1
|
Rajpoot R, Rajput S, Koiri RK. Microcystin-LR and its health impacts: Chemistry, transmission routes, mechanisms of toxicity and target organs. Toxicol Rep 2025; 14:101996. [PMID: 40177604 PMCID: PMC11964656 DOI: 10.1016/j.toxrep.2025.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/02/2025] [Accepted: 03/09/2025] [Indexed: 04/05/2025] Open
Abstract
Microcystin-LR, a hepatotoxin produced by cyanobacteria, poses significant health risks to humans and other animals through various routes of exposure. This review comprehensively explores the chemistry, transmission pathways, mechanisms of toxicity, and target organs affected by MC-LR to provide a detailed understanding of its health impacts on animals and humans. MC-LR exposure occurs through different transmission routes, including ingesting contaminated water and food, algal dietary supplements, direct body contact with harmful algal blooms, and inhalation of aerosolized toxins. In this review, we explored that the toxic effects of MC-LR are mediated through multiple complex mechanisms. A key mechanism of its toxicity is the inhibition of protein phosphatases PP1 and PP2A which results in abnormal cellular signalling pathways. Additionally, MC-LR induces oxidative stress and disrupts cellular homeostasis. The findings suggest that MC-LR modulates the activity of various antioxidant enzymes and also activates apoptosis pathways by different mechanisms. It also induces cytoskeletal disruption, ultimately compromising cellular integrity and function. MC-LR also induces activation of oncogenes such as Gankyrin, PI3K/AKT, HIF-1α, RAC1/JNK and NEK2 pathway and upregulates the inflammatory molecules such as NF-κβ, and TNF-α, hence leading to carcinogenesis. MC-LR has toxicological effects on multiple organs. The liver is the primary target, where MC-LR accumulates and causes hepatotoxicity, but other organs are affected as well. MC-LR shows neurotoxicity, nephrotoxicity, cardiotoxicity and reproductive toxicity.
Collapse
Affiliation(s)
- Roshni Rajpoot
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Siddharth Rajput
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
2
|
Long S, Wen C, Zeng W, Yang Y, Yang F. Effect of chronic low-dose microcystin-LR exposure on jejunum apoptosis via RAF/ERK signaling pathway in mouse. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:291-300. [PMID: 39668503 DOI: 10.1080/15287394.2024.2435631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Microcystin-LR (MC-LR), a class of cyclic heptapeptide compounds synthesized by cyanobacterial species, presents a significant risk to ecological systems and public health. Exposure to MC-LR was found to induce damage to various organs. One of the target organ systems affected by MC-LR is the gastrointestinal tract (GIT). However, the majority of studies regarding GIT focused on colorectal toxicity, with little attention paid to small intestinal toxic injuries, in particular jejunum. Thus, the aim of this study was to investigate the effects attributed to MC-LR exposure on apoptosis and underlying mechanisms utilizing a mouse jejunum injury model following chronic low-dose MC-LR treatment. A total of 40 C57BL/6 male mice were randomly divided into 4 groups with each group receiving drinking water containing 0, 1, 60, or 120 µg/L MC-LR for a duration of 12 months. Results indicated that exposure to MC-LR induced pathological alterations in jejunal tissue as evidenced by abnormal villous serration, crypt disorganization, and lymphocyte infiltration. TUNEL assays demonstrated a significant increase in apoptotic cell count in the 60 and 120 µg/L groups. The 60 and 120 µg/L MC-LR treatment groups exhibited elevated mRNA expression of Bax accompanied by significant reduction in mRNA expression of Bcl-2. The protein levels of cleaved caspase-3 were markedly elevated in the 60 and 120 µg/L MC-LR groups. The protein expression levels of p-RAF and p-ERK were significantly increased in the 60 and 120 µg/L MC-LR treatment groups. Data demonstrated suggest that the RAF/ERK signaling pathway may be involved in MC-LR- induced jejunal apoptosis.
