1
|
Fasakin OW, Awosika A, Ogunsanya ST, Benson IO, Olopoda AI. Anti-hypertensive effect of enriched white melon seed protein concentrate biscuit on sodium fluoride exposed rats. World J Exp Med 2025; 15:105798. [DOI: 10.5493/wjem.v15.i2.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Sodium fluoride (NaF) is a daily necessity consumed as the major ingredient of fluorinated drinking water, milk, salts, mouthwashes, toothpaste, and dentistry medications. However, the use of NaF products has also been associated with increased fluoride anion distribution in the body, leading to hypertension.
AIM This study evaluated the antihypertensive effect of sweet orange peels-enriched white melon seed protein concentrate (WSP) biscuit meal in eight-week-old albino rats exposed to NaF for 14 days.
METHODS Forty-two (42) male Wistar albino rats were assigned at random into 7 groups of 6 rats per group (control group and six experimental groups). The experimental groups received various treatments that lasted for two weeks. Twenty-four hours after the last administration, hemodynamic parameters were evaluated, rats were sacrificed, blood samples were collected, and the heart was harvested. Blood serum was assessed for cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH). At the same time, the heart homogenate was assayed for angiotensin-1 converting enzyme (ACE) activity, proinflammatory cytokines, nitric oxide concentrations, and antioxidant status. Cardiac tissues were stained with Hematoxylin and Eosin, Masson’s Trichrome, and cTnI. Also, the safety of the WSP biscuit diet was evaluated.
RESULTS Results obtained showed that NaF administration elevated the collagen content of cardiac tissues, activities of ACE, and concentrations of cTnI, CK-MB, LDH, tumor necrosis factor-alpha, and interleukin 1 beta, while there was a reduction in the concentration of nitric oxide and antioxidants; however, their alterations were significantly prevented in WSP-biscuit-fed rats. The WSP biscuit meal is safe for consumption and possesses dose-dependent antihypertensive ability at 10% and 20% inclusion.
CONCLUSION The WSP biscuit diet may be recommended in diet formulation for the management of individuals or communities that are predisposed to NaF contaminations.
Collapse
Affiliation(s)
- Olamide Wilson Fasakin
- Department of Biomedical Technology, Federal University of Technology, Akure 234034, Nigeria
| | - Ayoola Awosika
- College of Medicine, University of Illinois, Chicago, Peoria, IL 61601, United States
| | | | | | - Akinyode Isaac Olopoda
- Department of Biochemistry, Federal University of Technology, Akure 234034, Ondo, Nigeria
| |
Collapse
|
2
|
Babu S, Velmani NS, Manoharan S, Perumal E. Esculin, a Coumarin Glucoside Prevents Fluoride-Induced Oxidative Stress and Cardiotoxicity in Zebrafish Larvae. ENVIRONMENTAL TOXICOLOGY 2025; 40:636-649. [PMID: 39606932 DOI: 10.1002/tox.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Fluoride (F-) is a major groundwater contaminant spread across the world. In excess concentrations, F- can be detrimental to living beings. F- exposure is linked to cellular redox dyshomeostasis, leading to oxidative stress-mediated pathologies including heart dysfunction. Due to its potent antioxidant properties, various phytochemicals are found to alleviate the symptoms of F- toxicity. Hence, we explore the protective effect of esculin (Esc), a coumarin glucoside on F--induced oxidative stress and cardiotoxicity in zebrafish larvae. The experimental groups consisted of NaF (50 ppm) and Esc (100 μM) groups treated alone and in combination with a control group for 6 h. The groups were maintained till 78 hpf after which the level of oxidants (ROS, LPO, and PCC) and antioxidants (GST, GSH, GPx, SOD, and CAT) were assessed. The results revealed that Esc pretreatment restored the depleted antioxidant markers and reduced the levels of oxidant in the Esc+NaF group, exhibiting its antioxidant potential. In addition, analyses of the heartbeat rate and hemoglobin integrity using o-Dianisidine staining were conducted in the control and experimental groups. Esc treatment prevents F- induced cardiac changes including tachycardia and altered blood flow. Further, the mRNA expression level of antioxidant genes (nrf2, gstp1, hmox1a, prdx1, and nqo1) and cardiac developmental genes (bmp2b, nkx2.5, myh6, and myl7) confirmed that Esc acts as a potent free radical scavenger and antioxidant defense enhancer, protecting zebrafish larvae from NaF-induced oxidative stress and heart dysfunction.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Naveen Surya Velmani
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Wu J, Qin M, Gao Y, Liu Y, Liu X, Jiang Y, Yang Y, Gao Y. Association between fluoride exposure and the risk of serum CK and CK-MB elevation in adults: a cross-sectional study in China. Front Public Health 2025; 12:1410056. [PMID: 39944564 PMCID: PMC11818751 DOI: 10.3389/fpubh.2024.1410056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/27/2024] [Indexed: 05/09/2025] Open
Abstract
Background This study aimed to investigate the relationship between urinary fluoride concentration and myocardial disease. Methods This is a cross-sectional study that was conducted in three villages in Wenshui County, Shanxi Province. A total of 737 villagers were included in this analysis. Urinary fluoride was detected using a fluoride-ion selective electrode. Myocardial enzymes were detected using an automatic biochemical analyzer. Myocardial ischemia and arrhythmia were diagnosed using 12-lead electrocardiogram. Results The median level of urinary fluoride concentration was 1.32 mg/L. Urinary fluoride was associated with serum creatine kinase (CK) elevation (odds ratio [OR] = 1.39 [95% confidence interval (CI)]: 1.09-1.78) and CK isoenzyme (CK-MB) elevation (OR = 1.49 [95% CI: 1.12-1.97]). Stratified analysis revealed that urinary fluoride concentration was associated with CK elevation in villagers under the age of 60 years (OR = 1.80 [95% CI: 1.26-2.59]). This study found that there was a positive association between urinary fluoride concentration and the risk of CK-MB elevation in participants under the age of 60 years(OR = 2.18 [95% CI: 1.39-3.42]), those who were of female gender (OR = 1.53 [95% CI: 1.07-2.19]), those who were overweight/obese (OR = 1.96 [95% CI: 1.28-2.99]), those who had central obesity (OR = 1.59 [95% CI: 1.12-2.25]), consumed alcohol (OR = 1.49 [95% CI: 1.09-2.05]), and smoked (OR = 1.50 [95% CI: 1.10-2.04]). Conclusion Our study suggests that fluoride exposure is associated with the risk of serum CK and CK-MB elevation; however, it is not associated with myocardial ischemia, arrhythmia, serum lactate dehydrogenase (LDH), serum alpha-hydroxybutyrate dehydrogenase (α-HBD), or serum aspartate aminotransferase (AST). Further investigations are needed to substantiate our findings and explore the potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Yang W, Lu C, Chu F, Bu K, Ma H, Wang Q, Jiao Z, Wang S, Yang X, Gao Y, Sun D, Sun H. Fluoride-induced hypertension by regulating RhoA/ROCK pathway and phenotypic transformation of vascular smooth muscle cells: In vitro and in vivo evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116681. [PMID: 38964063 DOI: 10.1016/j.ecoenv.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Fluoride exposure has been implicated as a potential risk factor for hypertension, but the underlying mechanisms remain unclear. This study investigated the role of the RhoA/ROCK signaling pathway in fluoride-induced hypertension. Male Wistar rats were divided into different groups and exposed to varying concentrations of sodium fluoride (NaF) or sodium chloride (NaCl) via drinking water. The rats' blood pressure was measured, and their aortic tissue was utilized for high-throughput sequencing analysis. Additionally, rat and A7r5 cell models were established using NaF and/or Fasudil. The study evaluated the effects of fluoride exposure on blood pressure, pathological changes in the aorta, as well as the protein/mRNA expression levels of phenotypic transformation indicators (a-SMA, calp, OPN) in vascular smooth muscle cells (VSMCs), along with the RhoA/ROCK signaling pathway (RhoA, ROCK1, ROCK2, MLC/p-MLC). The results demonstrated that fluoride exposure in rats led to increased blood pressure. High-throughput sequencing analysis revealed differential gene expression associated with vascular smooth muscle contraction, with the RhoA/ROCK signaling pathway emerging as a key regulator. Pathological changes in the rat aorta, such as elastic membrane rupture and collagen fiber deposition, were observed following NaF exposure. However, fasudil, a ROCK inhibitor, mitigated these pathological changes. Both in vitro and in vivo models confirmed the activation of the RhoA/ROCK signaling pathway and the phenotypic transformation of VSMCs from a contractile to a synthetic state upon fluoride exposure. Fasudil effectively inhibited the activities of ROCK1 and ROCK2 and attenuated the phenotypic transformation of VSMCs. In conclusion, fluoride has the potential to induce hypertension through the activation of the RhoA/ROCK signaling pathway and phenotypic changes in vascular smooth muscle cells. These results provide new insights into the mechanism of fluoride-induced hypertension.
Collapse
Affiliation(s)
- Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Keming Bu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Qiaoyu Wang
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China; Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhe Jiao
- NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China; Institute for Kashin Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Yanhui Gao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), China.
| |
Collapse
|
5
|
Adejare A, Oloyo A, Dahud Y, Adeshina M, Agbaje A, Ejim C, Ismail-Badmus K, Jaja S. Renal denervation ameliorated salt-induced hypertension by improving cardiac work, cardiac enzyme and oxidative balance in Sprague-Dawley rats. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 21:200290. [PMID: 38828466 PMCID: PMC11139768 DOI: 10.1016/j.ijcrp.2024.200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Background Hypertension is associated with cardiovascular dysfunction, dysregulation of the antioxidant system and alteration of the level of some enzymes in the metabolic pathway. The possible modulatory effect of acute renal denervation (ARD) on cardiovascular function and the antioxidant system is still a subject of intense debate. This study sought to ascertain the ameliorative effects of ARD on cardiovascular parameters, antioxidant system, creatine kinase and lactate dehydrogenase levels. Methods Thirty-six Sprague-Dawley rats (5-6 weeks old) were divided into 6 groups of 6 animals each consisting of Normal Salt, High Salt, Normal Salt + Sham Denervation, High Salt + Sham Denervation, Normal Salt + Renal Denervation and High Salt + Renal Denervation. Induction of hypertension with 8 % salt in the diet lasted for 8 weeks. Renal or Sham denervation was thereafter done on selected groups. At the end of the experimental period, cardiovascular parameters, plasma antioxidant status, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) levels were assessed. Significance level was set at p < 0.05. Results Salt-loading significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), rate pressure product (RPP) while reducing superoxide dismutase (SOD), reduced glutathione (GSH) and catalase (CAT). Acute renal denervation significantly (p < 0.0001) reduced SBP, DBP, MABP, RPP, LDH and norepinephrine level while increasing SOD, GSH and CAT. ARD did not significantly alter CK level. Conclusion Acute renal denervation, by reducing sympathetic activity, ameliorates cardiovascular and antioxidant functions as well as reduces LDH level without significantly altering CK level in salt-induced hypertension.
