1
|
Dutta D, Hoque AA, Paul B, Begum S, Sarkar UA, Mukherjee B. Molecular insights into the antineoplastic potential of apigenin and its derivatives: paving the way for nanotherapeutic innovations. Expert Opin Drug Deliv 2025; 22:639-658. [PMID: 40063738 DOI: 10.1080/17425247.2025.2477664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION Apigenin, a widely distributed bioactive flavonoid, has recently gained excellent attention among researchers as an effective anticancer drug that can alternate cancer-signaling pathways, induce programmed cell death, and reduce tumor growth in various cancer types. Despite its impressive anti-neoplastic activity, high hydrophobicity, and nonspecific biodistribution make apigenin difficult for pharmaceutical applications. AREAS COVERED We highlighted the therapeutic potential of apigenin and its derivatives in different cancer types, along with their mechanism of action. Nanoengineered drug delivery systems have remarkable applications in minimizing drug degradation and enhancing the therapeutic efficacy of drugs with sustained release, prolonged blood retention time, and reduced off-target toxicities. This review has evaluated and explored the molecular interactions of this novel flavonoid in various cancer signaling pathways to selectively inhibit neoplastic development in multiple cancer types. To ensure the complete coverage of the explored research area, Google Scholar, PubMed, and Web of Science were used to find not only the most relevant but also connected and similar articles. EXPERT OPINION A comprehensive overview of apigenin nanotherapy in cancer treatment can establish a platform to overcome its difficulties for pharmaceutical applications and efficient clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Debasmita Dutta
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shahnaz Begum
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Uday Aditya Sarkar
- Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
2
|
Baliyan D, Sharma R, Goyal S, Chhabra R, Singh B. Phytochemical strategies in glioblastoma therapy: Mechanisms, efficacy, and future perspectives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167647. [PMID: 39740382 DOI: 10.1016/j.bbadis.2024.167647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Glioblastoma (GBM) is foremost the most aggressive primary brain tumor, presenting extensive therapeutic challenges due to its high invasiveness, genetic complexity, and resistance to established treatments. Despite substantial advances in surgical and chemotherapeutic interventions, the median survival rate for patients is only 14.6 months, and the prognosis remains poor. This review focuses on the molecular hallmarks of GBM, including the activation of the PI3K/Akt pathway, genomic instability, and the deregulation of epidermal growth factor receptor (EGFR), all of which contribute to the tumor's aggressive behavior. Current therapies, such as Temozolomide and Bevacizumab, have limitations, highlighting the need for novel treatment strategies. Phytochemicals, bioactive compounds found in plants, have emerged as potential therapeutic agents by targeting multiple cellular pathways involved in GBM progression. This review provides an overview of key phytochemicals, including quercetin, curcumin, apigenin, and resveratrol. These compounds have shown promise in preclinical studies, with their anti-invasive, anti- angiogenic, pro-apoptotic, and anti-proliferative properties positioning them as strong candidates for GBM therapy. While phytochemicals offer a promising avenue for GBM treatment, further research is required to fully understand their mechanisms of action and to evaluate their efficiency in clinical settings. Developing multi-targeted, safer, and cost-effective anti-GBM therapies could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Deepanjali Baliyan
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Rajni Sharma
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Shipra Goyal
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Baljinder Singh
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
3
|
Kaewmanee M, Limpaiboon T, Ngernyuang N. Apigenin Induces Apoptosis and Inhibits Migration in Human Cholangiocarcinoma Cells. TOXICS 2025; 13:112. [PMID: 39997927 PMCID: PMC11860412 DOI: 10.3390/toxics13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Cholangiocarcinoma (CCA) is a rare and highly aggressive cancer of the biliary tract, associated with poor clinical outcomes due to late diagnosis, extensive metastasis, drug resistance, and limited treatment options. Apigenin, a natural flavonoid, has been found to exhibit anticancer properties in several types of human cancer cells. Therefore, apigenin may be relevant to developing chemotherapeutic agents for cancer treatment. In this study, we examined the effects of apigenin on cell viability, cell cycle distribution, apoptosis, and cell migration in human CCA cell lines (KKU-M055) under in vitro conditions. The results demonstrate that apigenin significantly suppressed specific CCA cell proliferation by inducing cell cycle arrest at the G2/M phase and promoting cell apoptosis in KKU-M055 cells while exhibiting low toxicity in immortalized MMNK1 cells. Apigenin enhanced apoptotic features, including nuclear fragmentation and the loss of mitochondrial membrane potential. Furthermore, apigenin induced the apoptosis of KKU-M055 cells in both extrinsic and intrinsic pathways by activating caspase-8, -9, and -3/7. Moreover, apigenin inhibited KKU-M055 migration. Our study suggests apigenin as a promising candidate for treating CCA, and these findings provide theoretical support for the further development and potential application of apigenin in clinical CCA therapy.
Collapse
Affiliation(s)
- Mayurachat Kaewmanee
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand;
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Thammasat University Research Unit in Biomedical Science, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
4
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
5
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
6
|
Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 39154213 DOI: 10.1080/10408398.2024.2390550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A multitude of plant-derived bioactive compounds have shown significant promise in preventing chronic illnesses, with flavonoids constituting a substantial class of naturally occurring polyphenolic compounds. Apigenin, a flavone identified as 4',5,7-trihydroxyflavone, holds immense promise as a preventative agent against chronic illnesses. Despite its extensive research and recognized nutraceutical value, its therapeutic application remains underexplored, necessitating further clinical investigations. This review delves into the biological sources, nutraceutical prospects, chemistry, pharmacological insights, and health benefits of apigenin. Through multifaceted analytical studies, we explore its diverse pharmacological profile and potential therapeutic applications across various health domains. The manuscript comprehensively examines apigenin's role as a neuroprotective , anti-inflammatory compound, and a potent antioxidant agent. Additionally, its efficacy in combating cardiovascular diseases, anti-diabetic properties, and anticancer potential has been discussed. Furthermore, the antimicrobial attributes and the challenges surrounding its bioavailability, particularly from herbal supplements have been addressed. Available in diverse forms including tablets, capsules, solid dispersions, co-crystals, inclusion complexes and nano formulations. Additionally, it is prevalent as a nutraceutical supplement in herbal formulations. While strides have been made in overcoming pharmacokinetic hurdles, further research into apigenin's clinical effectiveness and bioavailability from herbal supplements remains imperative for its widespread utilization in preventive medicine.