Collapse
Affiliation(s)
- Sihong Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Cong Wen
- Changsha Yuhua District Center for Disease Control and Prevention, Changsha, China
| | - Wen Zeng
- The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Zhou X, Yang Y, Yan C, Feng S, Zhan C. MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-11. [PMID: 39865252 DOI: 10.1080/15287394.2024.2443227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage. Male C57BL/6 mice were treated with either MC-LR alone or concurrently with dextran-sulfate sodium (DSS). Mice were divided into 4 groups (1): PBS gavage (control, CT) (2); 200 μg/kg MC-LR gavage (MC-LR) (3); 3% DSS Drinking Water (DSS); and (4) 3% DSS Drinking Water + 200 μg/kg MC-LR gavage (DSS + MC-LR). The mice in each experimental group exhibited reduced body weight, shortened colon length, increased disease activity index (DAI) score, a disrupted intestinal barrier, and elevated levels of proinflammatory cytokines compared to control. Compared to the group treated with MC-LR alone, colitis symptoms were exacerbated following combined exposure to both DSS and MC-LR. Subsequent experiments confirmed that MC-LR or DSS increased protein phosphorylation levels of Janus Kinase1 (JAK1) and Signal Transducer and Activator of Transcription3 (STAT3). Compared to group treated with MC-LR alone, the combined treatment of DSS and MC-LR also significantly upregulated the expression of related proteins. In conclusion, our study indicates that MC-LR-induced colitis involves activation of JAK1/STAT3 signaling pathway and that MC-LR exacerbates DSS-induced colitis through the same pathway.
Collapse
Affiliation(s)
- Xiaodie Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Canqun Yan
- School of Public Health, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuidong Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| | - Chunhua Zhan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
- Department of Public Health, the Central Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
4
|
Wang X, Song Y, Lu X, Zhang H, Wang T. Microcystin-LR Regulates Interaction between Tumor Cells and Macrophages via the IRE1α/XBP1 Signaling Pathway to Promote the Progression of Colorectal Cancer. Cells 2024; 13:1439. [PMID: 39273011 PMCID: PMC11394429 DOI: 10.3390/cells13171439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Microcystin-LR (MC-LR), a cyanobacterial toxin, is a potent carcinogen implicated in colorectal cancer (CRC) progression. However, its impact on the tumor microenvironment (TME) during CRC development remains poorly understood. This study investigates the interaction between tumor cells and macrophages mediated by MC-LR within the TME and its influence on CRC progression. CRC mice exposed to MC-LR demonstrated a significant transformation from adenoma to adenocarcinoma. The infiltration of macrophages increased, and the IRE1α/XBP1 pathway was activated in CRC cells after MC-LR exposure, influencing macrophage M2 polarization under co-culture conditions. Additionally, hexokinase 2 (HK2), a downstream target of the IRE1α/XBP1 pathway, was identified, regulating glycolysis and lactate production. The MC-LR-induced IRE1α/XBP1/HK2 axis enhanced lactate production in CRC cells, promoting M2 macrophage polarization. Furthermore, co-culturing MC-LR-exposed CRC cells with macrophages, along with the IRE1α/XBP1 pathway inhibitor 4μ8C and the hexokinase inhibitor 2-DG, suppressed M2 macrophage-induced CRC cell migration, clonogenicity, and M2 macrophage polarization. This study elucidates the mechanism by which MC-LR-mediated interactions through the IRE1α/XBP1 pathway promote CRC progression, highlighting potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China; (X.W.); (Y.S.); (X.L.); (H.Z.)
| |
Collapse
|
5
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Liu Y, Li Y, Tan Q, Lv Y, Tang Y, Yang Y, Yao X, Yang F. Long-Term Exposure to Microcystin-LR Induces Gastric Toxicity by Activating the Mitogen-Activated Protein Kinase Signaling Pathway. Toxins (Basel) 2023; 15:574. [PMID: 37756000 PMCID: PMC10535883 DOI: 10.3390/toxins15090574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Previous studies have primarily concentrated on the hepatotoxicity of MC-LR, whereas its gastric toxicity effects and mechanisms of long-term exposure under low dosage remain unknown. Herein, the gastric tissue from C57BL/6 mice fed with drinking water contaminated by low-dose MC-LR (including 1, 60, and 120 μg/L) was investigated. The results obtained showed that exposure to different concentrations of MC-LR resulted in significant shedding and necrosis of gastric epithelial cells in mice, and a down-regulation of tight junction markers, including ZO-1, Claudin1, and Occludin in the stomach, which might lead to increased permeability of the gastric mucosa. Moreover, the protein expression levels of p-RAF/RAF, p-ERK1/2/ERK1/2, Pink1, Parkin, and LC3-II/LC-3-I were increased in the gastric tissue of mice exposed to 120 μg/L of MC-LR, while the protein expression level of P62 was significantly decreased. Furthermore, we found that pro-inflammatory factors, including IL-6 and TNF-ɑ, were dramatically increased, while the anti-inflammatory factor IL-10 was significantly decreased in the gastric tissue of MC-LR-exposed mice. The activation of the MAPK signaling pathway and mitophagy might contribute to the development of gastric damage by promoting inflammation. We first reported that long-term exposure to MC-LR induced gastric toxicity by activating the MAPK signaling pathway, providing a new insight into the gastric toxic mechanisms caused by MC-LR.