Collapse
Affiliation(s)
- Abdullahi Adejare
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Ahmed Oloyo
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Yusuf Dahud
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Morufat Adeshina
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Abiola Agbaje
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Clinton Ejim
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Khadijah Ismail-Badmus
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Smith Jaja
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| |
Collapse
|
6
|
Saha NC, Banerjee P, Chatterjee A, Bhattacharya R, Saha S, Pastorino P. Haematological, biochemical, enzymological changes and mitochondrial dysfunction of liver in freshwater climbing perch Anabas testudineus during their acute and chronic exposure to sodium fluoride. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104360. [PMID: 38176602 DOI: 10.1016/j.etap.2023.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Anthropogenic activities are increasing fluoride concentration in watercourses. The present study focuses on the sublethal toxicity of sodium fluoride during sub-chronic and chronic time periods in the freshwater fish Anabas testudineus. The 96-hour LC50 value for fluoride was found to be 616.50 mg/L. Excessive mucous production and hyper excitability, followed by loss of balance, were seen in fish under acute fluoride exposure. Significant reduction in yield and specific growth rate of fish were assessed at 15, 30 and 45-days exposure intervals. Different bio-indicators like Hepatosomatic-index, Gonadosomatic-index and fecundity were reduced significantly in fish exposed to 10% (61.6 mg/L) and 20% (123.2 mg/L) of 96 h of LC50 values of fluoride in comparison to control. Toxicant concentrations directly correlated with parameter lowering. Fluoride exposure increased plasma glucose, creatinine, AST, and ALT and reduced total RBC, haemoglobin content, Hct (%), plasma protein, and cholesterol. Moreover, fluoride exposure significantly reduces the mitochondrial membrane potential in liver. This may result in metabolic depression, haematological, biochemical, and enzymological stress. The in-silico structural analysis predicts that fluoride may impede cytochrome c oxidase of the electron transport system, hence inhibiting mitochondrial functionality. These findings collectively highlight the urgent need for stringent regulation and monitoring of fluoride levels in freshwater ecosystems, as the subchronic and chronic effects observed in A. testudineus may have broader implications for aquatic ecosystems.
Collapse
Affiliation(s)
- Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India; Department of Zoology, Bidhannagar College, Bidhannagar, Kolkata, West Bengal 700064, India.
| | - Priyajit Banerjee
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Arnab Chatterjee
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Ritwick Bhattacharya
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhajit Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
7
|
Ajuwon OR, Adeleke TA, Ajiboye BO, Lawal AO, Folorunso I, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke OB. Fermented Rooibos tea (Aspalathus linearis) Ameliorates Sodium Fluoride-Induced Cardiorenal Toxicity, Oxidative Stress, and Inflammation via Modulation of NF-κB/IκB/IκKB Signaling Pathway in Wistar Rats. Cardiovasc Toxicol 2024; 24:240-257. [PMID: 38315346 DOI: 10.1007/s12012-024-09826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
High dose of fluoride intake is associated with toxic effects on kidney and cardiac tissues. This study evaluated the potential protective effect of fermented rooibos tea (RTE) on sodium fluoride (NaF)-induced cardiorenal toxicity in rats. Male Wistar rats (n = 56) were randomly allocated into one of seven equal groups: control, NaF (100 mg/kg orally), NaF + RTE (2%, w/v), NaF + RTE (4%, w/v), NaF + lisinopril (10 mg/kg orally), 2% RTE, and 4% RTE. The experiment lasted for 14 days and RTE was administered to the rats as their sole source of drinking fluid. NaF induced cardiorenal toxicity indicated by elevated level of urea, creatinine, LDH, creatinine kinase-MB, and cardiac troponin I in the serum, accompanied by altered histopathology of the kidney and heart. Furthermore, levels of H2O2, malondialdehyde, and NO were elevated, while GSH level was depleted in the kidney and heart due to NaF intoxication. Protein levels of c-reactive protein, TNFα, IL-1B, and NF-κB were increased by NaF in the serum, kidney, and heart. RTE at 2% and 4% (w/v) reversed cardiorenal toxicity, resolved histopathological impairment, attenuated oxidative stress and inhibited formation of pro-inflammatory markers. RTE at both concentrations down-regulates the mRNA expression of NF-κB, and upregulates the mRNA expression of both IκB and IκKB, thus blocking the activation of NF-κB signaling pathway. Taken together, these results clearly suggest that the protective potential of rooibos tea against NaF-induced cardiorenal toxicity, oxidative stress, and inflammation may be associated with the modulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Olawale Razaq Ajuwon
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria.
| | - Toyosi Abiodun Adeleke
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Akeem Olalekan Lawal
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ibukun Folorunso
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Fisayo Abraham Bamisaye
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, P.M.B. 4491, Osogbo, Osun State, Nigeria
| | | |
Collapse
|
8
|
Kumar S, Chhabra V, Mehra M, K S, Kumar B H, Shenoy S, Swamy RS, Murti K, Pai KSR, Kumar N. The fluorosis conundrum: bridging the gap between science and public health. Toxicol Mech Methods 2024; 34:214-235. [PMID: 37921264 DOI: 10.1080/15376516.2023.2268722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Manmeet Mehra
- Department of Pharmacology, Guru Nanak Dev University, Amritsar, India
| | - Saranya K
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
9
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
10
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
11
|
Wang M, Wang H, Lei G, Yang B, Hu T, Ye Y, Li W, Zhou Y, Yang X, Xu H. Current progress on fluoride occurrence in the soil environment: Sources, transformation, regulations and remediation. CHEMOSPHERE 2023; 341:139901. [PMID: 37659515 DOI: 10.1016/j.chemosphere.2023.139901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
Fluorine is a halogen element widely distributed in nature, but due to excessive emissions from industrial manufacturing and agricultural production, etc., the soil is over-enriched with fluoride and the normal growth of plants is under stress, and it also poses a great threat to human health. In this review, we summarized the sources of fluoride in soil, and then analyzed the potential mechanisms of fluoride uptake in soil-plant systems. In addition, the main influences of soil ecosystems on plant fluoride uptake were discussed, soil management options to mitigate fluoride accumulation in plants were also summarized. The bioremediation techniques were found to be a developmental direction to improve fluoride pollution. Finally, we proposed other research directions, including fluoride uptake mechanisms in soil-plant systems at the molecular expression levels, development of visualization techniques for fluoride transport in plants, interactions mechanisms between soil microhabitats and plant metabolism affecting fluoride uptake, as well as combining abiotic additives, nanotechnology and biotechnology to remediate fluoride contamination problems.
Collapse
Affiliation(s)
- Minghan Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Haoyang Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ge Lei
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Biao Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Teng Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Ye
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Minzu Normal University of Xingyi, Xingyi 562400, China.
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaqin Xu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Hung M, Mohajeri A, Vu T, Moparthi H, Lipsky MS. Association between fluoride exposure and blood pressure. J Public Health Res 2023; 12:22799036231204323. [PMID: 37822995 PMCID: PMC10563487 DOI: 10.1177/22799036231204323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/22/2023] [Indexed: 10/13/2023] Open
Abstract
Objectives This study investigated whether fluoride was associated with an increased prevalence of high blood pressure (BP) among adolescents in the United States. Methods The study sample consisted of 2015-2016 National Health and Nutrition Examination Survey participants aged 13-17 years. Independent-samples t-tests, Chi-square tests, and regression models were used to analyze the data. Results A total of 814 participants met the study criteria. The findings showed that the proportion of patients with high levels of water or plasma fluoride in the high BP group was higher than that in the normal BP group. However, after adjusting for sociodemographic covariates, neither water nor plasma fluoride levels were significantly associated with a high BP. Conclusions This study did not find an association between either water or plasma fluoride levels and high BP. Further study is needed to exclude a dose dependent effect at higher levels of fluoride.
Collapse
Affiliation(s)
- Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
- Division of Public Health, University of Utah, Salt Lake City, UT, USA
- Veteran Affairs Salt Lake City Health Care, Salt Lake City, UT, USA
| | - Amir Mohajeri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Teresa Vu
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Hyma Moparthi
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| | - Martin S Lipsky
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
- Institute on Aging, Portland State University, Portland, OR, USA
| |
Collapse
|
13
|
Zhu C, Gu W, Sun D, Wei W. The mechanism underlying fluoride-induced low-renin hypertension is related to an imbalance in the circulatory and local renin-angiotensin systems. Toxicol Lett 2023; 381:36-47. [PMID: 37105417 DOI: 10.1016/j.toxlet.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
The renin-angiotensin system (RAS) is an important fluid regulation system in the body, and excessive activation of the circulatory or local RAS can increase blood pressure (BP). Excess fluoride can increase BP, although the underlying mechanism related to activation of the RAS remains unclear. Thus, the aim of this study was to elucidate the role of the RAS in fluoride-induced hypertension. Markers of the circulating and local RASs related to pathological changes to the kidneys, myocardium, and aorta were measured. Fluoride reduced serum levels of renin, angiotensin II (Ang II), and angiotensin (1-7) [Ang (1-7)], and dysregulated plasma levels of aldosterone and potassium levels. Excess fluoride can damage the kidneys, myocardium, and aorta, overactivate the renal angiotensin converting enzyme (ACE)-Ang II-angiotensin type 1 receptor axis, and inhibit activation of the ACE2-Ang (1-7)-Mas axis, leading to dysregulation of alpha epithelial sodium channels and significantly increased expression of Ang II in the myocardium and aorta. Hence, excess fluoride can cause low-renin hypertension via an imbalance between the circulatory and local RASs.
