1
|
Shi J, Zhang H, Zhang Y, Ma Y, Yu N, Liu W, Liu Y, Nie J, Chen Z, Jia G. Size-Dependent Cytotoxicity and Multi-Omic Changes Induced by Amorphous Silicon Nanoparticles in HepG2 Cells. TOXICS 2025; 13:232. [PMID: 40278548 PMCID: PMC12031283 DOI: 10.3390/toxics13040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
(1) Background: Silica nanoparticles (SiO2 NPs) have a high potential for human exposure and tend to accumulate in the liver. This study aimed to explore the size-dependent cytotoxicity induced by SiO2 NPs and identify key molecular pathways at the in vitro level through proteomics, metabolomics, and a combination of multiple omics methods. (2) Methods: The human hepatoma cells (HepG2) cells were exposed to SiO2 NPs of three different sizes (60, 250, and 400 nm) at doses of 0, 12.5, 25, 50, 100, and 200 μg/mL for 24 h. (3) Results: Exposure to 60 nm SiO2 NPs induced more reduction in cell viability than the other two larger-scale particles. Changes in the metabolomic and proteomic profiles of HepG2 cells induced by SiO2 NPs were also size-dependent. The main pathways that were significantly affected in the 60 nm SiO2 NPs treatment group represented cholesterol metabolism in proteomics and central carbon metabolism in metabolomics. Moreover, common enrichment pathways between differential proteins and metabolites included protein digestion and absorption and vitamin digestion and absorption. (4) Conclusions: Exposure to SiO2 NPs could induce size-dependent cytotoxicity and changes in proteomics and metabolomics, probably mainly by interfering with energy metabolism pathways.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (J.S.); (Y.Z.); (Y.M.); (N.Y.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Huifang Zhang
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (J.S.); (Y.Z.); (Y.M.); (N.Y.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (J.S.); (Y.Z.); (Y.M.); (N.Y.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (J.S.); (Y.Z.); (Y.M.); (N.Y.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Wenhao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (W.L.); (Y.L.)
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (W.L.); (Y.L.)
| | - Jisheng Nie
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (J.S.); (Y.Z.); (Y.M.); (N.Y.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (J.S.); (Y.Z.); (Y.M.); (N.Y.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Carrillo-Romero J, Mentxaka G, García-Salvador A, Katsumiti A, Carregal-Romero S, Goñi-de-Cerio F. Assessing the Toxicity of Metal- and Carbon-Based Nanomaterials In Vitro: Impact on Respiratory, Intestinal, Skin, and Immune Cell Lines. Int J Mol Sci 2024; 25:10910. [PMID: 39456693 PMCID: PMC11507852 DOI: 10.3390/ijms252010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO2), zinc oxide (ZnO), silica (SiO2), cerium oxide (CeO2), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays. Physicochemical characterisation of the NMs was carried out, and in vitro assays were performed to assess the cytotoxicity, genotoxicity, reactive oxygen species (ROS) production, apoptosis/necrosis, and inflammation in cell lines representative of the systems evaluated (3T3, Caco-2, HepG2, A549, and THP-1 cell lines). The results obtained show that 3T3 and A549 cells exhibit high cytotoxicity and ROS production after exposure to ZnO NMs. Caco-2 and HepG2 cell lines show cytotoxicity when exposed to ZnO and Ag NMs and oxidative stress induced by SiO2 and MWCNTs. THP-1 cell line shows increased cytotoxicity and a pro-inflammatory response upon exposure to SiO2. This study emphasises the importance of conducting comprehensive toxicological assessments of NMs given their physicochemical interactions with biological systems. Therefore, it is of key importance to develop robust and specific methodologies for the assessment of their potential health risks.
