1
|
Benchikh I, Ziani K, Gonzalez Mateos A, Khaled BM. Non-acute exposure of neonicotinoids, health risk assessment, and evidence integration: a systematic review. Crit Rev Toxicol 2024; 54:194-213. [PMID: 38470098 DOI: 10.1080/10408444.2024.2310593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.
Collapse
Affiliation(s)
- Imen Benchikh
- Laboratory of Applied Hydrology and Environment, Department of Biology, Faculty of Natural Sciences and Life, Belhadj Bouchaib University, Ain Témouchent, Algeria
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| | - Kaddour Ziani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants, Department of Biology, University of Saida-Dr. Taher Moulay, Saida, Algeria
| | - Antonio Gonzalez Mateos
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres, Spain
| | - Boumediène Méghit Khaled
- Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NuPABS), Department of Biology, Faculty of Natural Sciences and Life, Djillali Liabès University, Sidi-Bel-Abbès, Algeria
| |
Collapse
|
2
|
Huang P, Zhang W, Ji J, Ma J, Cheng H, Qin M, Wei D, Ren L. LncRNA Miat knockdown protects against pirarubicin-induced cardiotoxicity by targeting miRNA-129-1-3p. ENVIRONMENTAL TOXICOLOGY 2023; 38:2751-2760. [PMID: 37471631 DOI: 10.1002/tox.23910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/31/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. The aim of this study was to investigate the protective effect and mechanism of knockdown of lncRNA Miat in THP-induced cardiotoxicity. The extent of damage to immortalized cardiomyocytes in mice was assessed by CCK8, TUNEL, ROS, Ca2+ , RT-qPCR, and Western blot. The relative levels of Miat in THP-treated cardiomyocytes (HL-1) were measured. The protective effect of Miat on THP-treated HL-1 was assessed. The binding relationship between lncRNA Miat and mmu-miRNA-129-1-3p was verified by a dual luciferase reporter gene assay. The protective role of Miat/miRNA-129-1-3p in THP-induced HL-1 was explored by performing a rescue assay. THP reduced cell viability, induced apoptosis, triggered oxidative stress and calcium overload. Expression of Miat in HL-1 was significantly elevated after THP treatment. Miat knockdown significantly alleviated the cardiotoxicity of THP. MiR-129-1-3p is a direct target of Miat. Knockdown of miR-129-1-3p reversed the protective effect of Miat knockdown on HL-1. Miat knockdown can alleviate THP-induced cardiomyocyte injury by regulating miR-129-1-3p.
Collapse
Affiliation(s)
- Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Jiang QH, Li T, Liu Y, Zhou ZY, Yang Y, Wei Y, Yin MZ, Shen J, Yan S. A nano-delivery system expands the insecticidal target of thiamethoxam to include a devastating pest, the fall armyworm. INSECT SCIENCE 2023; 30:803-815. [PMID: 36317674 DOI: 10.1111/1744-7917.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Nano-delivery systems have been applied to deliver various synthetic/botanical pesticides to increase the efficiency of pesticide use and reduce the volumes of pesticides applied. Previous studies have supported the hypothesis that the nanocarriers can help expand the insecticidal target of pesticides to include non-target pests. However, the potential mechanism underlying this interesting phenomenon remains unclear. Herein, a widely applied star polycation (SPc) nanocarrier was synthesized to construct a thiamethoxam (TMX) nano-delivery system. The SPc-based delivery system could promote the translocation of exogenous substances across the membrane of Sf9 cells, increase the cytotoxicity of TMX against Sf9 cells by nearly 20%, and expand the insecticidal target of TMX to include Spodoptera frugiperda (the fall armyworm), with a 27.5% mortality increase at a concentration of 0.25 mg/mL. Moreover, the RNA-seq analysis demonstrated that the SPc could upregulate various transport-related genes, such as Rab, SORT1, CYTH, and PIKfyve, for the enhanced cellular uptake of TMX. Furthermore, enhanced cell death in larvae treated with the TMX-SPc complex was observed through changes in the expression levels of death-related genes, such as Casp7, BIRC5, MSK1, and PGAM5. The SPc-based nano-delivery system improved the cellular uptake of TMX and expanded its insecticidal target by adjusting the expression levels of death-related genes. The current study mainly identified the transport and cell death genes related to nanocarrier-based insecticidal target expansion, which is beneficial for understanding the bioactivity enhancement of the nano-delivery system.