Collapse
Affiliation(s)
- Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Yafang Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Qinmei Tan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Yilin Lv
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Yue Yang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Xueqiong Yao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421009, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421009, China
- Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421009, China
| |
Collapse
|
7
|
Yang Y, Zheng S, Chu H, Du C, Chen M, Emran MY, Chen J, Yang F, Tian L. Subchronic Microcystin-LR Aggravates Colorectal Inflammatory Response and Barrier Disruption via Raf/ERK Signaling Pathway in Obese Mice. Toxins (Basel) 2023; 15:toxins15040262. [PMID: 37104200 PMCID: PMC10145857 DOI: 10.3390/toxins15040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Microcystin-LR (MC-LR) is an extremely poisonous cyanotoxin that poses a threat to ecosystems and human health. MC-LR has been reported as an enterotoxin. The objective of this study was to determine the effect and the mechanism of subchronic MC-LR toxicity on preexisting diet-induced colorectal damage. C57BL/6J mice were given either a regular diet or a high-fat diet (HFD) for 8 weeks. After 8 weeks of feeding, animals were supplied with vehicle or 120 μg/L MC-LR via drinking water for another 8 weeks, and their colorectal were stained with H&E to detect microstructural alterations. Compared with the CT group, the HFD and MC-LR + HFD-treatment group induced a significant weight gain in the mice. Histopathological findings showed that the HFD- and MC-LR + HFD-treatment groups caused epithelial barrier disruption and infiltration of inflammatory cells. The HFD- and MC-LR + HFD-treatment groups raised the levels of inflammation mediator factors and decreased the expression of tight junction-related factors compared to the CT group. The expression levels of p-Raf/Raf and p-ERK/ERK in the HFD- and MC-LR + HFD-treatment groups were significantly increased compared with the CT group. Additionally, treated with MC-LR + HFD, the colorectal injury was further aggravated compared with the HFD-treatment group. These findings suggest that by stimulating the Raf/ERK signaling pathway, MC-LR may cause colorectal inflammation and barrier disruption. This study suggests that MC-LR treatment may exacerbate the colorectal toxicity caused by an HFD. These findings offer unique insights into the consequences and harmful mechanisms of MC-LR and provide strategies for preventing and treating intestinal disorders.
Collapse
Affiliation(s)
- Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
- Changsha Center for Disease Control and Prevention, Changsha 410004, China
| | - Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Mohammed Y. Emran
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Wei L, Fu J, He L, Wang H, Ruan J, Li F, Wu H. Microcystin-LR-induced autophagy regulates oxidative stress, inflammation, and apoptosis in grass carp ovary cells in vitro. Toxicol In Vitro 2023; 87:105520. [PMID: 36410616 DOI: 10.1016/j.tiv.2022.105520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
MC-LR is one of the cyanotoxins produced by fresh water cyanobacteria. Previous studies showed that autophagy played an important role in MC-LR-induced reproduction toxicity. However, information on the toxicological mechanism is limited. In this study, MC-LR could induce autophagy and apoptosis in GCO cells in vitro. In GCO cells that had been exposed to MC-LR, the inhibitor of 3-MA effectively decreased cell viability and damaged cell ultrastructure. Oxidative stress was significantly increased in the 3-MA + MC-LR group, accompanied by significantly increased MDA content and decreased CAT activity and GST, SOD1, GPx, and GR expression levels (P < 0.05). Inflammation was more serious in the 3-MA + MC-LR group than that of MC-LR group, which was evidenced by increasing expression levels of TNFα, IL11, MyD88, TNFR1, TRAF2, JNK, CCL4, and CCL20 (P < 0.05). Interestingly, the significant decrease of Caspase-9, Caspase-7, and Bax expression and significant increase of Bcl-2 and Bcl-2/Bax ratio in 3-MA + MC-LR group compared to MC-LR group, suggesting that extent of apoptosis were reduced. Taken together, these results indicated that MC-LR induced autophagy and apoptosis in GCO cells, however, the inhibition of autophagy decreased the extent of apoptosis, induced more serious oxidative stress and inflammation, which eventually induced cell death. Our findings provided some information for exploring the toxicity of MC-LR, however, the role of autophagy require further study in vivo.