Collapse
Affiliation(s)
- Juliana Carrillo-Romero
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
| | - Gartze Mentxaka
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Adrián García-Salvador
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| |
Collapse
|
3
|
Zhao X, Zhu Y, Yao Q, Zhao B, Lin G, Zhang M, Guo C, Li Y. Lipidomics Investigation Reveals the Reversibility of Hepatic Injury by Silica Nanoparticles in Rats After a 6-Week Recovery Duration. SMALL METHODS 2024; 8:e2301430. [PMID: 38191992 DOI: 10.1002/smtd.202301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Given the inevitable human exposure owing to its increasing production and utilization, the comprehensive safety evaluation of silica nanoparticles (SiNPs) has sparked concerns. Substantial evidence indicated liver damage by inhaled SiNPs. Notwithstanding, few reports focused on the persistence or reversibility of hepatic injuries, and the intricate molecular mechanisms involved remain limited. Here, rats are intratracheally instilled with SiNPs in two regimens (a 3-month exposure and a subsequent 6-week recovery after terminating SiNPs administration) to assess the hepatic effects. Nontargeted lipidomics revealed alterations in lipid metabolites as a contributor to the hepatic response and recovery effects of SiNPs. In line with the functional analysis of differential lipid metabolites, SiNPs activated oxidative stress, and induced lipid peroxidation and lipid deposition in the liver, as evidenced by the elevated hepatic levels of ROS, MDA, TC, and TG. Of note, these indicators showed great improvements after a 6-week recovery, even returning to the control levels. According to the correlation, ROC curve, and SEM analysis, 11 lipids identified as potential regulatory molecules for ameliorating liver injury by SiNPs. Collectively, the work first revealed the reversibility of SiNP-elicited hepatotoxicity from the perspective of lipidomics and offered valuable laboratory evidence and therapeutic strategy to facilitate nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guimiao Lin
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
4
|
Maia MT, Delite FS, da Silva GH, Ellis LJA, Papadiamantis AG, Paula AJ, Lynch I, Martinez DST. Combined toxicity of fluorescent silica nanoparticles with cadmium in Ceriodaphnia dubia: Interactive effects of natural organic matter and green algae feeding. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132623. [PMID: 37776779 DOI: 10.1016/j.jhazmat.2023.132623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/31/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The environmental risks of silica nanoparticles (SiNP) reported in the literature are contradictory and bring into question its safety for use in consumer applications. Organisms are never exposed to NPs alone in the real environment, while studies of the combined toxicity of SiNP are limited. To address this, we compared the acute toxicity of fluorescent core-shell SiNPs alone and in mixtures with Cd2+ to Ceriodaphnia dubia in the absence and presence of NOM. We identified biodistribution and feeding behaviour in addition to the traditional endpoints. NOM increased the colloidal stability of SiNPs in reconstituted water. In immobility tests, no significant effects were observed from Cd2+ exposure with NOM and varying concentrations of SiNPs. A similar pattern of curve dose-response was observed for varying concentrations of SiNPs and increasing Cd2+ concentration and constant NOM. Fluorescence microscopy verified a dose-dependent bioaccumulation of SiNPs in C. dubia. Co-exposure to 10 mg L-1 SiNP with NOM and Cd2+ resulted in a stimulated stress feeding response at the lower Cd2+ concentrations which declined at the higher dose due to a functional impairment of the digestive tract. Alterations in feeding behaviour and the increasing bioaccumulation of SiNP indicate a potential ecological risk for Ceriodaphnia dubia from the mixture exposure.
Collapse
Affiliation(s)
- Marcella T Maia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Fabrício S Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Gabriela Helena da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Laura-Jayne A Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; NovaMechanics Ltd, Nicosia, Cyprus
| | - Amauri J Paula
- Solid-Biological Interface group (SolBIN), Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil; Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Yu F, Yan L, Sun J, Zhao Y, Yuan Y, Gu J, Bian J, Zou H, Liu Z. Gap junction intercellular communication mediates cadmium-induced apoptosis in hepatocytes via the Fas/FasL pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2692-2702. [PMID: 35920667 DOI: 10.1002/tox.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
As a common environmental pollutant, cadmium (Cd) causes damage to many organs of the body. Gap junction intercellular communication (GJIC) represents one of the most important routes of rapid signaling between cells. However, the mechanisms underlying GJIC's role in hepatotoxicity induced by Cd remain unknown. We established a Cd poisoning model in vitro by co-culturing Cd-exposed and unexposed hepatocytes and found that 18β-glycyrrhetinic acid (GA), a GJIC inhibitor, can effectively reduce the apoptosis rate of healthy cells co-cultured with apoptotic cells treated with Cd. We also found that anti-FasL antibody had the same effect. However, in mono-cultured cells, GA treatment in combination with Cd was found to aggravate the damage induced by Cd exposure, increase the level of oxidative stress and protein expression of HO-1, decrease the mitochondrial membrane potential, incur more serious morphological damage to mitochondria than Cd treatment alone. Moreover, compared with Cd-only exposure, GA and Cd co-treatment further increased the expression levels of the apoptosis-related proteins Fas, FasL, FADD and the ratio of Bax/Bcl-2, inhibited the protein expression of ASK1 and Daxx. We also found that the protein expression of Daxx in siFADD + Cd hepatocytes was significantly higher than in Cd-treated cells. Thus, our study suggests that gap junction inhibition may play a dual role in Cd-induced cell damage by inhibiting the transmission of death signals from damaged cells to healthy cells but also aggravating the transmission of death signals between damaged cells, and that the Fas/FasL-mediated death receptor pathway may play an important role in this process.
