Se and a rapid decline in renal function (per 10-unit increment; OR: 0.85; 95% CI: 0.73, 0.99). When the baseline plasma Se was assessed as tertiles, compared to the lowest tertile (<74.5 μg/L), a lower trend of the primary outcome was found in the second tertile (74.5 to < 89.4 μg/L; OR: 0.60; 95% CI: 0.34, 1.07) and the highest tertile (89.4 to <150 μg/L; OR: 0.42; 95% CI: 0.22, 0.80; Ptrend = 0.006). Furthermore, the Se-renal association was more pronounced among participants with folic acid treatment or with a higher baseline folate concentration (both Pinteraction values < 0.05). CONCLUSIONS In this sample of Chinese adults with hypertension, baseline plasma Se concentrations were inversely associated with the risk of renal function decline. The China Stroke Primary Prevention Trial was registered at clinicaltrials.gov as NCT00794885.
Collapse
Affiliation(s)
- Youbao Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Clinical Research Center for Kidney Disease, Nanfang Hospital, Guangzhou, China,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China,Guangdong Provincial Institute of Nephrology, Guangzhou, China,Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, China,Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ziyi Zhou
- Shenzhen Evergreen Medical Institute, Shenzhen, China,Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhuo Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China,Key Laboratory of Cancer food for special medical purpose (FSMP) for State Market Regulation, Beijing, China,Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Shenzhen, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiping Xu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Clinical Research Center for Kidney Disease, Nanfang Hospital, Guangzhou, China,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China,Guangdong Provincial Institute of Nephrology, Guangzhou, China,Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China,Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | | |
Collapse
|
10
|
Mohamed HRH. Acute Oral Administration of Cerium Oxide Nanoparticles Suppresses Lead Acetate-Induced Genotoxicity, Inflammation, and ROS Generation in Mice Renal and Cardiac Tissues. Biol Trace Elem Res 2022; 200:3284-3293. [PMID: 34515915 DOI: 10.1007/s12011-021-02914-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Lead, a highly toxic pollutant, causes numerous health problems and affects nearly all biological systems thus arousing interest in using antioxidants to reduce its toxic effects. Therefore, the undertaken study estimated the influence of cerium oxide nanoparticles (CeO2-NPs) on the lead acetate-induced genotoxicity and inflammation in the kidney and heart tissues of mice. Twenty male mice were randomly divided into negative control and lead acetate and/or CeO2-NPs administrated groups. Comet and diphenylamine assays were conducted to assess the DNA damage and the expression of apoptosis-related genes and inflammatory cytokines were also measured in addition to the estimation of reactive oxygen species (ROS) level. Co-administration of CeO2-NPs significantly reduced the DNA damage and ROS generation caused by lead acetate in the kidney and heart tissues. The co-administration of CeO2-NPs also ameliorated the lead acetate-induced dysregulation in the expression levels of p53, K-ras, interleukin-6, and cyclooxygenase-2 in the kidney and heart. Conclusion: the co-administration of CeO2-NPs suppresses the genotoxicity, inflammation, and ROS generation resulting from lead acetate administration and restoring the genomic DNA integrity; thus, administration of CeO2-NPs is recommended to minimize the lead acetate-induced hazards.
Collapse
Affiliation(s)
- Hanan Ramadan Hamad Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
- General Biology Department, College of Oral and Dental Surgery, Misr University for Science and Technology, 6th of October, Giza, Egypt.
