1
|
Alaoui A, Christ F, Silva V, Vested A, Schlünssen V, González N, Gai L, Abrantes N, Baldi I, Bureau M, Harkes P, Norgaard T, Navarro I, de la Torre A, Sanz P, Martínez MÁ, Hofman J, Pasković I, Pasković MP, Glavan M, Lwanga EH, Aparicio VC, Campos I, Alcon F, Contreras J, Mandrioli D, Sgargi D, Scheepers PTJ, Ritsema C, Geissen V. Identifying pesticides of high concern for ecosystem, plant, animal, and human health: A comprehensive field study across Europe and Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174671. [PMID: 39004368 DOI: 10.1016/j.scitotenv.2024.174671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.
Collapse
Affiliation(s)
- Abdallah Alaoui
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| | - Florian Christ
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anne Vested
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Lingtong Gai
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabelle Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Mathilde Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Trine Norgaard
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Huguesa 8, 52440 Poreč, Croatia
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Portugal
| | - Francisco Alcon
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | - Josefa Contreras
- Agricultural Engineering School, Universidad Politécnica de Cartagena, Spain
| | | | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Italy
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Coen Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Sanchez Y, Vasquez Callejas MA, Miret NV, Rolandelli G, Costas C, Randi AS, Español A. Hexachlorobenzene as a differential modulator of the conventional and metronomic chemotherapy response in triple negative breast cancer cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:278-295. [PMID: 38745771 PMCID: PMC11090688 DOI: 10.37349/etat.2024.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 05/16/2024] Open
Abstract
Aim Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.
Collapse
Affiliation(s)
- Yamila Sanchez
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Mariana Abigail Vasquez Callejas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Noelia Victoria Miret
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Gabino Rolandelli
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Catalina Costas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Andrea Silvana Randi
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Alejandro Español
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
3
|
Gearhart-Serna LM, Mills BA, Hsu H, Fayanju OM, Hoffman K, Devi GR. Cumulative environmental quality is associated with breast cancer incidence differentially by summary stage and urbanicity. Sci Rep 2023; 13:20301. [PMID: 37985794 PMCID: PMC10662118 DOI: 10.1038/s41598-023-45693-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Individual environmental contaminants have been associated with breast cancer; however, evaluations of multiple exposures simultaneously are limited. Herein, we evaluated associations between breast cancer summary stages and the Environmental Quality Index (EQI), which includes a range of environmental factors across five domains. The EQI (2000-2005) was linked to county-level age-standardized incidence rates (SIRs) obtained from the North Carolina Central Cancer Registry (2010-2014). Incidence rates and SIRs of total, in situ, localized, regional, and distant breast cancers were evaluated stratified by rural-urban status. In counties with poor environmental quality compared to those with good environmental quality, total breast cancer incidence was higher by 10.82 cases per 100,000 persons (95% CI 2.04, 19.60, p = 0.02). This association was most pronounced for localized breast cancer (β = 5.59, 95% CI 0.59, 10.58, p = 0.03). Higher incidence of early-stage disease (carcinoma in situ β = 5.25, 95% CI 2.34, 8.16, p = 0.00 and localized breast cancer β = 6.98, 95% CI 2.24, 11.73, p = 0.00) and total breast cancer (β = 11.44, 95% CI 3.01, 19.87, p = 0.01) occurred in counties with poor land quality, especially urban counties. Our analyses indicate significant associations between environmental quality and breast cancer incidence, which differ by breast cancer stage and urbanicity, identifying a critical need to assess cumulative environmental exposures in the context of cancer stage.