Collapse
Affiliation(s)
- Abhinav Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Jagjit Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Gulistan Parween
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Rakesh Khator
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
7
|
Lotfi MS, Rassouli FB. Natural Flavonoid Apigenin, an Effective Agent Against Nervous System Cancers. Mol Neurobiol 2024; 61:5572-5583. [PMID: 38206472 DOI: 10.1007/s12035-024-03917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Cancer is a serious public health concern worldwide, and nervous system (NS) cancers are among the most life-threatening malignancies. Efforts have been devoted to introduce natural anticancer agents with minimal side effects. Apigenin is an edible flavonoid that is abundantly found in many vegetables and fruits. Various pharmaceutical activities, including anti-inflammatory, antioxidative, antimicrobial, and anticancer effects have been reported for apigenin. This review provides insights into the therapeutic effects of apigenin and flavonoids with similar structure on glioblastoma and neuroblastoma. Current evidence indicates that apigenin has the unique ability to cross the blood-brain barrier, and its antioxidative, anti-inflammatory, neurogenic, and neuroprotective effects have made this flavonoid a great option for the treatment of neurodegenerative disorders. Meanwhile, apigenin has low toxicity on normal neuronal cells, while induces cytotoxicity on NS cancer cells via triggering several signal pathways and molecular targets. Anticancer effects of apigenin have been contributed to various mechanisms such as induction of cell cycle arrest and apoptosis, and inhibition of migration, invasion, and angiogenesis. Although apigenin is a promising pharmaceutical agent, its low bioavailability is an important issue that must be solved before introducing to clinic. Recently, nano-delivery of apigenin by liposomes and poly lactic-co-glycolide nanoparticles has greatly improved functionality of this agent. Hence, investigating pharmaceutical effects of apigenin-loaded nanocarriers on NS cancer cell lines and animal models is recommended for future studies.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
8
|
Urakawa D, Shioiridani Y, Igata S, Hou DX, Sakao K. Comparative Analysis of Acetylated Flavonoids' Chemopreventive Effects in Different Cancer Cell Lines. Int J Mol Sci 2024; 25:7689. [PMID: 39062932 PMCID: PMC11276853 DOI: 10.3390/ijms25147689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Flavonoids, a class of natural compounds with anticancer activity, exhibit varying biological activities and potencies based on their structural differences. Acylation, including acetylation of flavonoids, generally increases their structural diversity, which is closely related to the diversity of bioactivity within this group of compounds. However, it remains largely unknown how acetylation affects the bioactivity of many flavonoids. Based on our previous findings that O-acetylation enhances quercetin's bioactivity against various cancer cells, we synthesized 12 acetylated flavonoids, including seven novel compounds, to investigate their anticancer activities in the MDA-MB-231, HCT-116, and HepG2 cell lines. Our results showed that acetylation notably enhanced the cell proliferation inhibitory effect of quercetin and kaempferol across all cancer cell lines tested. Interestingly, while the 5,7,4'-O-triacetate apigenin (3Ac-A) did not show an enhanced the effect of inhibition of cell proliferation through acetylation, it exhibited significantly strong anti-migration activity in MDA-MB-231 cells. In contrast, the 7,4'-O-diacetate apigenin (2Ac-Q), which lacks acetylation at the 5-position hydroxy group, showed enhanced cell proliferation inhibitory effect but had weaker anti-migration effects compared to 3Ac-A. These results indicated that acetylated flavonoids, especially quercetin, kaempferol, and apigenin derivatives, are promising for anticancer applications, with 3Ac-A potentially having unique anti-migration pathways independent of apoptosis induction. This study highlights the potential application of flavonoids in novel chemopreventive strategies for their anti-cancer activity.
Collapse
Affiliation(s)
- Daigo Urakawa
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (D.-X.H.)
| | - Yuki Shioiridani
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shinya Igata
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kozue Sakao
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (D.U.); (D.-X.H.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
9
|
Abutayeh RF, Altah M, Mehdawi A, Al-Ataby I, Ardakani A. Chemopreventive Agents from Nature: A Review of Apigenin, Rosmarinic Acid, and Thymoquinone. Curr Issues Mol Biol 2024; 46:6600-6619. [PMID: 39057035 PMCID: PMC11276303 DOI: 10.3390/cimb46070393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies.
Collapse
Affiliation(s)
- Reem Fawaz Abutayeh
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Maram Altah
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Amani Mehdawi
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Israa Al-Ataby
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Adel Ardakani
- College of Pharmacy, Amman Arab University, Amman 11953, Jordan;
| |
Collapse
|
10
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
11
|
Méndez-Luna D, Guzmán-Velázquez S, Padilla-Martínez II, García-Sánchez JR, Bello M, García-Vázquez JB, Mendoza-Figueroa HL, Correa-Basurto J. GPER binding site detection and description: A flavonoid-based docking and molecular dynamics simulations study. J Steroid Biochem Mol Biol 2024; 239:106474. [PMID: 38307214 DOI: 10.1016/j.jsbmb.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Flavonoids, a phenolic compounds class widely distributed in the plant kingdom, have attracted much interest for their implications on several health and disease processes. Usually, the consumption of this type of compounds is approximately 1 g/d, primarily obtained from cereals, chocolate, and dry legumes ensuring its beneficial role in maintaining the homeostasis of the human body. In this context, in cancer disease prominent data points to the role of flavonoids as adjuvant treatment aimed at the regression of the disease. GPER, an estrogen receptor on the cell surface, has been postulated as a probable orchestrator of the beneficial effects of several flavonoids through modulation/inhibition of various mechanisms that lead to cancer progression. Therefore, applying pocket and cavity protein detection and docking and molecular dynamics simulations (MD), we generate, from a cluster composed of 39 flavonoids, crucial insights into the potential role as GPER ligands, of Puerarin, Isoquercetin, Kaempferol 3-O-glucoside and Petunidin 3-O-glucoside, aglycones whose sugar moiety delimits a new described sugar-acceptor sub-cavity into the cavity binding site on the receptor, as well as of the probable activation mechanism of the receptor and the pivotal residues involved in it. Altogether, our results shed light on the potential use of the aforementioned flavonoids as GPER ligands and for further evaluations in in vitro and in vivo assays to elucidate their probable anti-cancer activity.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico.
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico.
| | - Itzia-Irene Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Alcaldía Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico.
| | - José-Rubén García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Juan-Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - Humberto-Lubriel Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico.
| |
Collapse
|
12
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
13
|
Li P, Feng J, Jiang H, Feng X, Yang J, Yuan Y, Ma Z, Xu G, Xu C, Zhu C, Wang S, Gao P, Shu G, Jiang Q. Microbiota derived D-malate inhibits skeletal muscle growth and angiogenesis during aging via acetylation of Cyclin A. EMBO Rep 2024; 25:524-543. [PMID: 38253688 PMCID: PMC10897302 DOI: 10.1038/s44319-023-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/05/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolites derived from the intestinal microbiota play an important role in maintaining skeletal muscle growth, function, and metabolism. Here, we found that D-malate (DMA) is produced by mouse intestinal microorganisms and its levels increase during aging. Moreover, we observed that dietary supplementation of 2% DMA inhibits metabolism in mice, resulting in reduced muscle mass, strength, and the number of blood vessels, as well as the skeletal muscle fiber type I/IIb ratio. In vitro assays demonstrate that DMA decreases the proliferation of vascular endothelial cells and suppresses the formation of blood vessels. In vivo, we further demonstrated that boosting angiogenesis by muscular VEGFB injection rescues the inhibitory effects of D-malate on muscle mass and fiber area. By transcriptomics analysis, we identified that the mechanism underlying the effects of DMA depends on the elevated intracellular acetyl-CoA content and increased Cyclin A acetylation rather than redox balance. This study reveals a novel mechanism by which gut microbes impair muscle angiogenesis and may provide a therapeutic target for skeletal muscle dysfunction in cancer or aging.
Collapse
Affiliation(s)
- Penglin Li
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Jinlong Feng
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Hongfeng Jiang
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Xiaohua Feng
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Jinping Yang
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Yexian Yuan
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Zewei Ma
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Guli Xu
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Chang Xu
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Canjun Zhu
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Songbo Wang
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Ping Gao
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China
| | - Gang Shu
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China.
- Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China.
| | - Qingyan Jiang
- State Key Laboratory of Swine and Poultry Breeding, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China.
- Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China.