| |
Collapse
|
11
|
Zhou TT, Hu B, Meng XL, Sun L, Li HB, Xu PR, Cheng BJ, Sheng J, Tao FB, Yang LS, Wu QS. The associations between urinary metals and metal mixtures and kidney function in Chinese community-dwelling older adults with diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112829. [PMID: 34592520 DOI: 10.1016/j.ecoenv.2021.112829] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies have found associations between single toxic metals, such as arsenic and cadmium, and kidney function in adults with diabetes. However, studies with regards to other metals and metal mixtures are still limited. OBJECTIVE Our study aimed to investigate the associations between urinary concentrations of 5 selected metals and metal mixtures and kidney function using a sample of older adults with diabetes mellitus in Chinese communities. METHODS In a sample of older adults (n = 5186), 592 eligible subjects were included in this study. Urinary concentrations of 5 metals, i.e., arsenic (As), cadmium (Cd), vanadium (V), cobalt (Co), and thallium (Tl), were measured by inductively coupled plasma mass spectrometer (ICP-MS). Estimated glomerular filtration rate (eGFR) was calculated and dichotomized into indicator of chronic kidney disease (CKD). Logistic analysis and Bayesian kernel machine regression (BKMR) were used to explore the associations between single metals and metal mixtures and CKD, respectively. RESULTS Urinary levels of As and V were positively correlated with CKD (OR=2.37, 95% CI: 1.31-4.30 for As; OR=2.24, 95% CI: 1.25-4.03 for V), when compared the 4th quartile with the 1st quartile. After adjustment for potential confounders, the significant association between As and CKD still existed (OR=2.73, 95% CI: 1.23-6.07). BKMR analyses showed strong linear positive associations between As and V and CKD. Higher urinary levels of the mixture were significantly associated with higher odds of CKD in a dose-response pattern. As and V showed the highest posterior inclusion probabilities. CONCLUSION Urine As and V were positively associated with CKD in older adults with diabetes mellitus, separately and in a mixture. The metals mixture showed a linear dose-response association with the odds of CKD. The analyses of mixtures, rather than of single metals, may provide a real-world perspective on the relationship between metals and kidney function.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bing Hu
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Xiang-Long Meng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Huai-Biao Li
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Pei-Ru Xu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bei-Jing Cheng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jie Sheng
- School of Public Health, Experimental Center for Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Biao Tao
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Qing-Si Wu
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China; Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, Anhui 230011, China.
| |
Collapse
|
12
|
Boyacioglu M, Gules O, Sahiner HS. Protective Effect of Sodium Selenite on 4-Nonylphenol-Induced Hepatotoxicity and Nephrotoxicity in Rats. Biol Trace Elem Res 2021; 199:3001-3012. [PMID: 33026593 DOI: 10.1007/s12011-020-02418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study was aimed at evaluating the protective effect of sodium selenite (SS) on DNA integrity, antioxidant/oxidant status, and histological changes on 4-nonylphenol (4-NP)-induced toxicity in liver and kidney tissues of rats. Twenty-four adult male Sprague Dawley rats were divided into 4 groups as control, SS, 4-NP, and SS+4-NP group. Control group was untreated. The SS group was supplemented with SS (0.5 mg/kg/day) and the 4-NP group was given 4-NP (125 mg/kg/day). The rats in the SS+4-NP group received SS followed by 4-NP 1 h later at the abovementioned doses. The treatments were administered by oral gavage for 48 days. DNA damage was analyzed by comet assay in lymphocytes. Oxidative stress parameters were measured, and histological evaluation was performed in liver and kidney tissues. Results showed that SS administration significantly decreased % Tail DNA and Mean Tail Moment in SS+4-NP group as compared with 4-NP group. Catalase activity in liver was significantly lower in 4-NP group only. SS treatment significantly increased the glutathione level and decreased high malondialdehyde level in tissues of the SS+4-NP group as compared with 4-NP group. Dilation of central vein, ballooning degeneration, vacuolar degeneration, and deterioration in the structure of remark cords in 4-NP-administered were alleviated in rats that received SS supplementation before administration of 4-NP. Moreover, glycogen intensity in hepatocytes and the wall of central vein increased in the SS+4-NP group. In addition, the SS supplementation in the SS+4-NP group decreased glomerular degeneration as well as the width of cavum glomeruli and congestion intensity in the kidney. These results indicate that SS may have a protective effect against 4-NP-induced hepato-nephrotoxicity in rats.