Collapse
Affiliation(s)
- Larisa M Gearhart-Serna
- Department of Surgery, Duke University School of Medicine, DUMC Box 2606 Med Ctr, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
| | - Brittany A Mills
- Department of Surgery, Duke University School of Medicine, DUMC Box 2606 Med Ctr, Durham, NC, 27710, USA
| | - Hillary Hsu
- Department of Surgery, Duke University School of Medicine, DUMC Box 2606 Med Ctr, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Oluwadamilola M Fayanju
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, DUMC Box 2606 Med Ctr, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
4
|
Drago G, Ruggieri S, Sprovieri M, Rizzo G, Colombo P, Giosuè C, Quinci E, Traina A, Gastaldelli A, Cibella F, Panunzi S. Exposure profiles in pregnant women from a birth cohort in a highly contaminated area of southern Italy. Sci Rep 2023; 13:14815. [PMID: 37684286 PMCID: PMC10491776 DOI: 10.1038/s41598-023-41865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Protecting the health of pregnant women from environmental stressors is crucial for reducing the burden of non-communicable diseases. In industrially contaminated sites, this action is particularly challenging due to the heterogeneous pollutant mixtures in environmental matrices. The aim of this study was to evaluate distribution patterns of mercury, hexachlorobenzene and polychlorobiphenyls in the serum of 161 pregnant women recruited in the framework of the Neonatal Environment and Health Outcomes (NEHO) cohort and living both inside and outside the National Priority Contaminated Site (NPCS) of Priolo. Food macro-categories were determined, and serum levels of contaminants were used to perform k-means cluster analysis and identify the role of food in pollutant transfer from the environment. Two groups of mothers with high and low measured pollutant levels were distinguished. Concentrations in mothers in the high-exposure cluster were at least twofold for all the evaluated pollutants (p < 0.0001) and included mothers living inside and outside NPCS, with a predominance of individuals from the NPCS (p = 0.045). Fish consumption was higher in the high-exposure cluster (p = 0.019). These findings suggest a link between contamination of environmental matrices such as sediment with maternal exposure, through the intake of local food. Such consideration appears poorly investigated in the context of contaminated sites.
Collapse
Affiliation(s)
- Gaspare Drago
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Silvia Ruggieri
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Mario Sprovieri
- Institute of Marine Sciences, National Research Council of Italy, Arsenale-Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Giulia Rizzo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Cristina Giosuè
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council of Italy, Lungomare Cristoforo Colombo 4521, 90149, Palermo, Italy
| | - Enza Quinci
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council of Italy, Via del Mare 3, Torretta Granitola, 91021, Trapani, Italy
| | - Anna Traina
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council of Italy, Lungomare Cristoforo Colombo 4521, 90149, Palermo, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council of Italy, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Simona Panunzi
- Institute for System Analysis and Computer Science-BioMatLab, National Research Council of Italy, Via dei Taurini 19, 00168, Rome, Italy
| |
Collapse
|
5
|
Ni Z, Liu W, Pan G, Mao A, Liu J, Zhang Q, Li J, Liu L, Li H. Circular forms of dedicator of cytokinesis 1 promotes breast cancer progression by derepressing never in mitosis related kinase 2 via sponging miR-128-3p. ENVIRONMENTAL TOXICOLOGY 2023; 38:1712-1722. [PMID: 37040338 DOI: 10.1002/tox.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The conjecture of breast cancer is uncertain because of its explosive growth and the complicated molecular mechanisms. Circular RNAs (circRNAs) are regulatory RNA sequences present in the genome and their regulatory mechanism involves the sponging of microRNAs (miRNAs). In this study, we explored the regulation between circular forms of dedicator of cytokinesis 1 (circDOCK1) (hsa_circ_0007142) and miR-128-3p, and its implication on the pathogenesis of breast cancer modulated by never in mitosis (NIMA) related kinase 2 (NEK2). We revealed an increase in circDOCK1 and NEK2 expression, and a decrease in miR-128-3p expression in breast cancer tissues and cell lines. Bioinformatics analysis and experimental validation indicated a positive correlation between circDOCK1 and NEK2 expression but a negative correlation was recorded between miR-128-3p and circDOCK1 or NEK2, respectively. Furthermore, inhibition of circDOCK1 expression was followed by an increase in miR-128-3p and a decrease in NEK2 levels in vitro and in vivo. The luciferase assay concluded that miR-128-3p was a direct target of circDOCK1 while NEK2 was the direct target of miR-128-3p. Furthermore, circDOCK1 inhibition hindered breast cancer development by repressing NEK2 and thus promoting the increased expression of miR-128-3p both in vitro and in vivo. We therefore conclude that circDOCK1 promotes breast cancer progression by targeting miR-128-3p-mediated downregulation of NEK2 and that the circDOCK1/hsa-miR-128-3p/NEK2 axis may be a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Weiyan Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Gaofeng Pan