Collapse
Affiliation(s)
- Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi Province 330022, PR China
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
9
|
Du X, Liu H, Tian Z, Zhang S, Shi L, Wang Y, Guo X, Zhang B, Yuan S, Zeng X, Zhang H. PI3K/AKT/mTOR pathway mediated-cell cycle dysregulation contribute to malignant proliferation of mouse spermatogonia induced by microcystin-leucine arginine. ENVIRONMENTAL TOXICOLOGY 2023; 38:343-358. [PMID: 36288207 DOI: 10.1002/tox.23691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental cyanotoxin exposure may be a trigger of testicular cancer. Activation of PI3K/AKT/mTOR signaling pathway is the critical molecular event in testicular carcinogenesis. As a widespread cyanotoxin, microcystin-leucine arginine (MC-LR) is known to induce cell malignant transformation and tumorigenesis. However, the effects of MC-LR on the regulatory mechanism of PI3K/AKT/mTOR pathway in seminoma, the most common testicular tumor, are unknown. In this study, mouse spermatogonia cell line (GC-1) and nude mice were used to investigate the effects and mechanisms of MC-LR on the malignant transformation of spermatogonia by nude mouse tumorigenesis assay, cell migration invasion assay, western blot, and cell cycle assay, and so forth. The results showed that, after continuous exposure to environmentally relevant concentrations of MC-LR (20 nM) for 35 generations, the proliferation, migration, and invasion abilities of GC-1 cells were increased by 120%, 340%, and 370%, respectively. In nude mice, MC-LR-treated GC-1 cells formed tumors with significantly greater volume (0.998 ± 0.768 cm3 ) and weight (0.637 ± 0.406 g) than the control group (0.067 ± 0.039 cm3 ; 0.094 ± 0.087 g) (P < .05). Furthermore, PI3K inhibitor Wortmannin inhibited the PI3K/AKT/mTOR pathway and its downstream proteins (c-MYC, CDK4, CCND1, and MMP14) activated by MC-LR. Blocking PI3K alleviated MC-LR-induced cell cycle disorder and malignant proliferation, migration and invasive of GC-1 cells. Altogether, our findings suggest that MC-LR can induce malignant transformation of mouse spermatogonia, and the PI3K/AKT/mTOR pathway-mediated cell cycle dysregulation may be an important target for malignant proliferation. This study provides clues to further reveal the etiology and pathogenesis of seminoma.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Kaak JL, Lobo de Sá FD, Turner JR, Schulzke JD, Bücker R. Unraveling the intestinal epithelial barrier in cyanotoxin microcystin-treated Caco-2 cell monolayers. Ann N Y Acad Sci 2022; 1516:188-196. [PMID: 35883254 PMCID: PMC9588585 DOI: 10.1111/nyas.14870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcystin is a widespread cyanobacterial toxin that affects the intestine to produce diarrheal symptoms after ingestion of freshwater blue-green algae. Our study aimed to characterize the mechanism by which the toxin leads to diarrhea via epithelial barrier dysfunction in a small intestine Caco-2 cell model. Microcystin-treated human Caco-2 epithelial monolayers were functionally and molecularly analyzed for barrier dysfunction. Tight junctions (TJs) and cell damage were analyzed in relation to transepithelial electrical resistance (TER) changes. TER of microcystin-treated Caco-2 cells was reduced by 65% of the initial value after 24 h; concomitantly, permeability for fluorescein increased 2.6-fold. Western blot analysis showed reduced claudin-1 expression, while expression of claudin-3 and -4 remained unchanged. Super-resolution stimulated emission depletion microscopy revealed that TJ integrity was compromised by fraying and splitting of the TJ domain of the epithelial cells. Epithelial apoptosis did not significantly contribute to epithelial barrier dysfunction, while cytoskeletal actomyosin constriction was associated with TJ disintegration and the barrier defect. Our results indicate that microcystin causes intestinal barrier leakiness, which helps to explain the leak flux type of diarrhea as the main pathomechanism after ingestion of cyanobacterial toxin.