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Chien MH, Yang YC, Ho KH, Ding YF, Chen LH, Chiu WK, Chen JQ, Tung MC, Hsiao M, Lee WJ. Cyclic increase in the ADAMTS1-L1CAM-EGFR axis promotes the EMT and cervical lymph node metastasis of oral squamous cell carcinoma. Cell Death Dis 2024; 15:82. [PMID: 38263290 PMCID: PMC10805752 DOI: 10.1038/s41419-024-06452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The matrix metalloprotease A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1) was reported to be involved in tumor progression in several cancer types, but its contributions appear discrepant. At present, the role of ADAMTS1 in oral squamous cell carcinoma (SCC; OSCC) remains unclear. Herein, The Cancer Genome Atlas (TCGA) database showed that ADAMTS1 transcripts were downregulated in head and neck SCC (HNSCC) tissues compared to normal tissues, but ADAMTS1 levels were correlated with poorer prognoses of HNSCC patients. In vitro, we observed that ADAMTS1 expression levels were correlated with the invasive abilities of four OSCC cell lines, HSC-3, SCC9, HSC-3M, and SAS. Knockdown of ADAMTS1 in OSCC cells led to a decrease and its overexpression led to an increase in cell-invasive abilities in vitro as well as tumor growth and lymph node (LN) metastasis in OSCC xenografts. Mechanistic investigations showed that the cyclic increase in ADAMTS1-L1 cell adhesion molecule (L1CAM) axis-mediated epidermal growth factor receptor (EGFR) activation led to exacerbation of the invasive abilities of OSCC cells via inducing epithelial-mesenchymal transition (EMT) progression. Clinical analyses revealed that ADAMTS1, L1CAM, and EGFR levels were all correlated with worse prognoses of HNSCC patients, and patients with ADAMTS1high/L1CAMhigh or EGFRhigh tumors had the shortest overall and disease-specific survival times. As to therapeutic aspects, we discovered that an edible plant-derived flavonoid, apigenin (API), drastically inhibited expression of the ADAMTS1-L1CAM-EGFR axis and reduced the ADAMTS1-triggered invasion and LN metastasis of OSCC cells in vitro and in vivo. Most importantly, API treatment significantly prolonged survival rates of xenograft mice with OSCC. In summary, ADAMTS1 may be a useful biomarker for predicting OSCC progression, and API potentially retarded OSCC progression by targeting the ADAMTS1-L1CAM-EGFR signaling pathway.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Fossatelli L, Maroccia Z, Fiorentini C, Bonucci M. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. Int J Mol Sci 2023; 25:251. [PMID: 38203418 PMCID: PMC10778966 DOI: 10.3390/ijms25010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Apigenin is one of the most widespread flavonoids in the plant kingdom. For centuries, apigenin-containing plant preparations have been used in traditional medicines to treat diseases that have an inflammatory and/or degenerative component. In the 1980s, apigenin was proposed to interfere with the process of carcinogenesis. Since then, more and more evidence has demonstrated its anticancer efficacy, both in vitro and in vivo. Apigenin has been shown to target signaling pathways involved in the development and progression of cancer, such as PI3K/Akt/mTOR, MAPK/ERK, JAK/STAT, NF-κB, and Wnt/β-catenin pathways, and to modulate different hallmarks of cancer, such as cell proliferation, metastasis, apoptosis, invasion, and cell migration. Furthermore, apigenin modulates PD1/PD-L1 expression in cancer/T killer cells and regulates the percentage of T killer and T regulatory cells. Recently, apigenin has been studied for its synergic and additive effects when combined with chemotherapy, minimizing the side effects. Unfortunately, its low bioavailability and high permeability limit its therapeutic applications. Based on micro- and nanoformulations that enhance the physical stability and drug-loading capacity of apigenin and increase the bioavailability of apigenin, novel drug-delivery systems have been investigated to improve its solubility.
Collapse
Affiliation(s)
- Laura Fossatelli
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, Via Ludovico Micara 73, 00165 Rome, Italy; (L.F.); (M.B.)
| |
Collapse
|
16
|
Sudhakaran M, Navarrete TG, Mejía-Guerra K, Mukundi E, Eubank TD, Grotewold E, Arango D, Doseff AI. Transcriptome reprogramming through alternative splicing triggered by apigenin drives cell death in triple-negative breast cancer. Cell Death Dis 2023; 14:824. [PMID: 38092740 PMCID: PMC10719380 DOI: 10.1038/s41419-023-06342-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and resistance to cancer-specific transcriptome alterations. Alternative splicing (AS) is a major contributor to the diversification of cancer-specific transcriptomes. The TNBC transcriptome landscape is characterized by aberrantly spliced isoforms that promote tumor growth and resistance, underscoring the need to identify approaches that reprogram AS circuitry towards transcriptomes, favoring a delay in tumorigenesis or responsiveness to therapy. We have previously shown that flavonoid apigenin is associated with splicing factors, including heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2). Here, we showed that apigenin reprograms TNBC-associated AS transcriptome-wide. The AS events affected by apigenin were statistically enriched in hnRNPA2 substrates. Comparative transcriptomic analyses of human TNBC tumors and non-tumor tissues showed that apigenin can switch cancer-associated alternative spliced isoforms (ASI) to those found in non-tumor tissues. Apigenin preferentially affects the splicing of anti-apoptotic and proliferation factors, which are uniquely observed in cancer cells, but not in non-tumor cells. Apigenin switches cancer-associated aberrant ASI in vivo in TNBC xenograft mice by diminishing proliferation and increasing pro-apoptotic ASI. In accordance with these findings, apigenin increased apoptosis and reduced tumor proliferation, thereby halting TNBC growth in vivo. Our results revealed that apigenin reprograms transcriptome-wide TNBC-specific AS, thereby inducing apoptosis and hindering tumor growth. These findings underscore the impactful effects of nutraceuticals in altering cancer transcriptomes, offering new options to influence outcomes in TNBC treatments.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, East Lansing, MI, USA
| | - Tatiana García Navarrete
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | - Eric Mukundi
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Timothy D Eubank
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Daniel Arango
- Department of Pharmacology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
17
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
18
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
19
|
Farghadani R, Naidu R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed Pharmacother 2023; 165:115170. [PMID: 37481930 DOI: 10.1016/j.biopha.2023.115170] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Breast cancer is a leadingcause of cancer-related deaths in women globally, with triple-negative breast cancer (TNBC) being an aggressive subtype that lacks targeted therapies and is associated with a poor prognosis. Polyphenols, naturally occurring compounds in plants, have been investigated as a potential therapeutic strategy for TNBC. This review provides an overview of the anticancer effects of polyphenols in TNBC and their mechanisms of action. Several polyphenols, including resveratrol, quercetin, kaempferol, genistein, epigallocatechin-3-gallate, apigenin, fisetin, hesperetin and luteolin, have been shown to inhibit TNBC cell proliferation, induce cell cycle arrest, promote apoptosis, and suppress migration/invasion in preclinical models. The molecular mechanisms underlying their anticancer effects involve the modulation of several signalling pathways, such as PI3K/Akt, MAPK, STATT, and NF-κB pathways. Polyphenols also exhibit synergistic effects with chemotherapy drugs, making them promising candidates for combination therapy. The review also highlights clinical trials investigating the potential use of polyphenols, individually or in combination therapy, against breast cancer. This review deepens the under-standing of the mechanism of action of respective polyphenols and provides valuable insights into the potential use of polyphenols as a therapeutic strategy for TNBC, and lays the groundwork for future research in this area.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