Collapse
Affiliation(s)
- Murat Boyacioglu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey.
| | - Ozay Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Hande Sultan Sahiner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey
| |
Collapse
|
13
|
Baş H, Apaydın FG, Kalender S, Kalender Y. Lead nitrate and cadmium chloride induced hepatotoxicity and nephrotoxicity: Protective effects of sesamol on biochemical indices and pathological changes. J Food Biochem 2021; 45:e13769. [PMID: 34021611 DOI: 10.1111/jfbc.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Lead nitrate (LN) and cadmium chloride (CdCl2 ), regarded as environmental contaminants, are toxic heavy metals. Sesamol is a dietary phytochemical found in sesame oil. We aimed to analyze the hepatotoxic and nephrotoxic effects of LN and CdCl2 and to evaluate the possible protective effect of sesamol. LN (90 mg/kg bw per day), CdCl2 (3 mg/kg bw per day), and sesamol (50 mg/kg bw per day) were given to rats via gavage for 28 days. Total protein, albumin, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, urea, uric acid, creatinine, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, malondialdehyde, acetylcholinesterase, and histopathological changes were investigated in liver and kidney tissues. Lead and cadmium were found to result in decreases in the antioxidant enzymes and acetylcholinesterase activities, increases in malondialdehyde levels, and changes in serum biochemical parameters and various pathological findings. An improvement in all these parameters was observed in the sesamol-treated groups. PRACTICAL APPLICATIONS: Heavy metals are used in many areas of the industry all over the world. Heavy metals which include lead nitrate and cadmium chloride cause cell damage by oxidative stress. Some of the examining parameters for oxidative stress are SOD, GST, MDA, GPx, and CAT. However, some chemicals such as sesamol are well-liked and widely used as antioxidants against xenobiotic toxicity. We also indicate that sesamol has been shown to protective effect against heavy metals caused cell damage.
Collapse
Affiliation(s)
- Hatice Baş
- Faculty of Arts and Science, Department of Biology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Suna Kalender
- Gazi Education Faculty, Department of Science Education, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
14
|
Riaz MA, Nisa ZU, Anjum MS, Butt H, Mehmood A, Riaz A, Akhtar ABT. Assessment of metals induced histopathological and gene expression changes in different organs of non-diabetic and diabetic rats. Sci Rep 2020; 10:5897. [PMID: 32246071 PMCID: PMC7125094 DOI: 10.1038/s41598-020-62807-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetes is a complex metabolic disorder and different environmental toxicants including heavy metals have been involved in diabetes induction. Therefore, assessment of the environmental risk factors and heavy metals induced toxicity have become critical for reducing the consequences of metals pollutants. Previously, we reported heavy metals induced nephrotoxicity in non-diabetic and diabetic rats. Here, we extended our analysis by examining the heavy metals induced organs (heart, kidney, liver, pancreas, and spleen) damage in diabetic and non-diabetic Wistar rats using histopathology and quantitative real-time PCR (qRT-PCR). Following the generation of the diabetic rat model, the animals were exposed to heavy metals including lead (Pb), arsenic (As), manganese (Mn) and cadmium (Cd). Both non-diabetic and diabetic rats were exposed to heavy metals for 30 days and subsequently, the heart, kidney, liver, pancreas and spleen tissues were examined. Heavy metal treatment resulted in irregularly arranged myofibrils and vacuolization in the heart tissue of metal treated groups as evident from hematoxylin and eosin (H & E) staining. The kidney tissue of rats treated with heavy metals showed tubular degeneration, fibrosis, hemorrhage, and vacuolation. The liver of the heavy metals treated rats exhibited cellular degeneration and necrosis. The pancreatic tissue of streptozotocin injected untreated and metal treated rats revealed severe degeneration, necrosis, degranulation, shrinkage, and depression in the islets of Langerhans. Increased red pulp area and congestion were observed in the spleen of the metal mixture treated non-diabetic and diabetic rats. In line with the histological data, the qRT-PCR analysis showed downregulated expression of Bcl2 and upregulation of Caspase-3 in non-diabetic and diabetic metal treated rats as compared to the non-diabetic untreated rats. In conclusion, the present study revealed, diabetic rats are more prone to metal alone as well as metal mixture induced organ damage as compared to non-diabetic rats.