Collapse
Affiliation(s)
- Jan-Leo Kaak
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Fábia D. Lobo de Sá
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Bücker
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Review of Cyanotoxicity Studies Based on Cell Cultures. J Toxicol 2022; 2022:5647178. [PMID: 35509523 PMCID: PMC9061046 DOI: 10.1155/2022/5647178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing “water blooms” or “cyanoblooms,” which may lead to environmental disaster—water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (β-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.
Collapse
|
12
|
Arman T, Clarke JD. Microcystin Toxicokinetics, Molecular Toxicology, and Pathophysiology in Preclinical Rodent Models and Humans. Toxins (Basel) 2021; 13:toxins13080537. [PMID: 34437407 PMCID: PMC8402503 DOI: 10.3390/toxins13080537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Microcystins are ubiquitous toxins produced by photoautotrophic cyanobacteria. Human exposures to microcystins occur through the consumption of contaminated drinking water, fish and shellfish, vegetables, and algal dietary supplements and through recreational activities. Microcystin-leucine-arginine (MCLR) is the prototypical microcystin because it is reported to be the most common and toxic variant and is the only microcystin with an established tolerable daily intake of 0.04 µg/kg. Microcystin toxicokinetics is characterized by low intestinal absorption, rapid and specific distribution to the liver, moderate metabolism to glutathione and cysteinyl conjugates, and low urinary and fecal excretion. Molecular toxicology involves covalent binding to and inhibition of protein phosphatases, oxidative stress, cell death (autophagy, apoptosis, necrosis), and cytoskeleton disruption. These molecular and cellular effects are interconnected and are commonly observed together. The main target organs for microcystin toxicity are the intestine, liver, and kidney. Preclinical data indicate microcystins may also have nervous, pulmonary, cardiac, and reproductive system toxicities. Recent evidence suggests that exposure to other hepatotoxic insults could potentiate microcystin toxicity and increase the risk for chronic diseases. This review summarizes the current knowledge for microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. More research is needed to better understand human toxicokinetics and how multifactorial exposures contribute to disease pathogenesis and progression.
Collapse
|
13
|
|
14
|
Zhuang L, Jin Z, Li H, Wu S, Tong X, Wang H, Li M. Effects of Chronic Exposure to Microcystin-LR on the Gut Microbiota of Male Mice. Int J Toxicol 2020; 40:171-177. [PMID: 33307919 DOI: 10.1177/1091581820972311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence indicates that environmental pollutants can change human gut microbiota. Microcystin-leucine arginine (MC-LR), considered a major hazard to mammals, is one of the important contaminants. However, little is known about the long-term influence of MC-LR on gut microbial communities. We aimed to investigate the effect of MC-LR on gut microbiota composition and functions by conducting a chronic exposure of male mice to MC-LR via the oral route. Using 16S rRNA gene sequencing analysis on cecum samples of mice, our results showed that significant changes of species diversity were observed in the gut microbiota of MC-LR-exposed mice. In addition, comparative analysis of the microbial communities showed that the reduction of the Actinobacteria and Saccharibacteria populations was detected in MC-LR-exposed mice. Collectively, our study highlighted the significant effects of MC-LR on the shift of gut microbial communities which could contribute to the development of metabolic syndromes.