20
|
Gómez de Cedrón M, Moreno Palomares R, Ramírez de Molina A. Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Front Oncol 2023; 13:1169168. [PMID: 37404756 PMCID: PMC10315663 DOI: 10.3389/fonc.2023.1169168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Epigenetic modifications are chemical modifications that affect gene expression without altering DNA sequences. In particular, epigenetic chemical modifications can occur on histone proteins -mainly acetylation, methylation-, and on DNA and RNA molecules -mainly methylation-. Additional mechanisms, such as RNA-mediated regulation of gene expression and determinants of the genomic architecture can also affect gene expression. Importantly, depending on the cellular context and environment, epigenetic processes can drive developmental programs as well as functional plasticity. However, misbalanced epigenetic regulation can result in disease, particularly in the context of metabolic diseases, cancer, and ageing. Non-communicable chronic diseases (NCCD) and ageing share common features including altered metabolism, systemic meta-inflammation, dysfunctional immune system responses, and oxidative stress, among others. In this scenario, unbalanced diets, such as high sugar and high saturated fatty acids consumption, together with sedentary habits, are risk factors implicated in the development of NCCD and premature ageing. The nutritional and metabolic status of individuals interact with epigenetics at different levels. Thus, it is crucial to understand how we can modulate epigenetic marks through both lifestyle habits and targeted clinical interventions -including fasting mimicking diets, nutraceuticals, and bioactive compounds- which will contribute to restore the metabolic homeostasis in NCCD. Here, we first describe key metabolites from cellular metabolic pathways used as substrates to "write" the epigenetic marks; and cofactors that modulate the activity of the epigenetic enzymes; then, we briefly show how metabolic and epigenetic imbalances may result in disease; and, finally, we show several examples of nutritional interventions - diet based interventions, bioactive compounds, and nutraceuticals- and exercise to counteract epigenetic alterations.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Cell Metabolism Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Rocío Moreno Palomares
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- FORCHRONIC S.L, Avda. Industria, Madrid, Spain
| | | |
Collapse
|
21
|
Jia Y, Yang H, Yu J, Li Z, Jia G, Ding B, Lv C. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter miR-122-5p and up-regulating tumor suppressors FOXP2 and SPRY2. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988377 DOI: 10.1002/tox.23789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Crocin has been reported to have antitumor activity in several tumors including breast cancer. Nevertheless, the mechanism of action of crocin on breast cancer remains unclear. The cytotoxicity of crocin was evaluated by CCK-8 assay. Cell proliferation was assessed using EdU incorporation assay and western blot analysis. Breast cancer-related genes were extracted from GEPIA. miR-122-5p targets were predicted using Targetscan, starbase, and miRDB softwares. Luciferase reporter assay was employed to confirm whether miR-122-5p targeted sprouty2 (SPRY2) and forkhead box P2 (FOXP2). Results showed that crocin exhibited cytotoxicity and suppressed the proliferation in breast cancer cells. miR-122-5p was upregulated in breast cancer tissues and cells. Crocin suppressed miR-122-5p to block the proliferation of breast cancer cells. Seven targets of miR-122-5p were identified in breast cancer. SPRY2 and FOXP2 were selected for further experiments due to their involvement in breast cancer. miR-122-5p targeted SPRY2 and FOXP2 to inhibit their expression. miR-122-5p knockdown restrained breast cancer cell proliferation by targeting SPRY2 and FOXP2. Additionally, crocin increased SPRY2 and FOXP2 expression by inhibiting miR-122-5p expression. Together, our results suggested that crocin inhibited proliferation of breast cancer cells through decreasing miR-122-5p expression and the subsequent increase of SPRY2 and FOXP2 expression.
Collapse
Affiliation(s)
- Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery (Department of Head and Neck Surgery), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
22
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
23
|
Lin YW, Wen YC, Hsiao CH, Lai FR, Yang SF, Yang YC, Ho KH, Hsieh FK, Hsiao M, Lee WJ, Chien MH. Proteoglycan SPOCK1 as a Poor Prognostic Marker Promotes Malignant Progression of Clear Cell Renal Cell Carcinoma via Triggering the Snail/Slug-MMP-2 Axis-Mediated Epithelial-to-Mesenchymal Transition. Cells 2023; 12:cells12030352. [PMID: 36766694 PMCID: PMC9913795 DOI: 10.3390/cells12030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) has been reported to play an oncogenic role in certain cancer types; however, the role of SPOCK1 in the progression of clear cell renal cell carcinoma (ccRCC) remains elusive. Here, higher SPOCK1 transcript and protein levels were observed in ccRCC tissues compared to normal tissues and correlated with advanced clinical stages, larger tumor sizes, and lymph node and distal metastases. Knockdown and overexpression of SPOCK1 in ccRCC cells led to decreased and increased cell clonogenic and migratory/invasive abilities in vitro as well as lower and higher tumor growth and invasion in vivo, respectively. Mechanistically, the gene set enrichment analysis (GSEA) database was used to identify the gene set of epithelial-to-mesenchymal transition (EMT) pathways enriched in ccRCC samples with high SPOCK1 expression. Further mechanistic investigations revealed that SPOCK1 triggered the Snail/Slug-matrix metalloproteinase (MMP)-2 axis to promote EMT and cell motility. Clinical ccRCC samples revealed SPOCK1 to be an independent prognostic factor for overall survival (OS), and positive correlations of SPOCK1 with MMP-2 and mesenchymal-related gene expression levels were found. We observed that patients with SPOCK1high/MMP2high tumors had the shortest OS times compared to others. In conclusion, our findings reveal that SPOCK1 can serve as a useful biomarker for predicting ccRCC progression and prognosis, and as a promising target for treating ccRCC.
Collapse
Affiliation(s)
- Yung-Wei Lin
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chi-Hao Hsiao
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Feng-Ru Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 404, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Feng-Koo Hsieh
- The Genome Engineering & Stem Cell Center, School of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: (W.-J.L.); (M.-H.C.); Tel.: +886-2-27-361-661 (ext. 3237) (M.-H.C.); Fax: +886-2-27-390-500 (M.-H.C.)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Correspondence: (W.-J.L.); (M.-H.C.); Tel.: +886-2-27-361-661 (ext. 3237) (M.-H.C.); Fax: +886-2-27-390-500 (M.-H.C.)
| |
Collapse
|
24
|
Banerjee S, Sharma S, Thakur A, Sachdeva R, Sharma R, Nepali K, Liou JP. N-Heterocycle based Degraders (PROTACs) Manifesting Anticancer Efficacy: Recent Advances. Curr Drug Targets 2023; 24:1184-1208. [PMID: 37946353 DOI: 10.2174/0113894501273969231102095615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.
Collapse
Affiliation(s)
- Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ritika Sachdeva
- College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100155. [PMID: 36582744 PMCID: PMC9793217 DOI: 10.1016/j.fochms.2022.100155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.