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Anwei Mao
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Jiazhe Liu
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Qing Zhang
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Jindong Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| | - Limin Liu
- Department of Medical Rehabilitation, Heze Domestic Professional College, Middle Xueyuan Road, Shanxian Development Zone, Heze, Shandong, 274300, China
| | - Hongchang Li
- Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Rd, Shanghai, 201100, China
| |
Collapse
|
6
|
Jia Y, Yang H, Yu J, Li Z, Jia G, Ding B, Lv C. Crocin suppresses breast cancer cell proliferation by down-regulating tumor promoter miR-122-5p and up-regulating tumor suppressors FOXP2 and SPRY2. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988377 DOI: 10.1002/tox.23789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Crocin has been reported to have antitumor activity in several tumors including breast cancer. Nevertheless, the mechanism of action of crocin on breast cancer remains unclear. The cytotoxicity of crocin was evaluated by CCK-8 assay. Cell proliferation was assessed using EdU incorporation assay and western blot analysis. Breast cancer-related genes were extracted from GEPIA. miR-122-5p targets were predicted using Targetscan, starbase, and miRDB softwares. Luciferase reporter assay was employed to confirm whether miR-122-5p targeted sprouty2 (SPRY2) and forkhead box P2 (FOXP2). Results showed that crocin exhibited cytotoxicity and suppressed the proliferation in breast cancer cells. miR-122-5p was upregulated in breast cancer tissues and cells. Crocin suppressed miR-122-5p to block the proliferation of breast cancer cells. Seven targets of miR-122-5p were identified in breast cancer. SPRY2 and FOXP2 were selected for further experiments due to their involvement in breast cancer. miR-122-5p targeted SPRY2 and FOXP2 to inhibit their expression. miR-122-5p knockdown restrained breast cancer cell proliferation by targeting SPRY2 and FOXP2. Additionally, crocin increased SPRY2 and FOXP2 expression by inhibiting miR-122-5p expression. Together, our results suggested that crocin inhibited proliferation of breast cancer cells through decreasing miR-122-5p expression and the subsequent increase of SPRY2 and FOXP2 expression.
Collapse
Affiliation(s)
- Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
- Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery (Department of Head and Neck Surgery), Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| |
Collapse
|
7
|
Ataei M, Abdollahi M. A systematic review of mechanistic studies on the relationship between pesticide exposure and cancer induction. Toxicol Appl Pharmacol 2022; 456:116280. [DOI: 10.1016/j.taap.2022.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
|
8
|
Zhang W, Liu H, Fu G, Li Y, Ji X, Zhang S, Wei M, Qiao K. Exposure to fluopimomide at sublethal doses causes oxidative stress in Caenorhabditis elegans regulated by insulin/insulin-like growth factor 1-like signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2529-2539. [PMID: 35833599 DOI: 10.1002/tox.23616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fluopimomide is an innovative pesticide, widely used for agricultural pest management; however, little is known about its effect on non-target organisms. This study was designed to assess the potential risk of fluopimomide and the molecular mechanisms using Caenorhabditis elegans, a common model animal. The oxidative stress-related indicators were analyzed in C. elegans after exposure to fluopimomide for 24 h at three sublethal doses (0.2, 1.0, and 5.0 mg/L). The results demonstrated that sublethal exposure to fluopimomide adversely affected the nematodes growth, locomotive behaviors, reproduction, and lifespan, accompanying with enhanced of reactive oxygen species (ROS) generation, lipid and lipofuscin accumulation, and malondialdehyde content. In addition, exposure to fluopimomide significantly inhibited antioxidant systems including superoxide dismutase, catalase, glutathione S-transferase, and glutathione in the nematodes. Moreover, the expression of oxidative stress-related genes of sod-3, hsp-16.1, gst-4, ctl-2, daf-16, and daf-2 were significantly down-regulated, while the expression of skn-1 was significantly up-regulated. Further evidence revealed that daf-16 and skn-1 mutant strains of C. elegans significantly decreased ROS production upon fluopimomide exposure compared with the wild-type nematodes. Overall, our findings indicated that exposure to fluopimomide at sublethal doses caused oxidative damage, mainly associated with insulin/IGF-1-like signaling pathway in C. elegans. This is the first report of potential toxic effects of fluopimomide even at low concentrations, providing a new insight into the mechanisms of toxicity to C. elegans by fluopimomide.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yujie Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Florida, USA