Collapse
Affiliation(s)
- Chenpeng Zhu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China.
| | - Wei Wei
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
14
|
Tian X, Wang M, Ying X, Dong N, Li M, Feng J, Zhao Y, Zhao Q, Tian F, Li B, Zhang W, Qiu Y, Yan X. Co-exposure to arsenic and fluoride to explore the interactive effect on oxidative stress and autophagy in myocardial tissue and cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114647. [PMID: 36801539 DOI: 10.1016/j.ecoenv.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Co-contamination of arsenic and fluoride is widely distributed in groundwater. However, little is known about the interactively influence of arsenic and fluoride, especially the combined mechanism in cardiotoxicity. Cellular and animal models exposure to arsenic and fluoride were established to assess the oxidative stress and autophagy mechanism of cardiotoxic damage using the factorial design, a widely used statistical method for assessing two factor interventions. In vivo, combined exposure to high arsenic (50 mg/L) and high fluoride (100 mg/L) induced myocardial injury. The damage is accompanied by accumulation of myocardial enzyme, mitochondrial disorder, and excessive oxidative stress. Further experiment identified that arsenic and fluoride induced the accumulation of autophagosome and increased expression level of autophagy related genes during the cardiotoxicity process. These findings were further demonstrated through the in vitro model of arsenic and fluoride-treated the H9c2 cells. Additionally, combined of arsenic-fluoride exposure possesses the interactively influence on oxidative stress and autophagy, contributing to the myocardial cell toxicity. In conclusion, our data suggest that oxidative stress and autophagy are involved in the process of cardiotoxic injury, and that these indicators showed interaction effect in response to the combined exposure of arsenic and fluoride.
Collapse
Affiliation(s)
- Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated To Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
15
|
Ajibade TO, Awodele OA, Tijani MO, Adejumobi OA, Adetona MO, Oyagbemi AA, Adedapo AD, Omobowale TO, Aro AO, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Oguntibeju OO, Yakubu MA. L-arginine and lisinopril supplementation protects against sodium fluoride-induced nephrotoxicity and hypertension by suppressing mineralocorticoid receptor and angiotensin-converting enzyme 3 activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23263-23275. [PMID: 36319925 DOI: 10.1007/s11356-022-23784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Sodium fluoride (NaF) is one of the neglected environmental toxicants that has continued to silently cause toxicity to both humans and animals. NaF is universally present in water, soil, and atmosphere. The persistent and alarming rate of increase in cardiovascular and renal diseases caused by chemicals such as NaF in mammalian tissues has led to the use of various drugs for the treatment of these diseases. The present study aimed at evaluating the renoprotective and antihypertensive effects of L-arginine against NaF-induced nephrotoxicity. Thirty male Wistar rats (150-180 g) were used in this study. The rats were randomly divided into five groups of six rats each as follows: Control, NaF (300 ppm), NaF + L-arginine (100 mg/kg), NaF + L-arginine (200 mg/kg), and NaF + lisinopril (10 mg/kg). Histopathological examination and immunohistochemistry of renal angiotensin-converting enzyme (ACE) and mineralocorticoid receptor (MCR) were performed. Markers of renal damage, oxidative stress, antioxidant defense system, and blood pressure parameters were determined. L-arginine and lisinopril significantly (P < 0.05) ameliorated the hypertensive effects of NaF. The systolic, diastolic, and mean arterial blood pressure of the treated groups were significantly (P < 0.05) reduced compared with the hypertensive group. This finding was concurrent with significantly increased serum bioavailability of nitric oxide in the hypertensive rats treated with L-arginine and lisinopril. Also, there was a significant reduction in the level of blood urea nitrogen and creatinine of hypertensive rats treated with L-arginine and lisinopril. There was a significant (P < 0.05) reduction in markers of oxidative stress such as malondialdehyde and protein carbonyl and concurrent increase in the levels of antioxidant enzymes in the kidney of hypertensive rats treated with L-arginine and lisinopril. The results of this study suggest that L-arginine and lisinopril normalized blood pressure, reduced oxidative stress, and the expression of renal ACE and mineralocorticoid receptor, and improved nitric oxide production. Thus, L-arginine holds promise as a potential therapy against hypertension and renal damage.
Collapse
Affiliation(s)
- Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Adedayo Awodele
- Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - Monsuru Oladunjoye Tijani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Obemisola Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Pretoria, Onderstepoort, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Pretoria, Onderstepoort, 0110, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
16
|
The association between fluoride in water and blood pressure in children and adolescents. Pediatr Res 2022; 92:1767-1772. [PMID: 35190682 DOI: 10.1038/s41390-022-01982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The objective of this study was to determine the association between water and plasma fluoride and blood pressure (BP) among children and adolescents. METHODS Our study population was individuals of 8-18 years in the 2013-2016 National Health and Nutrition Examination Survey. We performed a multivariable linear and logistic regression analysis to examine the relationship between fluoride and BP. RESULTS In a linear regression analysis for systolic BP (SBP) (mm Hg) adjusting for age, sex, race, and poverty, fluoride in water (mg/L) was significant with a coefficient of -0.44 (p = 0.046) among adolescents (12-18 years). Additional adjustments for race, poverty, serum levels of cotinine, and BMI remained significant. While an inverse relationship was found in children (8-11 years), none were significant. Fluoride in plasma was not significant across all ages. The odds ratio of high BP for an increase in water fluoride also was not significant. CONCLUSIONS Higher concentrations of fluoride in water were associated with low SBP only among adolescents. Fluoride alone cannot be responsible for BP as several biological metabolic processes may influence its physiological effects. Fluoride consumption should be considered in conjunction with these processes. IMPACT The high fluoride in drinking water was statistically significantly associated with low systolic BP in children and adolescents. The odds ratio of high BP for an increase in fluoride in drinking water was not significant. Our study contributes to the existing literature by providing individualized data and results on an individual level.
Collapse
|
17
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
18
|
Mehany HM, El-Shafai NM, Attia AM, Ibrahim MM, El-Mehasseb IM. Potential of chitosan nanoparticle/fluoride nanocomposite for reducing the toxicity of fluoride an in-vivo study on the rat heart functions: Hematopoietic and immune systems. Int J Biol Macromol 2022; 216:251-262. [PMID: 35780919 DOI: 10.1016/j.ijbiomac.2022.06.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 01/15/2023]
Abstract
The present work-study the decreasing fluoride ions toxicity on the rat heart via loading them on the chitosan nanoparticles (Cs NPs) surface to form the biologically compatible composite (Cs@NaF). The obtained nanocomposite was characterized by different techniques such as field emission scanning electron microscopy (FEG-SEM), zeta potential, and x-ray diffraction (XRD). The biochemical parameters in the albino rats perform, where twenty-eight male adult Sprague Dawley rats (average body weight of 150 ± 10 g) were obtained from the Faculty of Agriculture, Alexandria University, then acclimatized for two weeks before the experiment and divided into four groups in galvanized wire cages at room temperature (22-25 °C) with a 12-h photoperiod and fed a well-balanced commercial diet. The blood samples were obtained from the vena cava of the rat heart via estimation of the troponin T, Lactate dehydrogenase, and creatine phosphokinase. Also, immunoglobulins (IgA, IgM, and IgG) and hematological measurements have been performed on the rat heart. To express all of the data, the mean and standard error of the mean are utilized by (ANOVA), followed by Tukey's multiple comparison test. The modified chitosan with fluoride decreases the toxicity of fluoride via improving the rat heart function due to the presence of Cs NPs helped to mitigate some of the negative effects of fluoride therapy.
Collapse
Affiliation(s)
- Hany M Mehany
- Biochemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| | - Ahmed M Attia
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
19
|
Ehichioya DE, Tahajjul Taufique SK, Anigbogu CN, Jaja SI. Effect of rapid eye movement sleep deprivation during pregnancy on glucocorticoid receptor regulation of HPA axis function in female offspring. Brain Res 2022; 1781:147823. [PMID: 35151654 DOI: 10.1016/j.brainres.2022.147823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
Poor maternal sleep quality during the different phases of pregnancy acts as a prenatal stress and is critical for fetal development. Despite the potential adverse effects of maternal stress on the behavior and physiology of the offspring, the mechanisms remain poorly understood. The present study investigates the effects of maternal sleep deprivation (SD) at different stages of pregnancy on the hypothalamic-pituitary-adrenal (HPA) axis in female offspring. The pregnant rats were subjected to sleep deprivation of 12 h per day at different stages; early (ESD), mid (MSD), and late (LSD) stages, on pregnancy days 1-7, 8-14, and 14-20, respectively. At postnatal day 60, levels of corticosterone (CORT), hypothalamic corticotropin-releasing factor receptor 1 (CRF-R1), and hippocampal glucocorticoid receptors (GR) were evaluated in the offspring. Although the hypothalamic CRF-R1 level was increased in the offspring of SD dams, immunohistochemical staining showed reduced immunoreactivity of GR in ESD and LSD offspring hippocampal area. Altogether, the data suggests that a critical period for adverse effects of SD on the HPA axis in female offspring of Wistar rats may be during early and late pregnancy.