Collapse
Affiliation(s)
- Muhammad Ahsan Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan.
| | - Zaib Un Nisa
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Riaz
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | | |
Collapse
|
15
|
Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB, Abdel Moneim AE. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol Biol Rep 2020; 47:2591-2603. [PMID: 32144527 DOI: 10.1007/s11033-020-05346-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants affecting living organisms. It induces nephrotoxicity with significant alterations in renal structure and function. Luteolin (LUT) a flavonoid present in various plant products is well known for exhibiting numerous pharmacological properties. We evaluated the protective efficacy of LUT against Pb-induced renal injury in male Wistar rats. Four experimental groups: control, LUT (50 mg/kg, orally), PbAc (20 mg/kg, i.p.), LUT + PbAc (at the aforementioned doses) were maintained for 7 days. PbAc administration significantly increased renal Pb accumulation, urea, and creatinine levels in serum, and induced renal histological alterations. Additionally, compared to the control rats, PbAc-treated rats exhibited significantly low levels of antioxidant enzyme activity and expression (SOD, CAT, GPx and GR), as well as high MDA levels. Moreover, PbAc exposure downregulated Nfe212 and Homx1 mRNA expression and significantly increased inflammatory marker (TNF-α, IL-1β and NO) levels in renal tissue. PbAc significantly upregulated the synthesis of apoptotic related proteins and downregulated antiapoptotic protein expression. Notably, LUT pretreatment of PbAc-treated rats provided significant nephroprotection and reversed the alterations in the abovementioned parameters. In conclusion, LUT provided significant protection against PbAc intoxication via antioxidant, anti-inflammatory, and anti-apoptotic activities by activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
16
|
Rouag M, Berrouague S, Djaber N, Khaldi T, Boumendjel M, Taibi F, Abdennour C, Boumendjel A, Messarah M. Pumpkin seed oil alleviates oxidative stress and liver damage induced by sodium nitrate in adult rats: biochemical and histological approach. Afr Health Sci 2020; 20:413-425. [PMID: 33402930 PMCID: PMC7750078 DOI: 10.4314/ahs.v20i1.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Nitrate (NO3) is the most common chemical contaminant in the world's ground water aquifer. Oxidative stress has been proposed as a possible mechanism involved in NO3 toxicity on non-target organism. OBJECTIVES The current study aimed to elucidate the potential protective effect of Telfairia occidentalis (pumpkin seed oil, PSO) against hepatotoxicity induced by sodium nitrate. METHODS Wistar rats were exposed either to NaNO3 (200 mg/kg bw) in drinking water in drinking water, or to 4ml PSO/kg bw by gavage or to their combination. Oxidative stress parameters, biochemical biomarkers and liver histopathological examination were determined. RESULTS Our data showed that the exposure of rats to NaNO3 caused significant changes of some haematological parameters compared to the control. In addition, there was a significant elevation of the levels of biochemical markers as that of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase when compared with the control. Furthermore, exposure of rats to NaNO3 induced liver oxidative stress as indicated by the increase of malondialdehyde, progressive oxidation of protein products and protein carbonyl levels. In addition, a reduction in anti-oxidant status (catalase, glutathione peroxidase, glutathione-S-transferase and superoxide dismutase, reduced glutathione and vitamin C) was observed. CONCLUSION Co-administration of PSO to the NaNO3 restored most parameters cited above to near-normal values. Therefore, the present investigation revealed the ability of PSO to attenuate NaNO3-induced oxidative damage.
Collapse
Affiliation(s)
- Meriem Rouag
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Salma Berrouague
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Nesrine Djaber
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Taha Khaldi
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Mahieddine Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Faiza Taibi
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Cherif Abdennour
- Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Amel Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| | - Mahfoud Messarah
- Laboratory of Biochemistry and Environmental Toxicology, Department of Biochemistry, Faculty of Sciences, University Badji Mokhtar-Annaba, 23000, Annaba, Algeria
| |
Collapse
|
17
|
Riaz MA, Nisa ZU, Mehmood A, Anjum MS, Shahzad K. Metal-induced nephrotoxicity to diabetic and non-diabetic Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31111-31118. [PMID: 31456145 DOI: 10.1007/s11356-019-06022-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to examine the nephrotoxic effects of heavy metals including lead (Pb), manganese (Mn), arsenic (As), and cadmium (Cd) in diabetic and non-diabetic Wistar rats. Animals were exposed to heavy metals for 30 days, Pb was injected as lead acetate (C4H6O4Pb), Mn was injected as manganese chloride (MnCl2), Cd was injected as cadmium chloride (CdCl2), and As was administered orally to rats in the form of sodium arsenite (AsO2Na). Results showed that metal deposition trends in tissues were Pb > As > Cd > Mn and the urinary metal levels were Pb > Cd > As > Mn. Diabetic metal alone, as well as metal mixture-treated groups, showed decreased urinary metal levels as compared with non-diabetic metal alone and metal mixture-treated groups. Both diabetic- and non-diabetic metal mixture-treated groups revealed an increasing trend of blood urea nitrogen (BUN) and serum creatinine. In addition, heavy metal treatments resulted in elevated malondialdehyde (MDA) levels in the kidney tissue while decreased levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GHS) were observed in the kidney tissue in comparison with the control group. The histological analysis of the kidney tissues showed tubular degeneration, fibrosis, and vacuolation as a result of heavy metal exposure. The present study revealed that co-exposure of heavy metals (Pb, Cd, Mn, As) induced more nephrotoxicity as compared with the metal alone treatment. Moreover, diabetic Wistar rats are more prone to kidney damage as a result of heavy metal exposure.