| | - Min Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
9
|
Yousefi F, Asadikaram G, Karamouzian S, Abolhassani M, Pourghadamyari H, Moazed V, Khanjani N, Paydar P. Organochlorine and organophosphorus pesticides may induce brain cancer through oxidative stress. Toxicol Ind Health 2022; 38:717-732. [PMID: 36180968 DOI: 10.1177/07482337221125954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, oxidative stress was investigated as the possible mechanism of action of organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs) in primary brain tumors (PBT). The levels of seven OCP residues and enzymatic antioxidant biomarkers including erythrocyte acetylcholinesterase (AChE), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and paraoxonase-1 (PON-1) along with non-enzymatic oxidative biomarkers including malondialdehyde (MDA), protein carbonyl (PC), total antioxidant capacity (TAC), and nitric oxide (NO) were measured in blood samples of 73 patients with PBT and 104 healthy controls. A significant association was found between farming activities and PBT (55% of patients were engaged in farming activities while 45% had no farming experience). The mean levels of β-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, 4,4 DDT, MDA, PC, NO, SOD, CAT, and GPx were significantly higher in PBT patients, whereas the levels of TAC, PON-1, and AChE were significantly lower in these patients. Regression analysis showed that PBT was correlated with β-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, and 4,4 DDT. Based on these results, it can be concluded that OCPs and OPPs may play a role in PBT development through the formation of reactive oxygen species (ROS) and promoting oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Karamouzian
- Department of Neurosurgery, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Khanjani
- Neurology Research Center, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Paydar
- Department of Clinical Biochemistry, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Choubbane H, Ouakhssase A, Chahid A, Taourirte M, Aamouche A. Pesticides in fruits and vegetables from the Souss Massa region, Morocco. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:79-88. [PMID: 35076356 DOI: 10.1080/19393210.2022.2028196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This survey reports the monitoring of multi-pesticide residues of some fruits and vegetables sold in the local markets, sampled in 2018-2019, in the Souss Massa region in Morocco. A QuEChERS-LC-MS/MS method for 202 pesticides, belonging to different classes (carbamates, organophosphorus and organonitrogen pesticides) was applied and 51 samples were randomly bought from the local market, belonging to different products (tomato, cucumber, coriander, apricot, parsley, potato, zucchini, green bean, lettuce, strawberry and orange) and analysed for pesticide residues, which were detected in 69% of the samples, below the maximum residue limits (MRLs) for some pesticides which represent 14% of the targeted compounds. The most frequently detected compounds were acetamiprid, acibenzolar-s-methyl, abamectin, azoxystrobin, bifenazate, bitertanol, bromuconazole, butoxycarboxim, cyromazine, difenoconazole, epoxiconazole, fenbuconazole, fluometuron, linuron, metaflumizone, metconazole, metribuzin, myclobutanil, pirimicarb, pyraclostrobin, propamocarb, rotenone, trichlorfon, tebuconazole, tetraconazole, thiamethoxam and thiophanate-methyl. The obtained results provide a value to the situation of pesticide residues in Morocco.
Collapse
Affiliation(s)
- Hanane Choubbane
- Laboratoire Ingénierie des Systèmes et Applications (LISA), Ecole Nationale des Sciences Appliquées de Marrakech, Université Cadi Ayyad, Guéliz-Marrakech, Morocco
- Laboratoire de Recherche en Développement Durable et Santé (LRDDS), Faculté des Sciences et Technique Gueliz, Université Cadi Ayyad, Guéliz Marrakech, Morocco
| | - Abdallah Ouakhssase
- Equipe Génie des Procédés et Ingénierie Chimique (GPIC), Ecole Supérieure de Technologie d'agadir, Université Ibn Zohr, Agadir, Morocco
| | - Adil Chahid
- Laboratoire Régional d'analyses et de Recherche Agadir (LRARA), Office National de Sécurité Sanitaire des Produits Alimentaires (ONSSA), Agadir, Morocco
| | - Moha Taourirte
- Laboratoire de Recherche en Développement Durable et Santé (LRDDS), Faculté des Sciences et Technique Gueliz, Université Cadi Ayyad, Guéliz Marrakech, Morocco
| | - Ahmed Aamouche
- Laboratoire Ingénierie des Systèmes et Applications (LISA), Ecole Nationale des Sciences Appliquées de Marrakech, Université Cadi Ayyad, Guéliz-Marrakech, Morocco
| |
Collapse
|
11
|