Collapse
Key Words
- 8-oxodG, 8-oxo-2́deosyguanosine
- ABCG, ATP Binding Cassette Subfamily G Member
- ADAM10, α-secretase
- ADRB3, adrenoceptor Beta 3
- APP, amyloid-β precursor protein
- ARF, auxin response factor
- ARH-I, aplysia ras homology member I
- ARHGAP24, Rho GTPase Activating Protein 24
- ATF6, activating transcription factor 6
- ATP2A3, ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 3
- BCL2L14, apoptosis facilitator Bcl-2-like protein 14
- Bioactive compounds
- CDH1, cadherin-1
- CDKN, cyclin dependent kinase inhibitor
- CPT, carnitine palmitoyltransferase
- CREBH, cyclic AMP-responsive element-binding protein H
- DANT2, DXZ4 associated non-noding transcript 2, distal
- DAPK1, death-associated protein kinase 1
- DNA methylation
- DNMT, DNA methyltransferase
- DOT1L, disruptor of telomeric silencing 1-like
- EWASs, epigenome-wide association studies
- EZH2, Enhancer of zeste homolog 2
- FAS, Fas cell Surface Death Receptor
- GDNF, glial cell line-derived neurotrophic factor
- GFAP, glial fibrillary acid protein
- GSTP1, Glutathione S-transferases P1
- Gut microbiota modulation
- HAT, histone acetylases
- HDAC, histone deacetylases
- HSD11B2, 11 beta-hydroxysteroid dehydrogenase type 2
- Histone modifications
- IGFBP3, insulin-like growth factor-binding protein 3
- IGT, impaired glucose tolerance
- KCNK3, potassium two pore domain channel subfamily K Member 3
- MBD4, methyl-CpG binding domain 4
- MGMT, O-6-methylguanine-DNA methyltransferase
- NAFLD, Non-alcoholic fatty liver disease
- OCT1, Organic cation transporter 1
- OGG1, 8-Oxoguanine DNA Glycosylase
- Oxidative stress
- PAI-1, plasminogen activator inhibitor 1
- PHOSPHO1, Phosphoethanolamine/Phosphocholine Phosphatase 1
- PLIN1, perilipin 1
- POE3A, RNA polymerase III
- PPAR, peroxisome proliferator-activated receptor
- PPARGC1A, PPARG coactivator 1 alpha
- PRKCA, Protein kinase C alpha
- PTEN, phosphatase and tensin homologue
- Personalized nutrition
- RASSF1A, Ras association domain family member 1
- SAH, S -adenosyl-l-homocysteine
- SAM, S-adenosyl-methionine
- SD, sleep deprivation
- SOCS3, suppressor of cytokine signaling 3
- SREBP-1C, sterol-regulatory element binding protein-1C
- TBX2, t-box transcription factor 2
- TCF7L2, transcription factor 7 like 2
- TET, ten-eleven translocation proteins
- TNNT2, cardiac muscle troponin T
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- lncRNA, long non-coding RNA
- ncRNA, non-coding RNA
- oAβ-induced-LTP, oligomeric amyloid-beta induced long term potentiation
Collapse
|
26
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
27
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today's scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | | | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
28
|
The Potential Role of Apigenin in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186051. [PMID: 36144783 PMCID: PMC9505045 DOI: 10.3390/molecules27186051] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Collapse
|
29
|
Combination Therapy Using Polyphenols: An Efficient Way to Improve Antitumoral Activity and Reduce Resistance. Int J Mol Sci 2022; 23:ijms231810244. [PMID: 36142147 PMCID: PMC9499610 DOI: 10.3390/ijms231810244] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols represent a structural class of mainly natural organic chemicals that contain multiple phenol structural units. The beneficial properties of polyphenols have been extensively studied for their antitumor, anti-inflammatory, and antibacterial effects, but nowadays, their medical applications are starting to be extended to many other applications due to their prebiotic role and their impact on the microbiota. This review focused on the use of polyphenols in cancer treatment. Their antineoplastic effects have been demonstrated in various studies when they were tested on numerous cancer lines and some in in vivo models. A431 and SCC13 human skin cancer cell lines treated with EGCG presented a reduced cell viability and enhanced cell death due to the inactivation of β-catenin signaling. Additionally, resveratrol showed a great potential against breast cancer mainly due to its ability to exert both anti-estrogenic and estrogenic effects (based on the concentration) and because it has a high affinity for estrogen receptors ERα and Erβ. Polyphenols can be combined with different classical cytostatic agents to enhance their therapeutic effects on cancer cells and to also protect healthy cells from the aggressiveness of antitumor drugs due to their anti-inflammatory properties. For instance, curcumin has been reported to reduce the gastrointestinal toxicity associated with chemotherapy. In the case of 5-FU-induced, it reduced the gastrointestinal toxicity by increasing the intestinal permeability and inhibiting mucosal damage. Co-administration of EGCG and doxorubicin induced the death of liver cancer cells. EGCG has the ability to inhibit autophagic activity and stop hepatoma Hep3B cell proliferation This symbiotic approach is well-known in medical practice including in multiple chemotherapy.
Collapse
|
30
|
Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem Toxicol 2022; 168:113385. [PMID: 36007853 DOI: 10.1016/j.fct.2022.113385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Apigenin (APG) is a flavonoid presence in beverages, vegetables, and fruits containing anti-diabetic, anti-oxidant, and anti-viral activities, as well as cancer management properties. There is growing evidence that APG presented extensive anti-cancer effects in several cancer types by modulating various cellular processes, including angiogenesis, apoptosis, metastasis, autophagy, cell cycle, and immune responses, through activation or inhibition of different cell signaling pathways and molecules. By emerging nanotechnology and its advent in the biomedicine field, cancer therapy has been changed based on nanotechnology-based delivery systems. APG nanoformulations have been used to target tumor cells specifically, improve cellular uptake of APG, and overcome limitations of the free form of APG, such as low solubility and poor bioavailability. In this review, the biotherapeutic activity of APG and its mechanisms, both in free form and nanoformulation, toward cancer cells are discussed to shed some light on APG anti-tumor activity in different cancers.
Collapse
|
31
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
32
|
Pouremamali F, Pouremamali A, Dadashpour M, Soozangar N, Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun Signal 2022; 20:100. [PMID: 35773670 PMCID: PMC9245222 DOI: 10.1186/s12964-022-00906-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endogenous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protective roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malignancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities. The Nrf2 pathway signifies one of the most significant cell defense procedures against exogenous or endogenous stressors. Certainly, by increasing the expression of several cytoprotective genes, the transcription factor Nrf2 can shelter cells and tissues from multiple sources of damage including electrophilic, xenobiotic, metabolic, and oxidative stress. Notably, the aberrant activation or accumulation of Nrf2, a common event in many tumors, confers a selective advantage to cancer cells and is connected to malignant progression, therapy resistance, and poor prognosis. Therefore, lately, Nrf2 has arisen as a hopeful target in treatment of cancer, and many struggles have been made to detect therapeutic strategies intended at disrupting its pro-oncogenic role. By summarizing the outcomes from past and recent studies, this review provided an overview concerning the Nrf2 pathway and the molecular mechanisms causing Nrf2 hyperactivation in cancer cells. Finally, this paper also described some of the most promising therapeutic approaches that have been successfully employed to counteract Nrf2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies. Video abstract
Collapse
Affiliation(s)
- Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Soozangar
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran. .,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
33
|
Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022; 13:924817. [PMID: 35754474 PMCID: PMC9218606 DOI: 10.3389/fphar.2022.924817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator kelch-like ECH-associated protein 1 (KEAP1) regulate various genes involved in redox homeostasis, which protects cells from stress conditions such as reactive oxygen species and therefore exerts beneficial effects on suppression of carcinogenesis. In addition to their pivotal role in cellular physiology, accumulating innovative studies indicated that NRF2/KEAP1-governed pathways may conversely be oncogenic and cause therapy resistance, which was profoundly modulated by epigenetic mechanism. Therefore, targeting epigenetic regulation in NRF2/KEAP1 signaling is a potential strategy for cancer treatment. In this paper, the current knowledge on the role of NRF2/KEAP1 signaling in cancer oxidative stress is presented, with a focus on how epigenetic modifications might influence cancer initiation and progression. Furthermore, the prospect that epigenetic changes may be used as therapeutic targets for tumor treatment is also investigated.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sining Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanlin Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Department of Stomatology, Panzhihua Central Hospital, Panzhihua, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Hnit SST, Yao M, Xie C, Bi L, Wong M, Liu T, De Souza P, Li Z, Dong Q. Apigenin impedes cell cycle progression at G 2 phase in prostate cancer cells. Discov Oncol 2022; 13:44. [PMID: 35670862 PMCID: PMC9174405 DOI: 10.1007/s12672-022-00505-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
As a natural flavone, apigenin is abundantly present in vegetables, fruits, oregano, tea, chamomile, wheat sprout and is regarded as a major component of the Mediterranean diet. Apigenin is known to inhibit proliferation in different cancer cell lines by inducing G2/M arrest, but it is unclear whether this action is predominantly imposed on G2 or M phases. In this study, we demonstrate that apigenin arrests prostate cancer cells at G2 phase by flow cytometric analysis of prostate cancer cells co-stained for phospho-Histone H3 and DNA. Concurrently, apigenin also reduces the mRNA and protein levels of the key regulators that govern G2-M transition. Further analysis using chromatin immunoprecipitation (ChIP) confirmed the diminished transcriptional activities of the genes coding for these regulators. Unravelling the inhibitory effect of apigenin on G2-M transition in cancer cells provides the mechanistic understanding of its action and supports the potential for apigenin as an anti-cancer agent.