Collapse
Affiliation(s)
- Qin-Hong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ting Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Yi Zhou
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Yang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mei-Zhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Grover C, Saha S, Sharma S. Thiamethoxam-Induced Subclinical Onychomadesis. Skin Appendage Disord 2022; 8:407-411. [PMID: 36161079 PMCID: PMC9485976 DOI: 10.1159/000523978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/25/2022] [Indexed: 09/03/2023] Open
Abstract
Introduction Irritant contact dermatitis affecting the nail unit may lead to nail matrix damage and onychomadesis, which may initially be subclinical, becoming overt later. We describe a patient who developed these changes after using a chemical pesticide. Case Presentation A 52-year-old woman presented with discoloration of the nails of both hands of two days' duration, associated with mild digital pain. She had used an over-the-counter insecticide product containing thiamethoxam (a broad-spectrum systemic insecticide) for her houseplants, preceding the nail changes. Examination revealed onycholysis and subclinical onychomadesis involving multiple fingernails as well as toenails. Onychoscopic examination showed proximal nail plate separation with an erythematous regular border. Histopathology showed an essentially normal nail plate with spongiosis, epidermal cell necrosis, and hypergranulosis. However, there was no evidence of bacterial or fungal infection, and dermal inflammation was mild. The patient was diagnosed with thiamethoxam-induced irritant dermatitis with subclinical onychomadesis and was advised to take general precautions with avoidance of any further contact with the insecticide. She was managed with topical steroids and emollient; however, on follow-up, she developed green nails, with progression to overt onychomadesis in some nails. Additionally, onychomycosis was observed in few nails in the long-term, which needed to be treated. Conclusion Thiamethoxam is an over-the-counter broad-spectrum insecticide used for houseplants, but its safety data does not mention acute adverse effects on nails, which was a novel finding in our patient. The safety data does mention the use of gloves for preparing and administering the product. Secondary bacterial and fungal infections, which can occur after the initial insult, further worsen the prognosis.
Collapse
Affiliation(s)
- Chander Grover
- Department of Dermatology and STD, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Sushobhan Saha
- Department of Dermatology and STD, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| |
Collapse
|
5
|
Habotta OA, Ateya A, Saleh RM, El-Ashry ES. Thiamethoxam-induced oxidative stress, lipid peroxidation, and disturbance of steroidogenic genes in male rats: Palliative role of Saussurea lappa and Silybum marianum. ENVIRONMENTAL TOXICOLOGY 2021; 36:2051-2061. [PMID: 34181816 DOI: 10.1002/tox.23322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Thiamethoxam (TMX) belongs to the neonicotinoid insecticide family and may evoke marked endocrine disruption. In this study, the reproductive toxicity of TMX on male rats was assessed along with the ability of Saussurea lappa (costus roots) and/or Silybum marianum extract (SM) to alleviate TMX toxicity. Male rats were allocated to seven groups and orally treated daily for 4 weeks: Control (saline), Costus (200 mg/kg), SM (150 mg/kg), TMX (78.15 mg/kg), TMX-costus, TMX-SM, and TMX-costus-SM (at the aforementioned doses). Compared with control group, TMX administration induced reductions in testicular levels of glutathione and antioxidant activities of SOD and CAT. In addition, TMX-exposed rats showed lower serum testosterone hormonal levels as well as higher malondialdehyde and nitric acid levels were detected in TMX-administered rats. On a molecular basis, mRNA expressions of StAR, CYP17a, 3β-HSD, SR-B1, and P450scc genes were significantly down-regulated in TMX group, whereas the expression of LHR and aromatase genes was up-regulated. Moreover, TMX-induced testicular damage was confirmed by histopathological screening. Importantly, however, the administration of either costus roots or SM significantly alleviated all aforementioned TMX-induced changes, indicating the effective antioxidant activities of these plant products. Interestingly, simultaneous treatment with costus root and SM provided better protection against TMX reproduction toxicity than treatment with either agent alone.