Seo SH, Choi SD, Batterman S, Chang YS. Health risk assessment of exposure to organochlorine pesticides in the general population in Seoul, Korea over 12 years: A cross-sectional epidemiological study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127381. [PMID: 34638073 DOI: 10.1016/j.jhazmat.2021.127381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the 12-year trends in serum levels of 28 organochlorine pesticides (OCPs) in 880 adults living in Seoul, Korea. The OCP levels decreased from 2006 to 2017, and p,p'-dichlorodiphenyldichloroethylene was a predominant compound. OCP levels were higher in females than in males, and showed positive associations with BMI and age. The OCP concentrations had inverted U-shaped associations with low-density lipoprotein cholesterol and total cholesterol. Concentrations of β-hexachlorocyclohexane were significantly higher in patients with hypertension than in participants that were normotensive. OCP levels showed positive associations with uric acid, creatinine, and thyroid-stimulating hormone, but negative associations with free thyroxine. Participants with diabetes had significantly higher OCP levels than those without it. Principal component analysis suggested possible differences in disease manifestation depending on the composition of OCPs. These results suggest that OCPs might disturb renal transport and thyroid homeostasis. To our knowledge, the inverted U-shaped associations of heptachlor epoxide and endosulfan with cholesterol, the epidemiological associations of trans-nonachlor and endosulfan with thyroid hormones, and the association of p,p'-DDE with hyperuricemia have not been previously reported in general population. This is the first long-term study to show trends of 28 OCPs in serum and associations with various health indicators in Korea.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
12
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
13
|
Santillán-Sidón P, Pérez-Morales R, Anguiano G, Ruiz-Baca E, Osten JRV, Olivas-Calderón E, Vazquez-Boucard C. Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43223-43232. [PMID: 32734539 DOI: 10.1007/s11356-020-10206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to identify and evaluate the impact of exposure to mixtures of organochloride pesticides (OCPs) in agricultural workers by detecting their effects on the activity of the enzyme glutathione S-transferase (GST) and the presence of polymorphisms of the GSTT1 and GSTM1 genes. The presence of OCPs was identified and quantified by gas chromatography, while spectrophotometry was used to measure enzymatic GST activity. The frequencies of the GSTM1 genotypes were analyzed by multiplex PCR. A total of 18 metabolites of OCPs were identified in the workers' blood, most of which are either prohibited (DDT and its metabolites p, p'DDD and p, p'DDE, dieldrin, endrin, aldrin) and/or restricted (δ hexachlorocyclohexane, cis chlordane, methoxychlor, and endosulfan). The results obtained indicate lower levels of GST activity at higher OCPs concentrations detected in blood from exposed workers, together with an increase in OCP levels in individuals who presented the GSTT1*0 and GSTM1*0 genotypes. These conditions place the detoxification process in agricultural workers with null polymorphisms in the GST genes and high concentrations of OCPs in the blood (especially DDT and its metabolites, DDD and DDE) at risk, and increase their susceptibility to develop serious diseases.
Collapse
Affiliation(s)
- Patricia Santillán-Sidón
- Molecular Biomedicine Laboratory, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinarias s/n, Circuito Universitario, 34120, Durango, Mexico
| | - Rebeca Pérez-Morales
- Molecular Cell Biology Laboratory, Universidad Juárez del Estado de Durango, Av. Articulo #123 Filadelfia, CP 35010, Gómez Palacio, Durango, Mexico
| | - Gerardo Anguiano
- Molecular Biomedicine Laboratory, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinarias s/n, Circuito Universitario, 34120, Durango, Mexico
| | - Estela Ruiz-Baca
- Genoproteomic Laboratory, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinarias s/n, Circuito Universitario, 34120, Durango, Mexico
| | - Jaime Rendón-Von Osten
- Laboratory of Identification of Persistent Organic Pollutants. EPOMEX, Universidad Autónoma de Campeche, Agustín de Melgar y Juan de la Barrera s/n, 24039, Campeche, Mexico
| | - Edgar Olivas-Calderón
- Molecular Cell Biology Laboratory, Universidad Juárez del Estado de Durango, Av. Articulo #123 Filadelfia, CP 35010, Gómez Palacio, Durango, Mexico
| | - Celia Vazquez-Boucard
- Proteomic and Genetic Toxicology Laboratory, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional, Calle IPN, #195 Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
14
|
Gearhart-Serna LM, Hoffman K, Devi GR. Environmental Quality and Invasive Breast Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1920-1928. [PMID: 32238404 PMCID: PMC7953341 DOI: 10.1158/1055-9965.epi-19-1497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Breast cancer is a complex and multifactorial disease, and environmental factors have been suggested to increase its risk. However, prior research has largely focused on studying exposures to one factor/contaminant at a time, which does not reflect the real-world environment.Methods: Herein, we investigate associations between breast cancer and the environmental quality index (EQI), a comprehensive assessment of five domains of environmental quality (air, water, land, sociodemographic, and built environments) at the county level. Breast cancer diagnoses for North Carolina women were obtained from the North Carolina Central Cancer Registry (2009-2014) and the county of residence