Collapse
Affiliation(s)
- Lilei Zhuang
- Department of Gastroenterology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of 26453Wenzhou Medical University, Zhejiang, China
| | - Zhonghai Jin
- Department of Gastroenterology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of 26453Wenzhou Medical University, Zhejiang, China
| | - Hongguang Li
- Department of Gastroenterology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of 26453Wenzhou Medical University, Zhejiang, China
| | - Shenbao Wu
- Department of Gastroenterology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of 26453Wenzhou Medical University, Zhejiang, China
| | - Xiuping Tong
- Department of Gastroenterology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of 26453Wenzhou Medical University, Zhejiang, China
| | - Haiying Wang
- Department of Gastroenterology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of 26453Wenzhou Medical University, Zhejiang, China
| | - Miaomiao Li
- Department of Respiratory and Critical Medicine, the Fourth Affiliated Hospital, 12377Zhejiang University, Zhejiang, China
| |
Collapse
|
15
|
Duan Y, Xiong D, Wang Y, Dong H, Huang J, Zhang J. Effects of Microcystis aeruginosa and microcystin-LR on intestinal histology, immune response, and microbial community in Litopenaeus vannamei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114774. [PMID: 32485489 DOI: 10.1016/j.envpol.2020.114774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis aeruginosa (MA) is a primary hazardous cyanobacteria species in aquatic ecosystems that can produce microcystin-LR (MC-LR), which harms aquatic animals. The intestine is an important target tissue for MA and MC-LR. In this study, we investigated the effects of MA and MC-LR exposure on the intestinal microbiota variation and immune responses of Litopenaeus vannamei. Shrimp were experimentally exposed to MA and MC-LR for 72 h. The results showed that both MA and MC-LR exposure caused marked histological variation and apoptosis characteristics and increased oxidative stress in the intestine. Furthermore, the relative expression levels of antimicrobial peptide genes (ALF, Crus, Pen-3) decreased, while those of pro-inflammatory cytokines (MyD88, Rel, TNF-a), a pattern-recognition receptor (TLR4) and a mediator of apoptosis (Casp-3) increased. MA and MC-LR exposure also caused intestinal microbiota variation, including decreasing microbial diversity and disturbing microbial composition. Specifically, the relative abundance of Proteobacteria decreased in the two stress groups; that of Bacteroidetes decreased in the MA group but increased in the MC-LR group, while Tenericutes varied inversely with Bacteroidetes. Our results indicate that MA and MC-LR exposure causes intestinal histopathological and microbiota variations and induces oxidative stress and immune responses in L. vannamei. In conclusion, this study reveals the negative effects of MA and MC-LR on the intestinal health of shrimp, which should be considered in aquaculture.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Dalin Xiong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China.
| |
Collapse
|
16
|
Wen C, Zheng S, Yang Y, Li X, Chen J, Wang X, Feng X, Yang F. Effects of microcystins-LR on genotoxic responses in human intestinal epithelial cells (NCM460). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1113-1119. [PMID: 31818208 DOI: 10.1080/15287394.2019.1698498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR), a cyclic heptapeptide toxin produced by cyanobacteria, was found to induce genotoxic actions in various types of cells. Some investigators reported that microcystin-LR acted as tumor initiator in the observed genotoxic action mediated by this cyanotoxin. However, the underlying mechanisms underlying MC-induced DNA damage in the human intestine epithelium cell line (NCM460) are not known. The purpose of this study was to examine the influence of 24 hr exposure to 5 or 10 µM MC-LR on intestinal DNA damage using NCM460 intestine cell line as a model. Data showed that MC-LR increased Olive tail moment (OTM) as evidenced by the comet assay, inhibited protein phosphatase 2A (PP2A) activity, elevated reactive oxygen species levels (ROS) and enhanced γ-H2AX and p-p53 protein expression levels. Results indicated that MC-LR produced intestinal DNA damage by inhibiting PP2A activity, activating p53 protein and subsequently initiating excess generation of ROS. These observations suggest that MC-LR-induced intestinal DNA damage involves a complex series of events that include oxidant stress, PP2A enzymic inhibition and activation of p53 protein.