Collapse
Affiliation(s)
- Muhammad Ahsan Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan.
| | - Zaib Un Nisa
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Khurram Shahzad
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y. Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7478523. [PMID: 29441149 PMCID: PMC5758946 DOI: 10.1155/2017/7478523] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/28/2017] [Accepted: 11/05/2017] [Indexed: 02/06/2023]
Abstract
Selenium is an essential mineral naturally found in soil, water, and some of the food. As an antioxidant, it is one of the necessary trace elements in human body and has been suggested as a dietary supplement for health benefit. Although the human body only needs a trace amount of selenium every day, plenty of recent studies have revealed that selenium is indispensable for maintaining normal functions of metabolism. In this study, we reviewed the antioxidant role of nutritional supplementation of selenium in the management of major chronic metabolic disorders, including hyperlipidaemia, hyperglycaemia, and hyperphenylalaninemia. Clinical significance of selenium deficiency in chronic metabolic diseases was elaborated, while clinical and experimental observations of dietary supplementation of selenium in treating chronic metabolic diseases, such as diabetes, arteriosclerosis, and phenylketonuria, were summarized. Toxicity and recommended dose of selenium were discussed. The mechanism of action was also proposed via inspecting the interaction of molecular networks and predicting target protein such as xanthine dehydrogenase in various diseases. Future direction in studying the role of selenium in metabolic disorders was also highlighted. In conclusion, highlighting the beneficial role of selenium in this review would advance our knowledge of the dietary management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Guo
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
19
|
Ansar S, Abudawood M, Hamed SS, Aleem MM. Sodium Selenite Protects Against Silver Nanoparticle-Induced Testicular Toxicity and Inflammation. Biol Trace Elem Res 2017; 175:161-168. [PMID: 27239677 DOI: 10.1007/s12011-016-0759-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Abstract
Metal nanomaterials hold great potential and play an important role in consumer products. However, the increasing use of nanomaterials has raised concern over inadvertent exposure and potential risks for human health and the environment. Henceforth, in vivo testing of nanoparticles and protection against its toxicity is required. Using rat as an animal model, effect of sodium selenite (Se), an essential trace element, on rat testes exposed to silver nanoparticles (AgNPs) was evaluated. Male rats were treated with AgNPs (5 mg/kg/b.w) i/p or Se (0.2 mg/kg/b.w) by gavage. AgNP administration decreased Glutathione (GSH) levels and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and increased levels of malondialdehyde (MDA) and expression of interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). However, treatment with Se increased GSH levels and activities of SOD, CAT, and GPx compared with AgNP-treated group and decreased the level of MDA and inflammatory biomarkers significantly (p < 0.05) as compared with AgNP-treated group. Light microscopic analyses also revealed that AgNP induced histopathological changes in testes tissue. Further, protection by Se on biochemical results was confirmed by alleviation of the histopathological changes in the tissue. Results show the adverse effects of AgNPs on the male reproductive tract, particularly spermatogenesis, and suggest that Se possesses significant potential in reducing AgNP-induced testicular toxicity.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa Shaker Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, Egypt
| | - Mukhtar M Aleem
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
20
|
Baş H, Pandır D, Kalender S. Furan-induced hepatotoxic and hematologic changes in diabetic rats: the protective role of lycopene. Arh Hig Rada Toksikol 2016; 67:194-203. [DOI: 10.1515/aiht-2016-67-2762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/01/2016] [Indexed: 02/02/2023] Open
Abstract
Abstract
Furan forms as a result of thermal treatment of food and induces harmful effects on organisms. In our work, lycopene, furan, and a combination of the two were given to diabetic male rats for 28 days. Hematological changes, total protein and cholesterol, triglyceride, and albumin levels, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase activities of the serum, malondialdehyde levels, glutathione peroxidase, catalase, glutathione-S-transferase, superoxide dismutase activities, DNA damage in liver tissues and hepatic histopathological alterations were compared to a control group. There were significant changes in the liver function tests, DNA damage, activities of antioxidant enzymes, and malondialdehyde levels between diabetic control and non-diabetic control groups, between diabetic control and diabetic lycopene groups, and also between diabetic furan and diabetic control groups. In diabetic lycopene and diabetic furan + lycopene treated groups we designated the preventive effects of lycopene against diabetes and furan, however, on the analysed parameters only. In spite of some pathological alterations designated in diabetic furan treated group’s liver, fewer pathological alterations were observed in furan+lycopene treated groups at the end of week 4. Consequently, lycopene significantly reduced furan- and diabetes-induced toxicity in rat liver.