at the time of diagnosis was linked with the EQI. We evaluated the odds of localized, regional, or distant metastatic breast cancer in categories of environmental quality using women with carcinoma in situ as registry-based controls.Results: Overall environmental quality was generally not associated with invasive breast cancer; however, all breast cancer types tended to be inversely associated with land quality, particularly in more rural communities [distant metastatic breast cancer was 5%-8% more likely (OR, 1.08; 95% confidence interval, 1.02-1.14; P = 0.02) compared with carcinoma in situ].Conclusions: Cumulatively, our results suggest that some broad measures of environmental quality are associated with invasive breast cancer but that associations vary by environmental domain, cancer stage, subtype, and urbanicity.Impact: Our findings suggest that components of land quality (e.g., pesticide applications and animal facilities) warrant additional investigation in relation to invasive breast cancer.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Larisa M Gearhart-Serna
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, North Carolina
- Department of Pathology, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, North Carolina.
- Department of Pathology, Duke University, Durham, North Carolina
- Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
15
|
Tu XT, Zhou HX, Wang ST, Guo F, Rao Z, Zhan N, Zhu S, Jia J, Yang HB, Chen LY. Fully automated identification and quantification of five polar pesticides in groundwater by isotope dilution-online solid phase extraction coupled with high-performance liquid chromatography-quadrupole Orbitrap high-resolution mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4650. [PMID: 33043550 DOI: 10.1002/jms.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A fully automated method for identification and quantification of five polar pesticides in groundwater by isotope dilution-online solid-phase extraction (SPE) coupled with high-performance liquid chromatography-quadrupole Orbitrap high-resolution mass spectrometry was developed. After one step of filtration, an aliquot of a 7.5-ml water sample was automatedly preconcentrated and purified on a turbulent Cyclone SPE column. The analytes were eluted in backflush mode, then separated on an analytical column and acquired by full MS/dd-MS2 scan in negative and positive ions mode. The major parameters for sample loading, cleanup, and elution were optimized in detail. Preconcentration and ionization efficiency were highly improved by using 0.1% acid solution in the mobile phase. The method provided good linearity of calibration coefficients (R2 > 0.995), sensitive method limits of detection (0.5-10.0 ng/L), accurate mass spectra (within 5 ppm error), satisfactory matrix spiking recoveries (98.4% to 109%), and high precision (intraday/interday relative standard deviations 1.57-8.90%). The method was successfully applied to analyze large batch groundwater of National Groundwater Monitoring Project and suspect screening of potential pesticides in groundwater. The study provided a practical alternative for a simple, robust, sensitive, and accurate identification and qualification of five polar pesticides in groundwater.
Collapse
Affiliation(s)
- Xiang-Ting Tu
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, 550000, China
| | - Han-Xiao Zhou
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Shu-Ting Wang
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Feng Guo
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Zhu Rao
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Nan Zhan
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Shuai Zhu
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Jing Jia
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Hong-Bo Yang
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, 550000, China
| | - Ling-Yu Chen
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, 550000, China
| |
Collapse
|
16
|
Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol 2020; 508:110789. [PMID: 32165172 DOI: 10.1016/j.mce.2020.110789] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer. It has been shown that the mammary glands of male and female rats and mice are susceptible to exposure to non-organochlorine (vinclozolin, atrazine, glyphosate, chlorpyrifos) and organochlorine (endosulfan, methoxychlor, hexachlorobenzene) pesticides. Some of the effects of these compounds in experimental models include increased or decreased mammary development, impaired cell proliferation and steroid receptor expression and signaling, increased malignant cellular transformation and tumor development and angiogenesis. Contradictory findings have been found as to whether there is a causal link between the exposure or the pesticide body burden and breast cancer in humans. However, an association has been observed between pesticides (especially organochlorine compounds) and specific subtypes of breast cancer. Further studies are needed in both humans and experimental models to understand how agrochemical pesticides can induce or promote changes in the development, differentiation and/or malignant transformation of the mammary gland.