Collapse
Affiliation(s)
- David E Ehichioya
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.
| | - S K Tahajjul Taufique
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikodi N Anigbogu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Smith I Jaja
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
20
|
Muderrisoglu S, Cenesiz S, Yarim M. Determination of the effect of Quercetinon oxidant- antioxidant parameters in the blood and liver tissues of rats given sodium fluoride experimentally. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Arojojoye OA, Nwaechefu OO, Nkwadinamor SC. Evaluation of genotoxic and oxidative stress potential of Ajakanga Landfill Leachate in rats. Environ Anal Health Toxicol 2022; 37:e2022004-0. [PMID: 35500887 PMCID: PMC9058101 DOI: 10.5620/eaht.2022004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/05/2022] [Indexed: 11/29/2022] Open
Abstract
Genotoxicity and oxidative stress potential of Ajakanga Landfill Leachate (ALL) were investigated in this study. Forty-two male albino rats of the Wistar strain (100 g and 150 g) were divided equally into six groups. Group A (control) animals were given distilled water as drinking water for forty-five days; while groups B-F animals were exposed to 12.5%, 25%, 50%, 75% and 100% leachate respectively via drinking water for forty-five days. The effect of the leachate was assessed on markers of oxidative stress in the liver, kidney and testes of rats; markers of liver function (Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) were determined in the serum and the genotoxic effect of the leachate was investigated using micronucleus assay. Physicochemical and heavy metal analysis were also carried out on the leachate sample. Exposure to ALL resulted in increase in the activities of ALT and AST. A significant increase in malondialdehyde level as well as alterations in antioxidant status was observed in the liver, kidney and testes of the rats compared with control. There was also significant increase in micronuclei formation in the bone marrow of rats exposed to the leachate. Physicochemical and heavy metal analysis of the leachate revealed the presence of some heavy metals at high concentrations as well as other toxic constituents and the total number of active bacteria in the leachate sample were also high. In conclusion, ALL induced oxidative stress and genotoxicity in rats. This suggests that the leachate may be toxic to humans if exposure occurs.
Collapse
|
22
|
Oyagbemi AA, Adejumobi OA, Jarikre TA, Ajani OS, Asenuga ER, Gbadamosi IT, Adedapo ADA, Aro AO, Ogunpolu BS, Hassan FO, Falayi OO, Ogunmiluyi IO, Omobowale TO, Arojojoye OA, Ola-Davies OE, Saba AB, Adedapo AA, Emikpe BO, Oyeyemi MO, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Oguntibeju OO, Yakubu MA. Clofibrate, a Peroxisome Proliferator-Activated Receptor-Alpha (PPARα) Agonist, and Its Molecular Mechanisms of Action against Sodium Fluoride-Induced Toxicity. Biol Trace Elem Res 2022; 200:1220-1236. [PMID: 33893992 DOI: 10.1007/s12011-021-02722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 01/16/2023]
Abstract
Sodium fluoride (NaF) is one of the neglected environmental pollutants. It is ubiquitously found in the soil, water, and environment. Interestingly, fluoride has been extensively utilized for prevention of dental caries and tartar formation, and may be added to mouthwash, mouth rinse, and toothpastes. This study is aimed at mitigating fluoride-induced hypertension and nephrotoxicity with clofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist. For this study, forty male Wistar rats were used and randomly grouped into ten rats per group, control, sodium fluoride (NaF; 300 ppm) only, NaF plus clofibrate (250 mg/kg) and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. The administration of NaF was by drinking water ad libitum, while clofibrate and lisinopril were administered by oral gavage. Administration of NaF induced hypertension, and was accompanied with exaggerated oxidative stress; depletion of antioxidant defence system; reduced nitric oxide production; increased systolic, diastolic and mean arterial pressure; activation of angiotensin-converting enzyme activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); and testicular apoptosis. Treatment of rats with clofibrate reduced oxidative stress, improved antioxidant status, lowered high blood pressure through the inhibition of angiotensin-converting enzyme activity, mineralocorticoid receptor over-activation, and abrogated testicular apoptosis. Taken together, clofibrate could offer exceptional therapeutic benefit in mitigating toxicity associated with sodium fluoride.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Theophilus Aghogho Jarikre
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumide Samuel Ajani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | | | | | - Abimbola Obemisola Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benjamin Obukowho Emikpe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| |
Collapse
|
23
|
Li M, Feng J, Cheng Y, Dong N, Tian X, Liu P, Zhao Y, Qiu Y, Tian F, Lyu Y, Zhao Q, Wei C, Wang M, Yuan J, Ying X, Ren X, Yan X. Arsenic-fluoride co-exposure induced endoplasmic reticulum stress resulting in apoptosis in rat heart and H9c2 cells. CHEMOSPHERE 2022; 288:132518. [PMID: 34637859 DOI: 10.1016/j.chemosphere.2021.132518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to arsenic (As) or fluoride (F) has been shown to cause cardiovascular disease (CVDs). However, evidence about the effects of co-exposure to As and F on myocardium and their mechanisms remain scarce. Our aim was to fill the gap by establishing rat and H9c2 cell exposure models. We determined the effects of As and/or F exposure on the survival rate, apoptosis rate, morphology and ultrastructure of H9c2 cells; in addition, we tested the related genes and proteins of endoplasmic reticulum stress (ERS) and apoptosis in H9c2 cells and rat heart tissues. The results showed that As and/or F exposure induced early apoptosis of H9c2 cells and caused endoplasmic reticulum expansion. Additionally, the mRNA and protein expression levels of GRP78, PERK and CHOP in H9c2 cells were higher in the exposure groups than in the control group, and could be inhibited by 4-PBA. Furthermore, we found that As and/or F exposure increased the expression level of GRP78 in rat heart tissues, but interestingly, the expression level of CHOP protein was increased in the F and As groups, while significantly decreased in the co-exposure group. Overall, our results suggested that ERS-induced apoptosis was involved in the damage of myocardium by As and/or F exposure. In addition, factorial analysis results showed that As and F mainly play antagonistic roles in inducing myocardial injury, initiating ERS and apoptosis after exposure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiyu Yuan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xuefeng Ren
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
24
|
Fernandes MS, Sabino-Arias IT, Dionizio A, Fabricio MF, Trevizol JS, Martini T, Azevedo LB, Valentine RA, Maguire A, Zohoori FV, L. Amaral S, Buzalaf MAR. Effect of Physical Exercise and Genetic Background on Glucose Homeostasis and Liver/Muscle Proteomes in Mice. Metabolites 2022; 12:metabo12020117. [PMID: 35208192 PMCID: PMC8878675 DOI: 10.3390/metabo12020117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
We compared the parameters related to glucose homeostasis, and liver and muscle proteomes in fluorosis-susceptible (A/J; S) and fluorosis-resistant (129P3/J; R) mice in response to fluoride (F) exposure and exercise. Ninety male mice (45 R-mice and 45 S-mice) were randomized into three groups: (SI; RI) No-F, No-Exercise, (SII; RII) 50 ppm F, No-Exercise, (SIII; RIII) 50 ppm F, Exercise. Overall, mean F concentrations in the plasma and femur were significantly higher in R-mice compared with S-mice. In R-mice, exercise resulted in an increase in F accumulation in the femur. In S-mice, the mean plasma glucose level was significantly higher in Group II compared with Groups I and III. There was an increase in liver proteins involved in energy flux and antioxidant enzymes in non-exercise groups (I, II) of S-mice in comparison with the corresponding groups of R-mice. The results also showed a decrease in muscle protein expression in Group I S-mice compared with their R-mice counterparts. In conclusion, the findings suggest an increased state of oxidative stress in fluorosis-susceptible mice that might be exacerbated by the treatment with F. In addition, fluorosis-susceptible mice have plasma glucose levels higher than fluorosis-resistant mice on exposure to F, and this is not affected by exercise.
Collapse
Affiliation(s)
- Mileni S. Fernandes
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Isabela T. Sabino-Arias
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Mayara F. Fabricio
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Juliana S. Trevizol
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Tatiana Martini
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
| | - Liane B. Azevedo
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ruth A. Valentine
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Anne Maguire
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK; (R.A.V.); (A.M.)
| | - Fatemeh V. Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- Correspondence: (F.V.Z.); (M.A.R.B.)
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil; (M.F.F.); (S.L.A.)
| | - Marília A. R. Buzalaf
- Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil; (M.S.F.); (I.T.S.-A.); (A.D.); (J.S.T.); (T.M.)
- Correspondence: (F.V.Z.); (M.A.R.B.)
| |
Collapse
|
25
|
Davoudi M, Barjasteh-Askari F, Sarmadi M, Ghorbani M, Yaseri M, Bazrafshan E, Mahvi AH, Moohebati M. Relationship of fluoride in drinking water with blood pressure and essential hypertension prevalence: a systematic review and meta-analysis. Int Arch Occup Environ Health 2021; 94:1137-1146. [PMID: 34014395 DOI: 10.1007/s00420-021-01714-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Previous studies showed controversial results of the relationship between fluoride exposure through drinking water and elevated blood pressure. We conducted a systematic review and meta-analysis to assess the direct relationship of drinking water fluoride exposure with blood pressure and essential hypertension prevalence in general populations. METHODS We conducted a systematic search in databases including Web of Knowledge, PubMed, Scopus, and Embase by MeSH and non-MeSH terms for relevant studies with any design published until August 2019, with no limitation in time and language. The pooled effect measure was calculated within a 95% confidence interval (CI). RESULTS Our search retrieved 630 journal articles, six of which were eligible for data extraction. The random-effects model found significantly higher systolic blood pressure (mean difference = 6.49 mmHg; 95% CI 3.73-9.25; p value < 0.01) and diastolic blood pressure (mean difference = 4.33 mmHg; 95% CI 1.39-7.26; p value < 0.01) in groups exposed to high-fluoride drinking water than in groups exposed to normal/low-fluoride drinking water. A significant relationship was also found between high-fluoride drinking water and essential hypertension (odds ratio = 2.14; 95% CI 1.02-4.49; p value = 0.045). CONCLUSION The risk of elevated blood pressure increases in the general population of fluoride endemic areas. However, more research is needed to make a firm conclusion about the adverse effects of excess fluoride intake on the cardiovascular system at the individual level.