Collapse
Affiliation(s)
- Hatice Baş
- Department of Biology, Faculty of Arts and Science, Bozok University, Yozgat, Turkey
| | - Dilek Pandır
- Department of Biology, Faculty of Arts and Science, Bozok University, Yozgat, Turkey
| | - Suna Kalender
- Department of Science Education, Gazi Education Faculty, Gazi University, Ankara, Turkey
| |
Collapse
|
21
|
Pawlas N, Dobrakowski M, Kasperczyk A, Kozłowska A, Mikołajczyk A, Kasperczyk S. The Level of Selenium and Oxidative Stress in Workers Chronically Exposed to Lead. Biol Trace Elem Res 2016; 170:1-8. [PMID: 26179085 PMCID: PMC4744245 DOI: 10.1007/s12011-015-0435-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/30/2015] [Indexed: 01/24/2023]
Abstract
The possible beneficial role of selenium (Se) on the oxidative stress induced by lead (Pb) is still unclear in humans. Therefore, the aim of the present study was to explore the associations among the Se levels, chronic Pb exposure, oxidative stress parameters, and parameters characterizing the function of the antioxidant defense system in men who are occupationally exposed to Pb. Based on the median serum Se concentrations, the 324 study subjects were divided into two subgroups: a subgroup with a low Se level (L-Se) and a subgroup with a high Se level (H-Se). The levels of lead (PbB) and zinc protoporphyrin (ZPP) in the blood and the delta-aminolevulinic acid (ALA) level in the urine served as indices of Pb exposure. The PbB level was significantly lower in the H-Se group compared to that in the L-Se group by 6 %. The levels of 8-hydroxyguanosine and lipofuscin (LPS) and the activity of superoxide dismutase were significantly lower in the H-Se group compared to that in the L-Se group by 17, 19, and 11 %, respectively. However, the glutathione level (GSH) and the activities of glutathione peroxidase (GPx) and catalase were significantly higher by 9, 23, and 3 %. Spearman correlations showed positive associations between the Se level and GPx activity and GSH level. A lower serum Se level in chronically Pb-exposed subjects is associated with higher Pb blood levels and an elevated erythrocyte LPS level, which reflects the intensity of oxidative stress. Besides, in a group of Pb-exposed subjects with lower serum Se level, depleted GSH pool and decreased activity of GPx in erythrocytes were reported. However, the present results are inadequate to recommend Se supplementation for chronic lead exposure at higher doses than would be included in a normal diet except for selenium deficiency.
Collapse
Affiliation(s)
- Natalia Pawlas
- Institute of Occupational Medicine and Environmental Health, Poland, 41-200, Sosnowiec, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808, Zabrze, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808, Zabrze, Poland
| | - Agnieszka Kozłowska
- Institute of Occupational Medicine and Environmental Health, Poland, 41-200, Sosnowiec, Poland
| | - Agnieszka Mikołajczyk
- Institute of Occupational Medicine and Environmental Health, Poland, 41-200, Sosnowiec, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808, Zabrze, Poland.
| |
Collapse
|