Collapse
Affiliation(s)
- Su Su Thae Hnit
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Mu Yao
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Chanlu Xie
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Matthew Wong
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia
- Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Sydney, NSW, Australia
- Centre for Childhood Cancer Research, UNSW Medicine, Sydney, Australia
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney , Australia
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Beijing University of Traditional Chinese Medicine, 201203, Beijing, China.
| | - Qihan Dong
- Chinese Medicine Anti-cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, 2006, Camperdown, NSW, Australia.
| |
Collapse
|
35
|
The Effect of Encapsulated Apigenin Nanoparticles on HePG-2 Cells through Regulation of P53. Pharmaceutics 2022; 14:pharmaceutics14061160. [PMID: 35745733 PMCID: PMC9228521 DOI: 10.3390/pharmaceutics14061160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
Apigenin (Ap) is one of the most important natural flavonoids that has potent anticancer activity. This study was designed, for the first time, to load Ap into chitosan to improve its hydrophobicity and then it was coated with albumin-folic acid to increase its stability and bioavailability and to target cancer cells. The newly developed encapsulated Ap (Ap-CH-BSA-FANPs) was characterized and tested in vitro. The zeta potential of −17.0 mV was within the recommended range (−30 mV to +30 mV), indicating that encapsulated apigenin would not quickly settle and would be suspended. The in vitro results proved the great anticancer activity of the encapsulated apigenin on HePG-2 cells compared to pure Ap. The treated HePG-2 cells with Ap-CH-BSA-FANPs demonstrated the induction of apoptosis by increasing p53 gene expression, arresting the cell cycle, increasing caspase-9 levels, and decreasing both the MMP9 gene and Bcl-2 protein expression levels. Moreover, the higher antioxidant activity of the encapsulated apigenin treatment was evident through increasing SOD levels and decreasing the CAT concentration. In conclusion, the Ap-CH-BSA-FANPs were easy to produce with low coast, continued drug release, good loading capacity, high solubility in physiological pH, and were more stable than the formerly Ap-loaded liposomes or PLGA. Moreover, Ap-CH-BSA-FANPs may be a promising chemotherapeutic agent in the treatment of HCC.
Collapse
|
36
|
Ding YF, Lin YW, Chiu WK, Lin CW, Yang YC, Chang LC, Chang J, Yang SF, Chien MH. Combined impacts of histamine receptor H1 gene polymorphisms and an environmental carcinogen on the susceptibility to and progression of oral squamous cell carcinoma. Aging (Albany NY) 2022; 14:4500-4512. [PMID: 35587368 PMCID: PMC9186772 DOI: 10.18632/aging.204089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/10/2022] [Indexed: 12/09/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequently encountered type of oral cancer. Histamine receptor H1 (HRH1) was reported to play a crucial role in OSCC carcinogenesis, but impacts of genetic variants of HRH1 on OSCC remain unclear. Herein, we investigated the association between functional single-nucleotide polymorphisms (SNPs) of HRH1 and OSCC susceptibility or clinicopathologic variables by logistic regression models. HRH1 genotypes at four loci (rs346074, rs346076, rs901865, and rs2606731) were analyzed by a TaqMan allelic discrimination assay, and we found that patients harboring HRH1 rs901865 T and rs346074 T alleles had a significantly lower risk of developing larger tumor sizes (>T2) under a dominant model. Based on the environmental carcinogen exposure status, we observed that HRH1 rs901865 polymorphic variants were also associated with a lower risk of developing more-advanced clinical stages (III or IV) in patients with a betel-quid-chewing habit. Moreover, genotype screening of rs901865 and rs346074 in OSCC cell lines showed that cells respectively carrying the CT and TT genotypes expressed lower HRH1 levels compared to cells carrying the CC genotype of rs901865 and rs346074. Furthermore, analyses of TCGA and GEO databases revealed that HRH1 expression levels were upregulated in head and neck squamous cell carcinoma (HNSCC) and OSCC tissues compared to normal tissues and were correlated with larger tumor sizes and poorer prognoses. These results indicated the involvement of HRH1 SNPs rs901865 and rs346074 in OSCC development and support the interaction between HRH1 gene polymorphisms and an environmental carcinogen as a predisposing factor for OSCC progression.
Collapse
Affiliation(s)
- Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
37
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
38
|
Anticancer Effects and Molecular Mechanisms of Apigenin in Cervical Cancer Cells. Cancers (Basel) 2022; 14:cancers14071824. [PMID: 35406599 PMCID: PMC8998024 DOI: 10.3390/cancers14071824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth most frequent malignancy in women. Apigenin is a natural plant-derived flavonoid present in common fruit, vegetables, and herbs, and has been found to possess antioxidant and anti-inflammatory properties as a health-promoting agent. It also exhibits important anticancer effects in various cancers, but its effects are not widely accepted by clinical practitioners. The present study investigated the anticancer effects and molecular mechanisms of apigenin in cervical cancer in vitro and in vivo. HeLa and C33A cells were treated with different concentrations of apigenin. The effects of apigenin on cell viability, cell cycle distribution, migration potential, phosphorylation of PI3K/AKT, the integrin β1-FAK signaling pathway, and epithelial-to-mesenchymal transition (EMT)-related protein levels were investigated. Mechanisms identified from the in vitro study were further validated in a cervical tumor xenograft mouse model. Apigenin effectively inhibited the growth of cervical cancer cells and cervical tumors in xenograft mice. Furthermore, the apigenin down-regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT signaling (PI3K, AKT, and mTOR), inactivated or activated various signaling targets, such as Bcl-2, Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and E-cadherin, promoted mitochondrial-mediated apoptosis, induced G2/M-phase cell cycle arrest, and reduced EMT to inhibit HeLa and C33A cancer cell migration, producing anticancer effects in cervical cancer. Thus, apigenin may act as a chemotherapeutic agent for cervical cancer treatment.