Collapse
Affiliation(s)
- Mojtaba Davoudi
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateme Barjasteh-Askari
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Enghelab St., Tehran, 1417613151, Iran
| | - Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Ghorbani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Public Health, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Edris Bazrafshan
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Enghelab St., Tehran, 1417613151, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Moohebati
- Atherosclerosis Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Yan X, Chen X, Tian X, Qiu Y, Wang J, Yu G, Dong N, Feng J, Xie J, Nalesnik M, Niu R, Xiao B, Song G, Quinones S, Ren X. Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144924. [PMID: 33636766 DOI: 10.1016/j.scitotenv.2020.144924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Co-exposure to inorganic arsenic (iAs) and fluoride (F-) and their collective actions on cardiovascular systems have been recognized as a global public health concern. Emerging studies suggest an association between the perturbation of gut bacterial microbiota and adverse cardiovascular effects (CVEs), both of which are the consequence of iAs and F- exposure in human and experimental animals. The aim of this study was to fill the gap of understanding the relationship among co-exposure to iAs and F-, gut microbiota perturbation, and adverse CVEs. We systematically assessed cardiac morphology and functions (blood pressure, echocardiogram, and electrocardiogram), and generated gut microbiota profiles using 16S rRNA gene sequencing on rats exposed to iAs (50 mg/L NaAsO2), F- (100 mg/L NaF) or combined iAs and F- (50 mg/L NaAsO2 + 100 mg/L NaF), in utero and during early postnatal periods (postnatal day 90). Correlation analysis was then performed to examine relationship between significantly altered microbiota and cardiac performance indices. Our results showed that co-exposure to iAs and F- resulted in more prominent effects in CVEs and perturbation of gut microbiota profiles, compared to iAs or F- treatment alone. Furthermore, nine bacterial genera (Adlercreutzia, Clostridium sensu stricto 1, Coprococcus 3, Romboutsia, [Bacteroides] Pectinophilus group, Lachnospiraceae NC2004 group, Desulfovibrio, and two unidentified genera in Muribaculaceae and Ruminococcaceae family), which differed significantly in relative abundance between control and iAs and F- co-exposure group, were strongly correlated with the higher risk of CVEs (correlation coefficient = 0.70-0.88, p < 0.05). Collectively, these results suggest that co-exposure to iAs and F- poses a higher risk of CVEs, and the part of the mode of action is potentially through inducing gut microbiota disruption, and the strong correlations between them indicate a high potential for the development of novel microbiome-based biomarkers of iAs and/or F- associated CVEs.
Collapse
Affiliation(s)
- Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China.
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jing Feng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China; Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Morgan Nalesnik
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, PR China
| | - Bo Xiao
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Guohua Song
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Sarah Quinones
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
Arojojoye OA, Oyagbemi AA, Ola-Davies OE, Asaolu RO, Shittu ZO, Hassan BA. Assessment of water quality of selected rivers in the Niger Delta region of Nigeria using biomarkers in Clarias gariepinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22936-22943. [PMID: 33433829 DOI: 10.1007/s11356-020-11879-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Petroleum exploration has continued to impact negatively the Niger Delta region of Nigeria. Oil spills from petroleum exploration contaminate both the aquatic and non- aquatic environments and destroy the ecosystem which makes people in these regions to be prone to diseases such as cancer, cardiovascular diseases, neurodegenerative disease, infertility, and sterility and also poverty. Some oxidative stress markers of the liver and muscle of fish (Clarias gariepinus) from Apata, Araromi, and Mahin rivers (located in the Niger Delta region) were compared with those of fish samples from a clean fish farm (control) in order to assess the level of pollution of the rivers. A significant increase in malondialdehyde level and myeloperoxidase (MPO) activity as well as alterations in antioxidant status (glutathione peroxidase, superoxide dismutase, reduced glutathione, and glutathione S-transferase) was observed in the organs of fish samples from Apata, Araromi, and Mahin rivers compared with the control. A significant increase in the frequency of micronucleated polychromatic erythrocytes (MnPCEs) was also observed in the fish samples from these rivers in comparison with the control. Based on results of our research, we can conclude that these rivers are polluted mainly by oil spillage and other industrial activities; therefore, the consumption of aquatic organisms from these rivers and the use of water from the rivers for domestic activities might be unsafe.
Collapse
Affiliation(s)
- Oluwatosin Adetola Arojojoye
- Department of Biochemistry, Faculty of Basic Medical and Applied Sciences, Lead City University Ibadan, Ibadan, Nigeria.
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Racheal Oluwabukola Asaolu
- Department of Biochemistry, Faculty of Basic Medical and Applied Sciences, Lead City University Ibadan, Ibadan, Nigeria
| | - Zainab Olabanji Shittu
- Department of Biochemistry, Faculty of Basic Medical and Applied Sciences, Lead City University Ibadan, Ibadan, Nigeria
| | - Barakat Adebukola Hassan
- Department of Biochemistry, Faculty of Basic Medical and Applied Sciences, Lead City University Ibadan, Ibadan, Nigeria
| |
Collapse
|
28
|
Koubaa FG, Chaâbane M, Turki M, Ayadi FM, El Feki A. Anti-oxidant and hepatoprotective effects of Salvia officinalis essential oil against vanadium-induced oxidative stress and histological changes in the rat liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11001-11015. [PMID: 33106906 DOI: 10.1007/s11356-020-11303-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The present study was designed to evaluate the protective effects of Salvia officinalis essential oil (SOEO) against vanadium-induced hepatotoxicity in Wistar rats. Animals were divided into three groups: the first group served as the control (C), where rats received daily 0.5 mL of saline solution (0.9%) given by intraperitoneal (i.p.) way. Rats in the second group (V) received daily by i.p. way 5 mg/kg BW of NH4VO3 (V). Rats in the third group (SV) received daily V (5 mg/kg BW) by i.p. way and SOEO (15 mg/kg BW) by gavage. Animals were sacrificed after 4 or 10 days of treatment. Administration of V increased plasma ALT, AST, ALP, and LDH activities, and cholesterol, bilirubin, triglyceride, and NO levels in rats and reduced anti-oxidant enzyme activities in the liver. Treatment with SOEO significantly attenuated these changes. Moreover, the histopathological changes and the overexpression of Hsp72/73 proteins induced by V were significantly improved by SOEO. Therefore, our results suggested that SOEO could protect against V-induced oxidative damage in rat livers. The hepatoprotective effect of SOEO might be attributed to its modulation of detoxification enzymes and/or to its anti-oxidant and free radical scavenging effects.
Collapse
Affiliation(s)
- Fatma Ghorbel Koubaa
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3000, Sfax, Tunisia.
| | - Mariem Chaâbane
- Enzymes and Bioconversion Unit, National Engineering School of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Mouna Turki
- Laboratory of Biochemistry, Faculty of Medicine, University of Sfax, 3029, Sfax, Tunisia
| | - Fatma Makni Ayadi
- Laboratory of Biochemistry, Faculty of Medicine, University of Sfax, 3029, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3000, Sfax, Tunisia
| |
Collapse
|
29
|
Li M, Zhao Y, Tian X, Liu P, Xie J, Dong N, Feng J, Gao Y, Fan Y, Qiu Y, Tian F, Yan X. Fluoride Exposure and Blood Pressure: a Systematic Review and Meta-Analysis. Biol Trace Elem Res 2021; 199:925-934. [PMID: 32602052 DOI: 10.1007/s12011-020-02232-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/31/2020] [Indexed: 12/07/2022]
Abstract
Fluoride exposure may cause changes in blood pressure, but this conclusion is controversial. Therefore, this meta-analysis aims to investigate the potential relationship between fluoride exposure and blood pressure or hypertension. PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG MED ONLINE, and Chinese Scientific Journals Full-Text Databases (VIP) were searched; in addition, two related studies were added manually. In total, 7 observational studies were identified, the pooled odds ratios (ORs) for hypertension between high and reference fluoride exposure groups were calculated, and the pooled standardized weighted mean difference (SMD) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) was estimated using an inverse-variance weighted random-effects model; next, sensitivity analysis and subgroup analysis were used to assess potential sources of heterogeneity; furthermore, publication bias was assessed using the Begg and Egger test. In brief, there were no statistical differences between exposure groups and control groups in terms of blood pressure or hypertension when all included studies considered. However, subgroup analysis indicated that blood pressure will rise with the increase of fluoride exposure concentrations in endemic fluorosis areas. The corresponding pooled SMD estimates were 0.31 (95% CI 0.11, 0.51) and 0.27 (95% CI 0.11, 0.43) for SBP and DBP. Funnel plots suggested no asymmetry. Our findings support the possibility of a positive correlation between fluoride exposure and blood pressure in endemic fluorosis areas. Additional evidence is needed to assess the dose-response relationship between fluoride exposure and blood pressure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ye Fan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
30
|
Cai X, Wang T, Ye C, Xu G, Xie L. Relationship between lactate dehydrogenase and albuminuria in Chinese hypertensive patients. J Clin Hypertens (Greenwich) 2020; 23:128-136. [PMID: 33283950 PMCID: PMC8030071 DOI: 10.1111/jch.14118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Lactate dehydrogenase (LDH) has been reported to be positively correlated with albuminuria assessed by urinary albumin‐to‐creatinine ratio (UACR) in patients with sickle cell disease; both LDH and albuminuria are positively associated with the severity of hypertension (HTN). Here, a cross‐sectional study was performed to investigate the association between LDH and albuminuria in Chinese hypertensives. A total of 1169 Chinese individuals (aged 58.0 ± 11.5 years, 60.4% male), who were admitted to our hospital, were included in this study. Based on the level of LDH, all hypertensives (n = 802) were divided into three groups: HTN1 (lowest tertile of LDH, n = 264), HTN2 (mediate tertile of LDH, n = 268), and HTN3 (highest tertile of LDH, n = 270). Hypertensives with hyperhomocysteinemia were defined as hypertensives with homocysteine ≥15μmol/L. Meanwhile, 367 normotensives served as controls. Compared with normotensives, the levels of LDH and UACR were significantly higher in hypertensives (p < .05). There was an increasing trend of albuminuria (UACR ≥30 mg/g) from control, HTN1, HTN2 to HTN3 group (4% vs. 12.1% vs. 14.9% vs. 19.6%, χ2 = 38.886, p < .001). Stepwise multiple regression analysis showed an independent association between LDH and UACR in patients with HTN (β = 0.085, p < .05), but not in normotensives. After further stratification in hypertensive patients, this correlation remained in the male (β = 0.161, p < .001), elderly (age ≥65 years, β = 0.174, p < .001) and especially hypertensives with hyperhomocysteinemia (β = 0.402, p < .001). LDH combined with white blood cell (WBC) counts was observed to have better discrimination for albuminuria than creatinine united with cystatin C in hypertensives according to receiver operation characteristic curves (area under curve: 0.637 vs. 0.535, z = 2.563, p = .0104). In conclusion, the level of LDH was associated with albuminuria in Chinese patients with HTN, particularly in hypertensives with hyperhomocysteinemia. LDH combined with WBC provided better prediction of albuminuria than routine renal function assessment in hypertensives. Further studies are needed to confirm LDH as an early marker for the risk of kidney involvement among hypertensives.