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Byun EB, Song HY, Kim WS, Han JM, Seo HS, Park SH, Kim K, Byun EH. Protective Effect of Polysaccharides Extracted from Cudrania tricuspidata Fruit against Cisplatin-Induced Cytotoxicity in Macrophages and a Mouse Model. Int J Mol Sci 2021; 22:ijms22147512. [PMID: 34299130 PMCID: PMC8304288 DOI: 10.3390/ijms22147512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Although cisplatin is one of most effective chemotherapeutic drugs that is widely used to treat various types of cancer, it can cause undesirable damage in immune cells and normal tissue because of its strong cytotoxicity and non-selectivity. This study was conducted to investigate the cytoprotective effects of Cudrania tricuspidata fruit-derived polysaccharides (CTPS) against cisplatin-induced cytotoxicity in macrophages, lung cancer cell lines, and a mouse model, and to explore the possibility of application of CTPS as a supplement for anticancer therapy. Both cisplatin alone and cisplatin with CTPS induced a significant cytotoxicity in A549 and H460 lung cancer cells, whereas cytotoxicity was suppressed by CTPS in cisplatin-treated RAW264.7 cells. CTPS significantly attenuated the apoptotic and necrotic population, as well as cell penetration in cisplatin-treated RAW264.7 cells, which ultimately inhibited the upregulation of Bcl-2-associated X protein (Bax), cytosolic cytochrome c, poly (adenosine diphosphateribose) polymerase (PARP) cleavage, and caspases-3, -8, and -9, and the downregulation of B cell lymphoma-2 (Bcl-2). The CTPS-induced cytoprotective action was mediated with a reduction in reactive oxygen species production and mitochondrial transmembrane potential loss in cisplatin-treated RAW264.7 cells. In agreement with the results obtained above, CTPS induced the attenuation of cell damage in cisplatin-treated bone marrow-derived macrophages (primary cells). In in vivo studies, CTPS significantly inhibited metastatic colonies and bodyweight loss as well as immunotoxicity in splenic T cells compared to the cisplatin-treated group in lung metastasis-induced mice. Furthermore, CTPS decreased the level of CRE and BUN in serum. In summation, these results suggest that CTPS-induced cytoprotective action may play a role in alleviating the side effects induced by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea;
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Ho Seong Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (E.-B.B.); (H.-Y.S.); (J.M.H.); (H.S.S.)
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea; (S.-H.P.); (K.K.)
| | - Kwangwook Kim
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea; (S.-H.P.); (K.K.)
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Korea; (S.-H.P.); (K.K.)
- Correspondence: ; Tel.: +82-413-301-481; Fax: +82-413-301-489
| |
Collapse
|
7
|
Yang Y, Wei S, Zhang B, Li W. Recent Progress in Environmental Toxins-Induced Cardiotoxicity and Protective Potential of Natural Products. Front Pharmacol 2021; 12:699193. [PMID: 34305607 PMCID: PMC8296636 DOI: 10.3389/fphar.2021.699193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Humans are unconsciously exposed to environmental toxins including heavy metals as well as various pesticides, which have deleterious effects on human health. Accumulating studies pointed out that exposure to environmental toxins was associated with various cardiopathologic effects. This review summarizes the main mechanisms of cardiotoxicity induced by environmental toxins (cadmium, arsenic and pesticides) and discusses the potential preventive effects of natural products. These findings will provide a theoretical basis and novel agents for the prevention and treatment of environmental toxins-induced cardiotoxicity. Furthermore, the limitations of current studies, future needs and priorities are discussed.