Collapse
Affiliation(s)
- Cong Wen
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuilin Zheng
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yue Yang
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyu Li
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangling Feng
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
| |
Collapse
|
17
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
18
|
Zhou Y, Chen Y, Hu X, Guo J, Shi H, Yu G, Tang Z. Icariin attenuate microcystin-LR-induced gap junction injury in Sertoli cells through suppression of Akt pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:328-337. [PMID: 31091496 DOI: 10.1016/j.envpol.2019.04.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorder. However, the underlying mechanism are not yet entirely elucidated. In this study, we aimed to investigated the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both in vivo and in vitro experiments revealed that MC-LR caused disruption of BTB and gap junctions between Sertoli cells respectively, which was paralleled by the alteration of connexin43 (Cx43). Our data demonstrated that MC-LR decreased gap junction intercellular communication (GJIC) and impaired Cx43 expression by activating the phosphatidylinositol 3-kinase/Akt cascades. In addition, a possible protective effect of Icariin (ICA), a flavonoid isolated from Chinese medicinal herb, against MC-LR toxicity was investigated. The ICA prevented the degradation of GJIC and impairment of Cx43 induced by MC-LR via suppressing the Akt pathway. Together, our results confirmed that the expression of Cx43 induced by MC-LR was regulated in vivo and in vitro, which was involved in the destruction of BTB. Additionally, ICA seems to be able to mitigate the MC-LR toxic effects.
Collapse
Affiliation(s)
- Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yu Chen
- Research Center of Endocrine and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xueqin Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jun Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hao Shi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Guang Yu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
19
|
Liang Q, Lv X, Cai Q, Cai Y, Zhao B, Li G. Novobiocin, a Newly Found TRPV1 Inhibitor, Attenuates the Expression of TRPV1 in Rat Intestine and Intestinal Epithelial Cell Line IEC-6. Front Pharmacol 2018; 9:1171. [PMID: 30374305 PMCID: PMC6196238 DOI: 10.3389/fphar.2018.01171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose: Novobiocin (NOVO), an ABC transporter inhibitor, decreases intestinal wall permeability of capsaicin (CAP), an ABC transporter substrate. However, the mechanism of this effect is not consistent with the action of NOVO as an ABC transporter inhibitor. We previously found that CAP can also be transported via TRPV1, which was site-specific in the permeability of CAP across the intestine. We explored the regulation by NOVO of TRPV1 in the present study. Methods: Rats and transfected IEC-6 cells were used as the models to assess intestinal permeability and expression of TRPV1. Ussing chamber and intracellular accumulation were used to evaluate the influence of NOVO on the transport of CAP in vitro. The expression of TRPV1 was detected after administration of NOVO by qRT-PCR, western blot and immunofluorescent imaging. In addition, MTT and lactate dehydrogenase (LDH) were used to evaluate the cytotoxicity of NOVO in both rat and cell models. Finally, the effect of NOVO on the absorption of CAP in vivo was studied by LC-MS/MS. Results: In vitro data showed that there existed a dose-dependent relationship in the range of concentration between 5 and 50 μM, and even 5 μM NOVO could decrease intestinal permeability of CAP across the intestine. Meanwhile, cytosolic accumulation of CAP decreased when NOVO was used simultaneously or 24 h in advance. NOVO exhibited an inhibition level similar to that of ruthenium red (RR) or SB-705498, a TRPV1-specific inhibitor. NOVO down-regulated TRPV1 expression in the intestine and in transfected cells in a concentration-dependent fashion, hinting that its inhibition of the permeability of CAP is due to its inhibition of TRPV1 expression. Immunofluorescent imaging data showed that the fluorescence intensity of TRPV1 was reduced after pre-treatment with NOVO and SB-705498. In vivo data further demonstrated that oral co-administration of NOVO decreased Cmax and AUC of CAP in dosage-dependent ways, consistent with its role as a TRPV1 inhibitor. Conclusion: NOVO could be a potential TRPV1 inhibitor by attenuating the expression of TRPV1 and may be used to attenuate permeability of TRPV1 substrates.