Collapse
Affiliation(s)
- Xiaoqi Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tingjun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chaoyi Ye
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guoyan Xu
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Adedapo AA, Osaretin ER, Falayi OO, Oyagbemi AA, Ogunpolu BS, Omobowale TO, Oguntibeju OO, Yakubu MA. Ramipril blunts glycerol-induced acute renal failure in rats through its antiapoptosis, anti-inflammatory, antioxidant, and renin-inhibiting properties. J Basic Clin Physiol Pharmacol 2020; 32:225-235. [PMID: 33155993 DOI: 10.1515/jbcpp-2020-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a malady with a sudden onset resulting in buildup of waste matters in the body, but a specific cure hasn't been found as a lasting solution to AKI. In this study, ramipril was evaluated for its potential therapy in glycerol-induced AKI in rats. METHODS Twenty animals were divided into four groups of five animals each. Group I was the control while group II was given glycerol on day 8 only, groups III and IV were administered with pioglitazone (reference drug) and ramipril for seven days respectively and on day 8 received glycerol. On the ninth day, blood and tissue samples were taken to assay for serum indicators of oxidative damage, enzymatic and nonenzymatic antioxidants, and creatinine and blood urea nitrogen. Animals were sacrificed thereafter; kidney was harvested for histological and immunohistochemical analysis. Expressions of caspase 3, renin receptor, NK-KB, and KIM-1 were carried out. RESULTS Ramipril significantly inhibited indicators of oxidative damage while also significantly increasing levels of enzymatic and nonenzymatic antioxidant markers. These drugs also significantly lowered the levels of creatinine and blood urea nitrogen. Histology also indicated that while there were massive infiltration of leucocytes and congestion of the kidney in toxicant group, the ramipril-treated group showed a milder condition. In immunohistochemistry, the two drugs significantly inhibited the expressions of the four proteins, which were highly expressed in the toxicant group. CONCLUSIONS The study showed that ramipril and pioglitazone have nephroprotective effect and thus have the ability to blunt AKI through their anti-inflammatory, antiapoptosis, antirenin, and antioxidant properties.
Collapse
Affiliation(s)
- Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Ehizogie Ruth Osaretin
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | | | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
32
|
Oyagbemi AA, Adejumobi OA, Ajibade TO, Asenuga ER, Afolabi JM, Ogunpolu BS, Falayi OO, Hassan FO, Nabofa EW, Olutayo Omobowale T, Ola-Davies OE, Saba AB, Adedapo AA, Oguntibeju OO, Yakubu MA. Luteolin Attenuates Glycerol-Induced Acute Renal Failure and Cardiac Complications Through Modulation of Kim-1/NF-κB/Nrf2 Signaling Pathways. J Diet Suppl 2020; 18:543-565. [PMID: 32938255 DOI: 10.1080/19390211.2020.1811442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute renal failure (ARF) has been documented as a life-threatening disease with high morbidity and mortality. We investigated the protective effect of Luteolin against ARF. In this study, forty-male Wistar albino rats were randomly divided into four groups (n = 10). Group A received normal saline. Group B received glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.). Groups C and D were pretreated with Luteolin 100 and 200 mg/kg for 7 days, and thereafter administered Glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.). Administration of glycerol significantly increased systolic blood pressure, diastolic blood pressure and mean arterial pressure. Renal protein carbonyl and xanthine oxidase increased significantly while significant reduction in the activity of renal glutathione peroxidase, glutathione S-transferase and glutathione reductase was observed in the glycerol intoxicated rats. Furthermore, administration of glycerol led to significant increases in serum creatinine and blood urea nitrogen together with reduction in nitric oxide (NO) bioavailability. Immunohistochemistry revealed that glycerol intoxication enhanced expressions of kidney injury molecule 1, nuclear factor kappa beta and cardiac troponin (CTnI). However, Luteolin pretreatment normalized blood pressure, reduced markers of oxidative stress, renal damage, and improved NO bioavailability. Luteolin also downregulated the expressions of kidney injury molecule 1, nuclear factor kappa beta and cardiac troponin. Together, Luteolin might open a novel therapeutic window for the treatment of acute renal failure and cardiac complication.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin City, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Enivwenaye Williams Nabofa
- Department of Physiology, Ben-Carson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
33
|
Adedapo AA, Etim U, Falayi OO, Ogunpolu BS, Omobowale TO, Oyagbemi AA, Oguntibeju OO. Methanol stem extract of Moringa oleifera mitigates glycerol-induced acute kidney damage in rats through modulation of KIM-1 and NF-kB signaling pathways. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Akimov OY, Kostenko VO. Role of NF-κB transcriptional factor activation during chronic fluoride intoxication in development of oxidative-nitrosative stress in rat's gastric mucosa. J Trace Elem Med Biol 2020; 61:126535. [PMID: 32344277 DOI: 10.1016/j.jtemb.2020.126535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/19/2022]
Abstract
Fluoride compounds are known as hazardous environmental pollutants that can enter the body with drinking water. Chronic exposure to fluoride leads to development of oxidative stress and can lead to activation of nuclear factor κB (NF-κB). The aim of this work is to clarify the role of NF-kB activation in production of reactive nitrogen and oxygen species, activity of antioxidant enzymes and intensity of lipid peroxidation (LPO) in gastric mucosa of rats during chronic fluoride intoxication. MATERIALS AND METHODS We carried out the study on 18 mature male rats of the Wistar line. The animals were divided into 3 groups: control animals (6), group of chronic fluoride intoxication (6), and animals (6), which received the NF-κB inhibitor, namely ammonium pyrrolidine dithiocarbamate (PDTC) in a dose of 76 mg / kg (iNF-κB group) during modeling of chronic fluoride intoxication. To assess the development of oxidative stress we studied superoxide production (O2-), activity of superoxide dismutase (SOD), catalase (CAT) and concentration of free malondialdehyde (MDA). We also assessed NO production and concentration of its metabolites (peroxynitrite, nitrosilated thiol groups, nitrites). RESULTS Chronic fluoride intoxication leads to NO hyperproduction with subsequent increase in concentration of its later metabolites (peroxynitrite, nitrosilated thiol groups, nitrites). Production of O2- increases, SOD activity decreases, CAT activity increases and MDA concentration also increases. Inhibition of NF-kB activation by PDTC normalizes the parameters studied. CONCLUSIONS Activation of NF-κB during chronic fluoride intoxication leads to the development of hyperproduction of NO and development of oxidative-nitrosative stress.
Collapse
Affiliation(s)
- O Ye Akimov
- Ukrainian Medical Stomatological Academy, Department of Pathophysiology, Poltava, Ukraine.
| | - V O Kostenko
- Ukrainian Medical Stomatological Academy, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
35
|
Oyagbemi AA, Adebiyi OE, Adigun KO, Ogunpolu BS, Falayi OO, Hassan FO, Folarin OR, Adebayo AK, Adejumobi OA, Asenuga ER, Ola-Davies OE, Omobowale TO, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Clofibrate, a PPAR-α agonist, abrogates sodium fluoride-induced neuroinflammation, oxidative stress, and motor incoordination via modulation of GFAP/Iba-1/anti-calbindin signaling pathways. ENVIRONMENTAL TOXICOLOGY 2020; 35:242-253. [PMID: 31710167 DOI: 10.1002/tox.22861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Fluoride is an environmental contaminant that is ubiquitously present in air, water, and soil. It is commonly added in minute quantity to drinking water, toothpaste, and mouth rinses to prevent tooth decay. Epidemiological findings have demonstrated that exposure to fluoride induced neurodevelopmental toxicity, developmental neurotoxicity, and motor disorders. The neuroprotective effect of clofibrate, a peroxisome proliferator-activated receptor alpha agonist, was investigated in the present study. Forty male Wistar rats were used for this study and randomly grouped into 10 rats per group as control, sodium fluoride (NaF) alone (300 ppm), NaF plus clofibrate (250 mg/kg), and NaF plus lisinopril (10 mg/kg), respectively, for 7 days. NaF was administered in drinking water while clofibrate and lisinopril were administered by oral gavage. Markers of neuronal inflammation and oxidative stress, acetylcholinesterase activity, and neurobehavioral (hanging wire and open field) tests were performed. Immunohistochemistry was performed on brain tissues, and they were probed with glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and cerebellar Ca2+ -binding protein calbindin-D28k. The results showed that NaF significantly increased of oxidative stress and neuroinflammation and inhibited AChE activity. Immunostaining showed reactive astrocytes, microgliosis, loss of dendritic spines, and arborization in Purkinje cells in rats administered only NaF. Neurobehavioral results showed that cotreatment of NaF with clofibrate improved muscular strength and locomotion, reduced anxiety, and significantly reduced astrocytic count. Overall, cotreatment of NaF with either clofibrate or lisinopril showed neuroprotective effects by mitigating neuronal inflammation and oxidative and motor incoordination. Hence, clofibrate could be seen as a novel drug candidate against neurodegeneration and motor disorders.