Collapse
Affiliation(s)
- Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
17
|
Miret N, Zappia CD, Altamirano G, Pontillo C, Zárate L, Gómez A, Lasagna M, Cocca C, Kass L, Monczor F, Randi A. AhR ligands reactivate LINE-1 retrotransposon in triple-negative breast cancer cells MDA-MB-231 and non-tumorigenic mammary epithelial cells NMuMG. Biochem Pharmacol 2020; 175:113904. [PMID: 32156659 DOI: 10.1016/j.bcp.2020.113904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-β1 (TGF-β1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-β1 and AhR pathways. Results show that 0.5 μM CPF and 0.005 μM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 μM HCB and 50 μM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 μM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-β1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.
Collapse
Affiliation(s)
- Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - C Daniel Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Gabriela Altamirano
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Lorena Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina
| | - Ayelén Gómez
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Marianela Lasagna
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina
| | - Laura Kass
- Universidad Nacional del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Cátedra de Patología Humana, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Ciudad Universitaria UNL, Paraje El Pozo (CP3000), Santa Fe, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (UBA-CONICET), Laboratorio de Farmacología de Receptores, Junín 954, planta baja (CP1113), Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
18
|
Girard L, Reix N, Mathelin C. [Impact of endocrine disrupting pesticides on breast cancer]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2020; 48:187-195. [PMID: 31634589 DOI: 10.1016/j.gofs.2019.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Of the 800 pesticides used worldwide, about 650 can affect the functioning of the endocrine system: endocrine disrupting pesticides (EDPs). Dietary or environmental exposure to EDPs is a concern, as their presence is currently demonstrated in most biological fluids. Some EDPs are prohibited, classified as carcinogenic, others are "probable" or "possible" carcinogens when there is limited evidence of their tumor effect. The impact of EDPs on breasts is not well known to date. However, since most EDPs have a long half-life and are lipophilic, breasts, composed mainly of adipose tissue, are a suitable site for their concentration. The objective of our review was to analyze the impact of EDPs related to our environmental exposure on breast cancer risk, through an analysis of recent literature, including epidemiological and biological data. Our review showed a positive association between the presence of EDPs and breast cancer, especially among women farmers or EDPs users but also in the general population. Studies on breast tumors have found a higher concentration of EDPs in estrogen-sensitive tumors. As for mortality, studies are contradictory, but confirm the dangerousness of some EDPs. The different series analyzed have several limitations, such as the low number of EDPs evaluated, small numbers and insufficient follow up. The potentiating effect of different EDPs used concomitantly and the window of exposure to these substances are parameters to be assessed.
Collapse
Affiliation(s)
- L Girard
- Unité de sénologie, pôle de gynécologie-obstétrique, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg cedex, France
| | - N Reix
- Laboratoire de biochimie et biologie moléculaire, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France; ICube UMR 7357, université de Strasbourg/CNRS, fédération de médecine translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - C Mathelin
- Unité de sénologie, pôle de gynécologie-obstétrique, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg cedex, France; Institut de génétique et de biologie moléculaire et cellulaire, biologie du cancer (IGBMC), 1, rue Laurent-Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
19
|
Paydar P, Asadikaram G, Fallah H, Zeynali Nejad H, Akbari H, Abolhassani M, Moazed V, Khazaeli P, Heidari MR. Serum levels of Organochlorine Pesticides and Breast Cancer Risk in Iranian Women. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:480-489. [PMID: 31324944 DOI: 10.1007/s00244-019-00648-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Breast cancer is a multifactorial disease and its etiology is linked to multiple risk factors. There are shreds of controversial evidence that exposure to organochlorine pesticides (OCPs) are important in the etiology of breast cancer. The present study aimed to determine the circulating levels of OCPs in patients with breast tumors in Southeastern of Iran. This case-control study included 27 patients with malignant breast tumors (MBT), 31 patients with benign breast tumors (BBT), and 27 healthy women as a control group. Serum OCPs levels, including α-hexachlorocyclohexane (α-HCH), β-HCH, γ-HCH, 2,4-dichlorodiphenyltrichloroethane (2,4-DDT), 4,4-DDT, 2,4-dichlorodiphenyldichloroethylene (2,4-DDE), and 4,4-DDE, were measured using gas chromatography. Our data revealed significantly higher concentrations of 2,4-DDT in MBT and BBT groups compared with control ones (P < 0.001 for both comparisons). Patients with breast cancer suffered significantly higher accumulation levels of 4,4-DDE compared with control subjects (P = 0.04). Significant correlations were found among organochlorine compounds with each other in both patients' groups. There was a significant positive correlation between body mass index and serum levels of 2,4-DDT in BBT group (r = 0.407, P = 0.02). The present findings suggest that the serum levels of 4,4-DDE and 2,4-DDT are associated with an increase in the risk of breast cancer in Southeastern women of Iran.