Collapse
Affiliation(s)
- Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
8
|
Liu Y, He QK, Xu ZR, Xu CL, Zhao SC, Luo YS, Sun X, Qi ZQ, Wang HL. Thiamethoxam Exposure Induces Endoplasmic Reticulum Stress and Affects Ovarian Function and Oocyte Development in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1942-1952. [PMID: 33533595 DOI: 10.1021/acs.jafc.0c06340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neonicotinoids are the most widely used insecticides in modern agriculture, and their residues have been found in the environment and food. Previous studies reported that neonicotinoids exert toxic effects in various tissues, but whether they interfered with the female reproductive process remains unknown. In our present research, thiamethoxam was selected as a representative neonicotinoid to establish a mouse toxicity model with gavage. We found that thiamethoxam decreased the ovarian coefficient and disrupted the expression of female hormone receptors, subsequently affecting follicle development. Ovarian granulosa cells from the thiamethoxam exposure group underwent a high level of apoptosis. Using transcriptome analysis, we showed that thiamethoxam exposure altered the expression of multiple oocyte genes related to inflammation, apoptosis, and endoplasmic reticulum stress. Thiamethoxam also adversely affected oocyte and embryo development. Western blotting and fluorescence staining results confirmed that thiamethoxam affected the integrity of DNA, triggered apoptosis, promoted oxidative stress and endoplasmic reticulum stress, and impaired mitochondrial function. Collectively, our results indicated that thiamethoxam exposure disrupts ovarian homeostasis and decreases oocyte quality via endoplasmic reticulum stress and apoptosis induction.
Collapse
Affiliation(s)
- Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Quan-Kuo He
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhi-Ran Xu
- Center for Translational Medicine Research, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, People's Republic of China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi 530031, People's Republic of China
| | - Si-Cheng Zhao
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yu-Shen Luo
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xue Sun
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| |
Collapse
|
9
|
Su X, Wang L, Xu Y, Dong L, Lu H. Study on the binding mechanism of thiamethoxam with three model proteins:spectroscopic studies and theoretical simulations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111280. [PMID: 32937227 DOI: 10.1016/j.ecoenv.2020.111280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 05/16/2023]
Abstract
As a top-selling neonicotinoid insecticide widely used in the field, thiamethoxam is an environmental pollutant because of the accumulation in ecosystem and has also been reported that it has potential risks to the health of mammals even humans. In order to understand the binding mechanism of thiamethoxam with biological receptors, spectroscopic techniques and theoretical simulations was used to explore the specific interactions between thiamethoxam and proteins. Interestingly, the results indicated that hydrophobic interaction as the main driving force, thiamethoxam formed a single binding site complex with proteins spontaneously, resulting in a decrease in the esterase-like activity of human serum albumin. The results of computer simulation showed that there were hydrophobic, electrostatic and hydrogen bonding interactions between thiamethoxam and receptors. The results of experiment and computer simulation were mutually confirmed, so a model was established for the interaction between the two which uncovered the structural characteristics of the binding site. This research provided new insights for the structure optimization of thiamethoxam, as well as gave an effective reference for evaluating the risk of thiamethoxam systemically in the future.
Collapse
Affiliation(s)
- Xiao Su
- Department of Chemistry, College of Science, China Agricultural University, 100193, Beijing, China
| | - Leng Wang
- Department of Chemistry, College of Science, China Agricultural University, 100193, Beijing, China
| | - Yefei Xu
- Department of Chemistry, College of Science, China Agricultural University, 100193, Beijing, China
| | - Lili Dong
- Department of Chemistry, College of Science, China Agricultural University, 100193, Beijing, China
| | - Huizhe Lu
- Department of Chemistry, College of Science, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
10
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
11
|
Ben Othmène Y, Monceaux K, Karoui A, Ben Salem I, Belhadef A, Abid-Essefi S, Lemaire C. Tebuconazole induces ROS-dependent cardiac cell toxicity by activating DNA damage and mitochondrial apoptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111040. [PMID: 32798748 DOI: 10.1016/j.ecoenv.2020.111040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TEB) is a common triazole fungicide that is widely used throughout the world in agriculture applications. We previously reported that TEB induces cardiac toxicity in rats. The aim of this study was to investigate the underlying mechanism of the toxicity induced by TEB in cardiac cells. TEB induced dose-dependent cell death in H9c2 cardiomyoblasts and in adult rat ventricular myocytes (ARVM). The comet assay and western blot analysis showed a concentration-dependent increase in DNA damage and in p53 and p21 protein levels 24 h after TEB treatment. Our findings also showed that TEB triggered the mitochondrial pathway of apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm), an increase in Bax/Bcl-2 ratio, an activation of caspase-9 and caspase-3, a cleavage of poly (ADP-ribose) polymerase (PARP) and an increase in the proportion of cells in the sub-G1 phase. In addition, TEB promoted ROS production in cardiac cells and consequently increased the amounts of MDA, the end product of lipid peroxidation. Treatment of cardiomyocytes with the ROS scavenger N-acetylcysteine reduced TEB-induced DNA damage and activation of the mitochondrial pathway of apoptosis. These results indicate that the genotoxic and cytotoxic effects of TEB are mediated through a ROS-dependent pathway in cardiac cells.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia
| | - Kevin Monceaux
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Ahmed Karoui
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia; University of Sousse, Faculty of Medicine of Sousse, 4000, Tunisia
| | - Anissa Belhadef
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia.