Collapse
Affiliation(s)
- Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olamide E Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Kabirat O Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing S Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke O Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Fasilat O Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Oluwabusayo R Folarin
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
- Department of Medical Laboratory Science, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adedeji K Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olumuyiwa A Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke E Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - James O Olopade
- Department of Medical Laboratory Science, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale B Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Sanah M Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Faculty of Veterinary Science, Onderstepoort, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Faculty of Veterinary Science, Onderstepoort, South Africa
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh A Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, Texas
| |
Collapse
|
36
|
Liu Y, Téllez-Rojo M, Sánchez BN, Ettinger AS, Osorio-Yáñez C, Solano M, Hu H, Peterson KE. Association between fluoride exposure and cardiometabolic risk in peripubertal Mexican children. ENVIRONMENT INTERNATIONAL 2020; 134:105302. [PMID: 31726363 PMCID: PMC6904509 DOI: 10.1016/j.envint.2019.105302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Several animal studies have suggested that fluoride exposure may increase the levels of cardiometabolic risk factors, but little is known about whether fluoride exposure is associated with such risk in humans. OBJECTIVES We examined the cross-sectional association between peripubertal exposure to fluoride and markers of cardiometabolic risk in 280 girls and 256 boys at age 10-18 years living in Mexico City. METHODS We measured plasma fluoride concentration using a microdiffusion method. We collected data on anthropometry including BMI, waist circumference (WC) and trunk fat percentage. We measured serum markers of cardiometabolic risk, including fasting glucose, insulin and lipids. All the indicators of outcome were converted to age- and sex-specific z-scores. We also calculated a summary cardiometabolic risk score for each participant. Multivariable linear regression models were used to examine these associations. RESULTS The geometric mean (95% confidence interval (CI)) of plasma fluoride was 0.21 μmol/L (0.20, 0.23 μmol/L) in the total sample. In girls, plasma fluoride concentrations were associated with higher z-scores for all the individual markers (except for lipids) and for the combined cardiometabolic risk score (risk score: β = 1.28, 95% CI: 0.57-2.00, p-sex interaction = 0.02)), adjusting for covariates. No associations were found in boys. CONCLUSIONS We found that higher peripubertal fluoride exposure at the levels observed in this study population was significantly associated with increased levels of cardiometabolic risk factors in Mexican girls but not boys. Future studies with a longitudinal design are needed to confirm our findings and further elucidate the role of fluoride in cardiometabolic risk.
Collapse
Affiliation(s)
- Yun Liu
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Téllez-Rojo
- Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico.
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Adrienne S Ettinger
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Citlalli Osorio-Yáñez
- Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maritsa Solano
- Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Howard Hu
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Genfi AKA, Larbie C, Emikpe BO, Oyagbemi AA, Firempong CK, Adjei CO. Modulation of Oxidative Stress and Inflammatory Cytokines as Therapeutic Mechanisms of Ocimum americanum L Extract in Carbon Tetrachloride and Acetaminophen-Induced Toxicity in Rats. J Evid Based Integr Med 2020; 25:2515690X20938002. [PMID: 32967433 PMCID: PMC7520933 DOI: 10.1177/2515690x20938002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 01/30/2023] Open
Abstract
Liver diseases have now become a global canker due to increasing drug abuse and several viral infections. The current medicines on the market are woefully inadequate and limited in the application against these diseases. Fortunately, medicinal plants continue to serve as a potential source of drug discovery that could be explored to improve the situation. The present study, therefore, evaluated the hepatoprotective activities of the aqueous extract of various parts (leaves, flower and stem) of Ocimum americanum L on carbon tetrachloride (CCl4)- and acetaminophen-induced toxicity in rats. The protective effect of the plant was assessed using biochemical parameters, histology, levels of liver antioxidants, and expression of some pro-inflammatory cytokines (NF-κβ and IL-1) in the liver. The leaves and stem extracts, orally administered for 7 days at 250 mg/kg, effectively prevented CCl4-induced elevation of serum biochemical parameters, prooxidants, as well as the expression of NFk-B and IL-1, which were comparable to Silymarin (standard drug). A comparative histopathological analyses of the liver exhibited virtually normal architecture compared with CCl4-treated group. The findings showed that the hepatoprotective effect of Ocimum americanum was probably due to the inhibition of oxidative stress and downregulation of proinflammatory cytokines by the effective parts of the medicinal plant.
Collapse
Affiliation(s)
| | | | | | | | | | - Clement O. Adjei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
38
|
Oyagbemi A, Omobowale T, Adejumobi O, Ugbor F, Asenuga E, Ajibade T, Afolabi J, Ogunpolu B, Falayi O, Gbadamos I, Ola-Davies O, Saba A, Ashafa A, Yakubu M, Adedapo A, Oguntibeju O. Antihypertensive effect of methanol leaf extract of Azadirachta indica is mediated through suppression of renal caspase 3 expressions on Nω-Nitro-l-arginine methyl ester induced hypertension. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Acute fluoride exposure alters myocardial redox and inflammatory markers in rats. Mol Biol Rep 2019; 46:6155-6164. [DOI: 10.1007/s11033-019-05050-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/28/2019] [Indexed: 01/31/2023]
|
40
|
Linalyl acetate prevents three related factors of vascular damage in COPD-like and hypertensive rats. Life Sci 2019; 232:116608. [DOI: 10.1016/j.lfs.2019.116608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
|
41
|
Hu J, Zhang J, Zhu B. Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia. Fundam Clin Pharmacol 2019; 33:649-658. [PMID: 31334867 DOI: 10.1111/fcp.12501] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
Recent in vitro and clinical studies have found that metformin (MET) may play a preventive or therapeutic role in preeclampsia (PE) and may be a candidate drug for the prevention and/or treatment of PE. In this study, we used lipopolysaccharide (LPS) to induce a PE-like rat model and investigated the intervention effect of MET from the perspectives of clinical manifestations, placental morphology, serum marker for placental injury, systemic inflammatory response and oxidative/nitrative stress, and placental nuclear factor-κB (NF-κB) signaling. The results showed that MET improved LPS-induced hypertension, proteinuria, fetal growth restriction (FGR) and stillbirth, alleviated placental injury and decreased maternal serum marker alpha-fetoprotein (MS-AFP) level; MET suppressed LPS-induced TNF-α and IL-6 productions, reduced oxidative/nitrative stress as evidenced by increased superoxide dismutase (SOD) activity, decreased inducible nitric oxide synthase (iNOS) activity, and decreased levels of malondialdehyde (MDA) and nitric oxide (NO); MET inhibited LPS-induced NF-κB activation in placentas. Based on these findings, it can be concluded that MET is beneficial to the PE-like rat model by protecting placentas from injury, suppressing systemic inflammatory response and oxidative/nitrative stress, and inhibiting placental NF-κB signaling pathway. MET is a promising drug for prevention and/or treatment of PE.
Collapse
Affiliation(s)
- Jilin Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.,Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinman Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.,National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Baosheng Zhu
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.,National Health Commission's Key Laboratory for Healthy Births in Western China, Department of Obstetrics and Gynecology, First People's Hospital of Yunnan Province, Kunming, 650032, China
| |
Collapse
|
42
|
Ola-Davies OE, Oyagbemi AA, Omobowale TO, Akande I, Ashafa A. Ameliorative effects of Annona muricata Linn. (Annonaceae) against potassium dichromate-induced hypertension in vivo: involvement of Kim-1/p38 MAPK/Nrf2 signaling. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0172. [PMID: 31050655 DOI: 10.1515/jbcpp-2018-0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/06/2019] [Indexed: 01/03/2023]
Abstract
Background Recently, the incidences of hypertension and environmental pollution have increased significantly. This study investigates the antihypertensive effect of Annona muricata extract against K2Cr2O7-induced hypertension. Methods Fifty rats were used for this study, which were divided into five groups of 10 rats each. Rats in Group A received normal saline, and those in Groups B, C, D, and E were treated with A. muricata extract alone at 250 mg/kg, K2Cr2O7 at 30 mg/kg, pretreated with the extract at 250 mg/kg, and pretreated with gallic acid at 60 mg/kg for 14 days, respectively, and thereafter administered with a single intraperitoneal injection of K2Cr2O7 at 30 mg/kg. Results Administration of K2Cr2O7 significantly increased systolic, diastolic, and mean arterial pressure and caused prolonged QT and QTc intervals. Further, pretreatment with the extract at 250 mg/kg and gallic acid at 60 mg/kg significantly reduced high blood pressure to near-normal values. K2Cr2O7 intoxication led to significant increases in serum advanced oxidative protein products, myeloperoxidase, and xanthine oxidase, while serum nitric oxide (NO) also reduced significantly. Immunohistochemistry of the renal kidney injury molecule (Kim-1) and p38 MAPK showed increased expressions following the administration of K2Cr2O7 together with the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Pretreatment with the extract at 250 mg/kg and gallic acid at 60 mg/kg also increased the expressions of Nrf2 and downregulated Kim-1 and p38. Conclusion Together, we found that pretreatment with the extract at 250 mg/kg and gallic acid at 60 mg/kg normalized the blood pressure, reduced the markers of oxidative stress, and improved the antioxidant defense system and serum NO bioavailability.
Collapse
Affiliation(s)
- Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +234833639776
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Israel Akande
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anofi Ashafa
- Faculty of Natural and Agricultural Sciences, Qwaqwa Campus, University of the Free State, Blemfontein, South Africa
| |
Collapse
|
43
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
44
|
Krzykwa JC, Saeid A, Jeffries MKS. Identifying sublethal endpoints for evaluating neurotoxic compounds utilizing the fish embryo toxicity test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:521-529. [PMID: 30557710 DOI: 10.1016/j.ecoenv.2018.11.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 05/23/2023]
Abstract
Fish embryos are increasingly being utilized in aquatic toxicity testing, as evidenced by the Organisation for Economic Co-operation and Development's approval of the fish embryo acute toxicity (FET) test. However, the FET test only allows for the estimation of acute toxicity, whereas other test methods such as the larval growth and survival (LGS) test allow for the estimation of both acute and chronic toxicity. Additionally, it has been demonstrated that the FET test is less sensitive than other test methods for some neurotoxic compounds. To address these limitations, efforts to identify sublethal endpoints that increase FET test sensitivity and allow for the prediction of sublethal adverse effects have begun. As such, the objectives of the current study were 1) to compare estimated LC50 values from the FET and LGS test for three known neurotoxicants: fluoride (F), nickel (Ni), and cadmium (Cd) and 2) to evaluate the responsiveness of potential sublethal endpoints for the FET test related to growth (i.e., wet weight and snout-vent length), neurological development (i.e., spontaneous contraction frequency and eye size), and cardiovascular function (i.e., heart rate and pericardial area). The calculated LC50 values from the F and Cd FET test were significantly higher than those from the LGS test, demonstrating that the FET test is less sensitive than the LGS test for neurotoxic compounds. Only Cd exposure resulted in alterations in any of the sublethal endpoints investigated. Embryos/eleutheroembryos exposed to Cd displayed alterations in length, eye size, and pericardial area at concentrations five-fold less than the estimated LC50 value, suggesting that for Cd the inclusion of these sublethal endpoints would improve the sensitivity of the FET test. Overall, these results provide evidence that for some neurotoxicants, the inclusion of sublehtal endpoints may improve the utility of the FET test; however, further research utilizing a broader range of neurotoxicants with differing mechanisms of action, is needed to fully establish such endpoints in the context of routine FET test.