Collapse
Affiliation(s)
- Parisa Paydar
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hossein Fallah
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Zeynali Nejad
- Department of Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Moazed
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Reza Heidari
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Appl Environ Microbiol 2019; 85:AEM.01720-19. [PMID: 31444208 DOI: 10.1128/aem.01720-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) was used worldwide as an organochlorine insecticide to control agricultural pests and vectors of several insect-borne human diseases. It was banned in most industrialized countries; however, due to its persistence in the environment, DDT residues remain in environmental compartments, becoming long-term sources of exposure. To identify and select fungal species suitable for bioremediation of DDT-contaminated sites, soil samples were collected from DDT-contaminated agricultural soils in Poland, and 38 fungal taxa among 18 genera were isolated. Two of them, Trichoderma hamatum FBL 587 and Rhizopus arrhizus FBL 578, were tested for tolerance in the presence of 1-mg liter-1 DDT concentration by using two indices based on fungal growth rate and biomass production (the tolerance indices Rt:Rc and TI), showing a clear tolerance to DDT. The two selected strains were studied to evaluate catabolic versatility on 95 carbon sources with or without DDT by using the Phenotype MicroArray system and to investigate the induced oxidative stress responses. The two strains were able to use most of the substrates provided, resulting in both high metabolic versatility and ecological functionality in the use of carbon sources, despite the presence of DDT. The activation of specific metabolic responses with species-dependent antioxidant enzymes to cope with the induced chemical stress has been hypothesized, since the presence of DDT promoted a higher formation of reactive oxygen species in fungal cells than the controls. The tested fungi represent attractive potential candidates for bioremediation of DDT-contaminated soil and are worthy of further investigations.IMPORTANCE The spread and environmental accumulation of DDT over the years represent not only a threat to human health and ecological security but also a major challenge because of the complex chemical processes and technologies required for remediation. Saprotrophic fungi, isolated from contaminated sites, hold promise for their bioremediation potential toward toxic organic compounds, since they might provide an environment-friendly solution to contamination. Once we verified the high tolerance of autochthonous fungal strains to high concentrations of DDT, we showed how fungi from different phyla demonstrate a high metabolic versatility in the presence of DDT. The isolates showed the singular ability to keep their functionality, despite the DDT-induced production of reactive oxygen species.
Collapse
|
21
|
Persistent Organic Pollutants and Breast Cancer: A Systematic Review and Critical Appraisal of the Literature. Cancers (Basel) 2019; 11:cancers11081063. [PMID: 31357644 PMCID: PMC6721417 DOI: 10.3390/cancers11081063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023] Open
Abstract
Persistent organic pollutants (POPs) bioaccumulate in the food chain and have been detected in human blood and adipose tissue. Experimental studies demonstrated that POPs can cause and promote growth of breast cancer. However, inconsistent results from epidemiological studies do not support a causal relationship between POPs and breast cancer in women. To identify individual POPs that are repeatedly found to be associated with both breast cancer incidence and progression, and to demystify the observed inconsistencies between epidemiological studies, we conducted a systematic review of 95 studies retrieved from three main electronic databases. While no clear pattern of associations between blood POPs and breast cancer incidence could be drawn, POPs measured in breast adipose tissue were more clearly associated with higher breast cancer incidence. POPs were more consistently associated with worse breast cancer prognosis whether measured in blood or breast adipose tissue. In contrast, POPs measured in adipose tissue other than breast were inversely associated with both breast cancer incidence and prognosis. Differences in biological tissues used for POPs measurement and methodological biases explain the discrepancies between studies results. Some individual compounds associated with both breast cancer incidence and progression, deserve further investigation.
Collapse
|