| | - Christophe Lemaire
- Université Versailles St-Quentin, Université Paris-Saclay, Inserm, UMR-S 1180, 92296, Châtenay-Malabry, France
| |
Collapse
|
12
|
Ben Ali S, Feki A, Ferretti V, Nasri M, Belhouchet M. Crystal structure, spectroscopic measurement, optical properties, thermal studies and biological activities of a new hybrid material containing iodide anions of bismuth(iii). RSC Adv 2020; 10:35174-35184. [PMID: 35515661 PMCID: PMC9056876 DOI: 10.1039/d0ra05646d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
As part of our interest in halogenobismuthate(iii) organic-inorganic hybrid materials, a novel compound named bis(4,4'-diammoniumdiphenylsulfone) hexadecaiodotetrabismuthate(III) tetrahydrate with the chemical formula (C12H14N2O2S)2[Bi4I16]·4H2O, abbreviated as (H2DDS)[Bi4I16], has been prepared by a slow evaporation method at room temperature. This compound was characterized by single crystal X-ray diffraction (SCXRD), spectroscopic measurements, thermal study and antimicrobial activity. The examination of the molecular arrangement shows that the crystal packing can be described as made of layers of organic [C12H14N2O2S]2+ entities and H2O molecules, between which tetranuclear [Bi4I16]4- units, isolated from each other, are inserted. The cohesion among the different molecules is assured by N-H⋯I, N-H⋯O and O-H⋯I hydrogen bonding interactions, forming a three-dimensional network. Room temperature IR, Raman spectroscopy of the title compound were recorded and analyzed. The optical properties were also investigated by both UV-vis and photoluminescence spectroscopy. Moreover, the synthesized compound was also screened for in vitro antimicrobial (Gram-positive and Gram-negative) and antioxidant activities (scavenging effect on DPPH free radicals, reducing power and total antioxidant capacity).
Collapse
Affiliation(s)
- Saida Ben Ali
- Laboratory Physico-Chemistry of the Solid State, University of Sfax, Department of Chemistry, Faculty of Sciences of Sfax B. P. 1171 Sfax 3000 Tunisia
| | - Amal Feki
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) B.P. 1173-3038 Sfax Tunisia
| | - Valeria Ferretti
- Department of Chemical and Pharmaceutical Sciences, Centre for Structural Diffractometry, University of Ferrara Via L. Borsari 46 I-44121 Ferrara Italy
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) B.P. 1173-3038 Sfax Tunisia
| | - Mohamed Belhouchet
- Laboratory Physico-Chemistry of the Solid State, University of Sfax, Department of Chemistry, Faculty of Sciences of Sfax B. P. 1171 Sfax 3000 Tunisia
| |
Collapse
|
13
|
Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohydr Polym 2020; 236:116046. [DOI: 10.1016/j.carbpol.2020.116046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
|
14
|
Hamzaoui A, Ghariani M, Sellem I, Hamdi M, Feki A, Jaballi I, Nasri M, Amara IB. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages. Int J Biol Macromol 2020; 148:1156-1168. [DOI: 10.1016/j.ijbiomac.2020.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
|