Collapse
Affiliation(s)
- Julie C Krzykwa
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | - Asal Saeid
- Department of Biology, Texas Christian University, Fort Worth, TX, USA
| | | |
Collapse
|
45
|
Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:534-548. [PMID: 30384060 DOI: 10.1016/j.envpol.2018.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is a well-known compound for its usefulness in healing dental caries. Similarly, fluoride is also known for its toxicity to various tissues in animals and humans. It causes skeletal fluorosis leading to osteoporosis of the bones. We hypothesized that when bones are affected by fluoride, the skeletal muscles are also likely to be affected by underlying molecular events involving myogenic differentiation. Murine myoblasts C2C12 were cultured in differentiation media with or without NaF (1 ppm-5 ppm) for four days. The effects of NaF on myoblasts and myotubes when exposed to low (1.5 ppm) and high concentration (5 ppm) were assessed based on the proliferation, alteration in gene expression, ROS production, and production of inflammatory cytokines. Changes based on morphology, multinucleated myotube formation, expression of MyHC1 and signaling pathways were also investigated. Concentrations of NaF tested had no effects on cell viability. NaF at low concentration (1.5 ppm) caused myoblast proliferation and when subjected to myogenic differentiation it induced hypertrophy of the myotubes by activating the IGF-1/AKT pathway. NaF at higher concentration (5 ppm), significantly inhibited myotube formation, increased skeletal muscle catabolism, generated reactive oxygen species (ROS) and inflammatory cytokines (TNF-α and IL-6) in C2C12 cells. NaF also enhanced the production of muscle atrophy-related genes, myostatin, and atrogin-1. The data suggest that NaF at low concentration can be used as muscle enhancing factor (hypertrophy), and at higher concentration, it accelerates skeletal muscle atrophy by activating the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Anu V Ranade
- College of Medicine, University of Sharjah, United Arab Emirates
| | - Chitta R Chowdhury
- Department of Oral Biology & Genomic Studies, A.B.Shetty Memorial Institute of Dental Sciences, Nitte University, Mangalore, 575018, Karnataka, India; School of Health and Life Sciences, Biomedical and Environmental Health Group, De Montfort University, Leicester, United Kingdom
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
46
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Afolabi JM, Ogunpolu BS, Falayi OO, Ayodeji F, Hassan FO, Saba AB, Adedapo AA, Yakubu MA. Ameliorative effect of Rutin on sodium fluoride-induced hypertension through modulation of Kim-1/NF-κB/Nrf2 signaling pathway in rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1284-1297. [PMID: 30259632 DOI: 10.1002/tox.22636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 05/26/2023]
Abstract
Sodium fluoride is one of the neglected environmental contaminants. Inorganic fluorides in the environment are found in the air, water, and land. In the study, forty-male Wistar albino rats were randomly divided into four groups with 10 rats in a group. Group A was the control group which was given normal saline, Group B was exposed to 300 ppm of NaF in drinking water, while Groups C and D received NaF along Rutin (100 mg/kg and 200 mg/kg) orally daily for a week. Administration of NaF alone led to significant increases in blood pressure, and deceased serum nitric oxide. Immunohistochemistry revealed higher expressions of kidney injury molecule I (Kim-1), nuclear factor kappa beta (NF-κB), and down regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in rats administered NaF. Rutin co-treatment with NaF normalized blood pressure, lowered Kim-1 and NF-κB expressions, and improved nitric oxide bioavailability.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Benin, Benin City, Nigeria
| | - Temitayo Olabisi Ajibade
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Blessing Seun Ogunpolu
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Fatimah Ayodeji
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Faculty of Veterinary Medicine, Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Faculty of Veterinary Medicine, Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas
| |
Collapse
|
47
|
Adeoye BO, Oyagbemi AA, Asenuga ER, Omobowale TO, Adedapo AA. The ethanol leaf extract of Andrographis paniculata blunts acute renal failure in cisplatin-induced injury in rats through inhibition of Kim-1 and upregulation of Nrf2 pathway. J Basic Clin Physiol Pharmacol 2018; 30:205-217. [PMID: 30500779 DOI: 10.1515/jbcpp-2017-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/25/2018] [Indexed: 06/09/2023]
Abstract
Background Cisplatin (CP) is a novel drug of choice in the treatment of cancer but its major limitation is nephrotoxicity, which is dose limiting. Andrographis paniculata (AP) is a common Indian dietary component. It is well known for its medicinal properties. This present study investigated the nephroprotective effect of ethanol leaf extract of Andrographis paniculata (EEAP) on CP-induced nephrotoxicity. Methods CP was used to induce nephrotoxicity in male Wistar rats to study the effect of EEAP on renal damages using hematological parameters, biochemical parameters, histology, and immunohistochemistry studies. Results The effects of EEAP were determined by CP-induced changes in different kidney tissue on antioxidant enzymes, markers of oxidative stress, serum creatinine, and urine parameters. Administration of EEAP (200 mL/kg and 400 mg/kg orally), prior to and following a single dose CP treatment (10 mg/kg i.p), significantly mitigated the CP-induced decrease in antioxidant enzymes, and increase in markers of oxidative stress, serum creatinine, and urinary protein. On histopathological examination of the kidney tissue, there was severe glomerular degeneration and infiltration of inflammatory cells in CP only treated rats, mild glomerular degeneration, and infiltration of inflammatory cells in EEAP pre-treated rats. Furthermore, EEAP activated Nrf2 and mitigated Kim-1 pathways in CP-induced nephrotoxicity. Conclusions The results showed the protective effect of EEAP against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Bisi O Adeoye
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology and Pharmacology, University of Benin, Benin, Nigeria
| | | | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, University of Ibadan, Ibadan, Nigeria, Phone: +2348162746222
| |
Collapse
|
48
|
Liu J, Wang HW, Zhao WP, Li XT, Lin L, Zhou BH. Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure. Toxicol Ind Health 2018; 35:43-52. [DOI: 10.1177/0748233718809773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study was designed to investigate the effects of excessive fluoride on spleen toxicity. Twenty-four healthy female rats were randomly divided into two groups, each of 12 rats. Each group of female rats was given a control diet and either F− = 0 mg/L or an excessive F− = 150 mg/L in the drinking water for 120 days. The histomorphological and ultrastructural changes in their splenic tissues were observed under light and transmission electron microscopes. DNA damage and splenocyte apoptosis were examined using the micronucleus (MN) assay, single-cell gel electrophoresis (SCGE), and flow cytometry. The expression levels of cytokines, including interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α, were determined through immunohistochemistry and Western-blot analysis. Results demonstrated that the histomorphological characteristics and ultrastructure of the splenic tissues were affected by excessive fluoride. Nuclear dying, nuclear membrane dissolution, mitochondrial vacuolation, and endoplasmic reticulum dilation were observed. SCGE and MN assays showed that the nuclear DNA of splenocytes was damaged by fluoride treatment, and splenocyte apoptosis was exacerbated in the fluoride group. With damage to the splenocyte structure and DNA, the protein expression levels of IL-1β, IL-2, IL-6, and TNF-α were significantly downregulated by exposure to fluoride. Excessive fluoride ingestion caused splenic pathological damage and abnormal cytokine expression in female rats.
Collapse
Affiliation(s)
- Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Hong-wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Wen-peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Xiao-ting Li
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Lin Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| | - Bian-hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, Henan, People’s Republic of China
| |
Collapse
|
49
|
Nabofa WEE, Alashe OO, Oyeyemi OT, Attah AF, Oyagbemi AA, Omobowale TO, Adedapo AA, Alada ARA. Cardioprotective Effects of Curcumin-Nisin Based Poly Lactic Acid Nanoparticle on Myocardial Infarction in Guinea Pigs. Sci Rep 2018; 8:16649. [PMID: 30413767 PMCID: PMC6226538 DOI: 10.1038/s41598-018-35145-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Myocardial infarction (MI) is the most prevalent cause of cardiovascular death. A possible way of preventing MI maybe by dietary supplements. The present study was thus designed to ascertain the cardio-protective effect of a formulated curcumin and nisin based poly lactic acid nanoparticle (CurNisNp) on isoproterenol (ISO) induced MI in guinea pigs. Animals were pretreated for 7 days as follows; Groups A and B animals were given 0.5 mL/kg of normal saline, group C metoprolol (2 mg/kg), groups D and E CurNisNp 10 and 21 mg/kg respectively (n = 5). MI was induced on the 7th day in groups B-E animals. On the 9th day electrocardiogram (ECG) was recorded, blood samples and tissue biopsies were collected for analyses. Toxicity studies on CurNisNp were carried out. MI induction caused atrial fibrillation which was prevented by pretreatment of metoprolol or CurNisNp. MI induction was also associated with increased expressions of cardiac troponin I (CTnI) and kidney injury molecule-1 (KIM-1) which were significantly reduced in guinea pig's pretreated with metoprolol or CurNisNp (P < 0.05). The LC50 of CurNisNp was 3258.2 μg/mL. This study demonstrated that the formulated curcumin-nisin based nanoparticle confers a significant level of cardio-protection in the guinea pig and is nontoxic.
Collapse
Affiliation(s)
- Williams E E Nabofa
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria.
| | - Oluwadamilola O Alashe
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Oyetunde T Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiologv and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola R A Alada
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
50
|
Gallic acid protects against bisphenol A-induced alterations in the cardio-renal system of Wistar rats through the antioxidant defense mechanism. Biomed Pharmacother 2018; 107:1786-1794. [DOI: 10.1016/j.biopha.2018.08.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
|