Collapse
|
39
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
40
|
Sharma A, Sinha S, Keswani H, Shrivastava N. Kaempferol and Apigenin suppresses the stemness properties of TNBC cells by modulating Sirtuins. Mol Divers 2022; 26:3225-3240. [PMID: 35129762 DOI: 10.1007/s11030-022-10384-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Sirtuins (SIRTs) overexpression serves as a potential therapeutic target for TNBC because it is associated with bioactivities of cancer stem cells (CSCs), resistance to chemotherapy, and metastasis. Irrespective of the availability of synthetic SIRT inhibitors, new SIRT inhibitors with enhanced potency and lesser side effects serve as current unmet needs. Therefore, bioactive dietary compounds; kaempferol (KMP) and apigenin (API) were investigated for their anti-SIRTs potential. We observed KMP and API inhibits cellular proliferation by DNA damage and S-phase cell cycle arrest in TNBC Cells. They also suppress stemness properties in TNBCs as observed in experiments of mammosphere formation and clonogenic potential. Our mechanistic approach indicated that KMP and API inhibited SIRT3 and SIRT6 proteins, as evidenced by our in silico and in vitro experiment. Collectively, our studies suggest that KMP and API are promising candidates to be further developed as sirtuin modulators against TNBCs.
Collapse
Affiliation(s)
- Abhilasha Sharma
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Sonam Sinha
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Kashiv Biosciences, FP 27/2,43, TP-86, BLOCK-B OPP. Apple Woods Township, SP Ring Road, 382210, Ahmedabad, Gujarat, India
| | - Harshita Keswani
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Department of Biotechnology and Biochemistry, St. Xavier's College, Ahmedabad, India
| | - Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.
- Shri B.V. Patel Education Trust, Ahmedabad, Gujarat, India.
| |
Collapse
|
41
|
Lipovka Y, Alday E, Hernandez J, Velazquez C. Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2003380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
42
|
Fatima N, Baqri SSR, Bhattacharya A, Koney NKK, Husain K, Abbas A, Ansari RA. Role of Flavonoids as Epigenetic Modulators in Cancer Prevention and Therapy. Front Genet 2021; 12:758733. [PMID: 34858475 PMCID: PMC8630677 DOI: 10.3389/fgene.2021.758733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulation involves reversible changes in histones and DNA modifications that can be inherited without any changes in the DNA sequence. Dysregulation of normal epigenetic processes can lead to aberrant gene expression as observed in many diseases, notably cancer. Recent insights into the mechanisms of DNA methylation, histone modifications, and non-coding RNAs involved in altered gene expression profiles of tumor cells have caused a paradigm shift in the diagnostic and therapeutic approaches towards cancer. There has been a surge in search for compounds that could modulate the altered epigenetic landscape of tumor cells, and to exploit their therapeutic potential against cancers. Flavonoids are naturally occurring phenol compounds which are abundantly found among phytochemicals and have potentials to modulate epigenetic processes. Knowledge of the precise flavonoid-mediated epigenetic alterations is needed for the development of epigenetics drugs and combinatorial therapeutic approaches against cancers. This review is aimed to comprehensively explore the epigenetic modulations of flavonoids and their anti-tumor activities.
Collapse
Affiliation(s)
- Nishat Fatima
- Department of Chemistry, Shia Postgraduate College, Lucknow, India
| | | | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nii Koney-Kwaku Koney
- Department of Anatomy, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kazim Husain
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rais A Ansari
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
43
|
An In Vitro-In Vivo Evaluation of the Antiproliferative and Antiangiogenic Effect of Flavone Apigenin against SK-MEL-24 Human Melanoma Cell Line. ACTA ACUST UNITED AC 2021; 2021:5552664. [PMID: 34239802 PMCID: PMC8241515 DOI: 10.1155/2021/5552664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023]
Abstract
One of the most important class of natural compounds with successful preclinical results in the management of cancer is the flavonoids. Due to the plethora of biological activities, apigenin (4',5,7 trihydroxyflavone) is a main representant of the flavone subclass. Although the antiproliferative and antiangiogenic effects of apigenin were studied on a significant number of human and murine melanoma cell lines, in order to complete the data existing in the literature, the aim of this study is to evaluate the in vitro effect of apigenin on SK-MEL-24 human melanoma cell line as well as in vivo on tumor angiogenesis using the aforementioned cell line on the chorioallantoic membrane assay. Results have shown that in the range of tested doses, the phytocompound presents significant antiproliferative, cytotoxic, and antimigratory potential at 30 μM, respectively, 60 μM. Moreover, the phytocompound in both tested concentrations limited melanoma cell growth and migration and induced a reduced angiogenic reaction limiting melanoma cell development.
Collapse
|
44
|
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the Epigenetic Landscape of Cancer-Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Front Oncol 2021; 11:705903. [PMID: 34235089 PMCID: PMC8255972 DOI: 10.3389/fonc.2021.705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
45
|
Jiang P, Cao Y, Gao F, Sun W, Liu J, Ma Z, Xie M, Fu S. SNX10 and PTGDS are associated with the progression and prognosis of cervical squamous cell carcinoma. BMC Cancer 2021; 21:694. [PMID: 34116656 PMCID: PMC8196508 DOI: 10.1186/s12885-021-08212-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
Background Cervical cancer (CC) is the primary cause of death in women. This study sought to investigate the potential mechanism and prognostic genes of CC. Methods We downloaded four gene expression profiles from GEO. The RRA method was used to integrate and screen differentially expressed genes (DEGs) between CC and normal samples. Functional analysis was performed by clusterprofiler. We built PPI network by Search Tool for the Retrieval of Interacting Genes Database (STRING) and selected hub modules via Molecular COmplex Detection (MCODE). CMap database was used to find molecules with therapeutic potential for CC. The hub genes were validated in GEO datasets, Gene Expession Profiling Interactive Analysis (GEPIA), immunohistochemistry, Cox regression analysis, TCGA methylation analysis and ONCOMINE were carried out. ROC curve analysis and GSEA were also performed to describe the prognostic significance of hub genes. Results Functional analysis revealed that 147 DEGs were significantly enriched in binding, cell proliferation, transcriptional activity and cell cycle regulation. PPI network screened 30 hub genes, with CDK1 having the strongest connectivity with CC. Cmap showed that apigenin, thioguanine and trichostatin A might be used to treat CC(P < 0.05). Eight genes (APOD, CXCL8, MMP1, MMP3, PLOD2, PTGDS, SNX10 and SPP1) were screened out through GEPIA. Of them, only PTGDS and SNX10 had not appeared in previous studies about CC. The validation in GEO showed that PTGDS showed low expression while SNX10 presented high expression in tumor tissues. Their expression profiles were consistent with the results in immunohistochemistry. ROC curve analysis indicated that the model had a good diagnostic efficiency (AUC = 0.738). GSEA analysis demonstrated that the two genes were correlated with the chemokine signaling pathway (P < 0.05). TCGA methylation analysis showed that patients with lowly-expressed and highly-methylated PTGDS had a worse prognosis than those with highly-expressed and lowly-methylated PTGDS (p = 0.037). Cox regression analysis showed that SNX10 and PTGDS were independent prognostic indicators for OS among CC patients (P = 0.007 and 0.003). Conclusions PTGDS and SNX10 showed abnormal expression and methylation in CC. Both genes might have high prognostic value of CC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08212-w.