Collapse
Affiliation(s)
- Qianying Liang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueli Lv
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Cai
- General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Yun Cai
- Department of Pharmacy, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Wu JX, Huang H, Yang L, Zhang XF, Zhang SS, Liu HH, Wang YQ, Yuan L, Cheng XM, Zhuang DG, Zhang HZ. Gastrointestinal toxicity induced by microcystins. World J Clin Cases 2018; 6:344-354. [PMID: 30283797 PMCID: PMC6163130 DOI: 10.12998/wjcc.v6.i10.344] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Microcystins (MCs) are produced by certain bloom-forming cyanobacteria that can induce toxicity in various organs, including renal toxicity, reproductive toxicity, cardiotoxicity, and immunosuppressive effects. It has been a significant global environmental issue due to its harm to the aquatic environment and human health. Numerous investigators have demonstrated that MC exposure can induce a widespread epidemic of enterogastritis with symptoms similar to food poisoning in areas close to lakes. Both in vivo and in vitro studies have provided evidence of positive associations between MC exposure and gastrointestinal toxicity. The toxicity of MCs on the gastrointestinal tract is multidimensional. MCs can affect gastrointestinal barrier function and shift the structure of gut microbiota in different gut regions. Furthermore, MCs can inhibit the secretion of gastrointestinal digestive enzymes and the release of inflammatory cytokines, which affects the expression of immune-related genes in the intestine. The damage of the intestine is closely correlated to MC exposure because the intestine is the main site for the digestion and absorption of nutrients. The damage to the gastrointestinal tract due to MCs was summarized from different aspects, which can be used as a foundation for further exploration of molecular damage mechanisms.
Collapse
Affiliation(s)
- Jin-Xia Wu
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Huang
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Lei Yang
- Department of Nutriology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xiao-Feng Zhang
- Department of Nutriology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shen-Shen Zhang
- Department of Nutriology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hao-Hao Liu
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yue-Qin Wang
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Le Yuan
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xue-Min Cheng
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Dong-Gang Zhuang
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui-Zhen Zhang
- Department of Environmental Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
21
|
Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon 2018; 151:156-162. [PMID: 30003917 DOI: 10.1016/j.toxicon.2018.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 02/03/2023]
Abstract
Microcystins (MCs) pollution has quickly risen in infamy and has become a major problem to public health worldwide. MCs are a group of monocyclic hepatotoxic peptides, which are produced by some bloom-forming cyanobacteria in water. More than 100 different MCs variants posing a great threat to animals and humans due to their potential carcinogenicity have been reported. To reduce MCs risks, the World Health Organization has set a provisional guideline of 1 μg/L MCs in human's drinking water. This paper provides an overview of exposure routes of MCs into the human system and health effects on different organs after MCs exposure including the liver, intestine, brain, kidney, lung, heart and reproductive system. In addition, some evidences on human poisoning and deaths associated with MCs exposure are presented. Finally, in order to protect human life against the health threats posed by MCs, this paper also suggests some directions for future research that can advance MCs control and minimize human exposure to MCs.
Collapse
|
22
|
Essential roles of Akt/Snail pathway in microcystin-LR-induced tight junction toxicity in Sertoli cell. Food Chem Toxicol 2018; 112:290-298. [PMID: 29307602 DOI: 10.1016/j.fct.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
Microcystin (MC)-LR is a cyclic heptapeptide that acts as a potent reproductive system toxin. However, the underlying pathways of MCLR-induced reproductive system toxicity have not been well elucidated. The blood-testis barrier is mainly constituted by tight junctions (TJs) between adjacent Sertoli cells in the seminiferous epithelium near the basement membrane. The present study was designed to investigate changes in TJs and the underlying pathway in MC-LR-induced TJs toxicity in Sertoli cell. In our study, the transepithelial electrical resistance (TER) value was decreased in a dose dependent manner due to the markers of TJs occludin, claudin and zonula occludens-1 (ZO-1) expression decline. MC-LR is shown to induce cytotoxicity by inhibiting protein phosphatase 2A (PP2A) activity. Our results also showed that the PP2A activity presented a dose-dependent decline. Moreover, MC-LR stimulated protein expression of snail by Akt/GSK-3β activation. The activated Akt/GSK-3β and snail signaling pathway largely accounted for MC-LRinduced TJs toxicity, which could be partially reversed by snail siRNA interference or AKT chemical inhibitor in TM4 cells. These findings indicated that MC-LR inhibit the protein expression of TJs, and the activation of Akt/Snail signaling pathways due to PP2A inhibition is proposed to participate in this process.
Collapse
|