Collapse
Affiliation(s)
- Pinping Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ying Cao
- Department of Obstetrics and Gynecology, Changzhou Second People's Hospital, Changzhou, 213000, Jiangsu, China
| | - Feng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ziyan Ma
- University of New South Wales, Sydney, Australia
| | - Manxin Xie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Shilong Fu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
46
|
Luparello C. Cadmium-Associated Molecular Signatures in Cancer Cell Models. Cancers (Basel) 2021; 13:2823. [PMID: 34198869 PMCID: PMC8201045 DOI: 10.3390/cancers13112823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023] Open
Abstract
The exposure of cancer cells to cadmium and its compounds is often associated with the development of more malignant phenotypes, thereby contributing to the acceleration of tumor progression. It is known that cadmium is a transcriptional regulator that induces molecular reprogramming, and therefore the study of differentially expressed genes has enabled the identification and classification of molecular signatures inherent in human neoplastic cells upon cadmium exposure as useful biomarkers that are potentially transferable to clinical research. This review recapitulates selected studies that report the detection of cadmium-associated signatures in breast, gastric, colon, liver, lung, and nasopharyngeal tumor cell models, as specifically demonstrated by individual gene or whole genome expression profiling. Where available, the molecular, biochemical, and/or physiological aspects associated with the targeted gene activation or silencing in the discussed cell models are also outlined.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
47
|
Cheng Y, Han X, Mo F, Zeng H, Zhao Y, Wang H, Zheng Y, Ma X. Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p. PHYTOMEDICINE 2021; 89:153603. [PMID: 34175590 DOI: 10.1016/j.phymed.2021.153603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Apigenin (API) is a naturally occurring plant-derived flavone, which is abundantly present in common fruits and vegetables, and shows little or no toxicity of daily diet. The treatment of colorectal cancer is limited by high recurrence rate and multidrug resistance. PURPOSE The purpose of this study was to explore the potential therapeutic effect and possible mechanisms of API on colorectal cancer cells. METHODS Cell proliferation and apoptosis of human colon cancer cell line HCT116 was assessed after API treatment. A comprehensive transcriptome profile of API-treated HCT116 cells was acquired by high-throughput sequencing. The regulation of miRNA215-5p and E2F1/3 were identified by bioinformatics analyses. An inhibitor of miRNA215-5p, inhibitor 215, was applied to confirm the role of this microRNA played in the anti-cancer effect of API. Luciferase reporter gene assay was performed to identify targeting relationship between miRNA215-5p and E2F1/3. RESULT API significantly promoted cell apoptosis and anti-proliferation of HCT116 cells in a dose-dependent manner. Bioinformatics analyses identified several altered miRNAs among which the expression of miRNA-215-5p showed markedly increased. Meanwhile, the expression of E2F1 and E2F3 was decreased by API, which was associated with miRNA215-5p. Luciferase reporter gene assay showed miRNA-215-5p could directly bind to 3' UTR of E2F1/3. Inhibition of miRNA-215-5p significantly inhibited apoptosis and cell cycle arrest at G0/G1 phase induced by API. CONCLUSIONS The result of this study confirmed the anti-cancer effect of API on human colorectal cancer cells and investigated the underlying mechanism by a comprehensive transcriptome profile of API-treated cells.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Department of Medical oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Lee KL, Lai TC, Wang YC, Shih PC, Yang YC, Tsao TCY, Liu TC, Wen YC, Chang LC, Yang SF, Chien MH. Potential Impacts of Interleukin-17A Promoter Polymorphisms on the EGFR Mutation Status and Progression of Non-Small Cell Lung Cancer in Taiwan. Genes (Basel) 2021; 12:genes12030427. [PMID: 33802737 PMCID: PMC8002550 DOI: 10.3390/genes12030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a typical inflammation-associated cancer, and lung adenocarcinoma (LUAD) is the most common histopathological subtype. Epidermal growth factor receptor (EGFR) mutations are the most common driver mutations of LUAD, and they have been identified as important therapeutic targets by EGFR tyrosine kinase inhibitors. Interleukin (IL)-17A secreted by T-helper 17 lymphocytes is a proinflammatory cytokine that plays an important role in cancer pathogenesis. The present study was designed to investigate the possible associations among IL-17A genetic polymorphisms, EGFR mutation status, and the clinicopathologic development of LUAD in a Taiwanese population. Our study population consisted of 277 LUAD patients harboring the wild-type (WT) EGFR or a mutant (MT) EGFR. Four single-nucleotide polymorphisms (SNPs) of IL-17A in the peripheral blood, including rs8193036(C > T), rs8193037(G > A), rs2275913(G > A), and rs3748067(C > T) loci, were genotyped using a TaqMan allelic discrimination assay. Our results showed that none of these IL-17A SNPs were correlated with the risk of developing mutant EGFR. However, patients with a smoking habit who carried the GA genotype of IL-17A rs8193037 had a significantly lower susceptibility to EGFR mutations (adjusted odds ratio (AOR): 0.225; 95% confidence interval (CI): 0.056~0.900, p = 0.035). Moreover, compared to individuals carrying the CC genotype of rs8193036 at IL-17A, T-allele carriers (CT + TT) were at higher risk of developing more-advanced stages (stage III or IV; p = 0.020). In the WT EGFR subgroup analysis, IL-17A rs8193036 T-allele carriers had higher risks of developing an advanced tumor stage (p = 0.016) and lymphatic invasion (p = 0.049). Further analyses of clinical datasets revealed correlations of IL-17 receptor A (IL-17RA) and IL-17RC expressions with a poor prognosis of LUAD patients with a smoking history or with higher levels of tumor-infiltrating lymphocytes. In conclusion, our results suggested that two functional promoter polymorphisms of IL-17A, i.e., rs8193036 and rs8193037, were associated with the EGFR mutation status and progression in LUAD patients, indicating that these two genetic variants might act as possible markers for predicting patients’ clinical prognoses.
Collapse
Affiliation(s)
- Kai-Ling Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-L.L.); (Y.-C.Y.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Yao-Chen Wang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-C.W.); (T.C.-Y.T.)
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pei-Chun Shih
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-L.L.); (Y.-C.Y.)
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 433, Taiwan
| | - Thomas Chang-Yao Tsao
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-C.W.); (T.C.-Y.T.)
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Tu-Chen Liu
- Department of Chest Medicine, Cheng-Ching General Hospital, Taichung 40764, Taiwan;
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-2-27361661 (ext. 3237) (M.-H.C.); Fax: +886-4-24723229 (S.-F.Y.); +886-2-27390500 (M.-H.C.)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (K.-L.L.); (Y.-C.Y.)
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-4-24739595 (ext. 34253) (S.-F.Y.); +886-2-27361661 (ext. 3237) (M.-H.C.); Fax: +886-4-24723229 (S.-F.Y.); +886-2-27390500 (M.-H.C.)
| |
Collapse
|
49
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
50
|
To KKW, Cho WCS. Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms. Curr Cancer Drug Targets 2021; 21:289-305. [PMID: 33535954 DOI: 10.2174/1568009621666210203111220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major reason accounting for the treatment failure in cancer chemotherapy. Dysregulation of the epigenetic machineries is known to induce chemoresistance. It was reported that numerous genes encoding the key mediators in cancer proliferation, apoptosis, DNA repair, and drug efflux are dysregulated in resistant cancer cells by aberrant DNA methylation. The imbalance of various enzymes catalyzing histone post-translational modifications is also known to alter chromatin configuration and regulate multiple drug resistance genes. Alteration in miRNA signature in cancer cells also gives rise to chemoresistance. Flavonoids are a large group of naturally occurring polyphenolic compounds ubiquitously found in plants, fruits, vegetables and traditional herbs. There has been increasing research interest in the health-promoting effects of flavonoids. Flavonoids were shown to directly kill or re-sensitize resistant cancer cells to conventional anticancer drugs by epigenetic mechanisms. In this review, we summarize the current findings of the circumvention of drug resistance by flavonoids through correcting the aberrant epigenetic regulation of multiple resistance mechanisms. More investigations including the evaluation of synergistic anticancer activity, dosing sequence effect, toxicity in normal cells, and animal studies, are warranted to establish the full potential of the combination of flavonoids with conventional chemotherapeutic drugs in the treatment of cancer with drug resistance.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|