Collapse
Affiliation(s)
- Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou, Jiangsu, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Pan N, Lu L, Zhang D, Wang X. Evaluation of the effect of nitrate and chloride on Cd(II)-induced cell oxidative stress by scanning electrochemical microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2673-2681. [PMID: 35762516 DOI: 10.1039/d2ay00495j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of the most prevalent toxic metal pollutants, which is widely distributed in various environmental media and organisms. Literature studies have documented that Cd could stimulate cellular oxidative stress, and the increased intracellular reactive oxygen species (ROS) might destroy certain proteins and DNA and subsequently lead to cell apoptosis. Although several studies have studied the co-exposure between cadmium and other metals, information on the potential effects of Cd and its counterions is still lacking. In the present study, we explored the effects of nitrate and chloride on oxidative stress induced by Cd(II) at environmental exposure levels in human breast cancer cells (MCF-7) using scanning electrochemical microscopy (SECM). After incubation in CdCl2 or Cd(NO3)2, ROS production is concentration-dependent and time-dependent, and the variation trend is consistent. When MCF-7 cells were incubated at a constant Cd2+ concentration, it was found that the higher the concentration ratio of Cd(NO3)2/CdCl2, the less ROS was generated. Combined with cell-viability, intracellular acidification as well as antioxidants system tests, we observed that nitrate could be reduced to nitrite and then inhibit Cd-induced oxidative stress. Benefitting from real-time in situ imaging of cells by SECM, H2O2 was detected and quantified in a noninvasive way, and the effect of Cd at environmental exposure levels on cellular oxidative stress was explored deeper and more comprehensively. Prospectively, cytotoxicological methods based on the SECM technique would be established to explore toxic pollutant co-exposure issues at environmental exposure levels.
Collapse
Affiliation(s)
- Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
7
|
Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, Fu X, Wang X, Luo R, Wang R, Zhang Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother 2022; 151:113053. [PMID: 35594717 DOI: 10.1016/j.biopha.2022.113053] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Silica nanoparticles (SiNPs) are composed of silicon dioxide, the most abundant compound on Earth, and are used widely in many applications including the food industry, synthetic processes, medical diagnosis, and drug delivery due to their controllable particle size, large surface area, and great biocompatibility. Building on basic synthetic methods, convenient and economical strategies have been developed for the synthesis of SiNPs. Numerous studies have assessed the biomedical applications of SiNPs, including the surface and structural modification of SiNPs to target various cancers and diagnose diseases. However, studies on the in vitro and in vivo toxicity of SiNPs remain in the exploratory stage, and the toxicity mechanisms of SiNPs are poorly understood. This review covers recent studies on the biomedical applications of SiNPs, including their uses in drug delivery systems to diagnose and treat various diseases in the human body. SiNP toxicity is discussed in terms of the different systems of the human body and the individual organs in those systems. This comprehensive review includes both fundamental discoveries and exploratory progress in SiNP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, Shandong, PR China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
8
|
Wan XM, Chen J, Wang M, Zheng C, Zhou XL. Puerarin attenuates cadmium-induced hepatic lipid metabolism disorder by inhibiting oxidative stress and inflammation in mice. J Inorg Biochem 2021; 222:111521. [PMID: 34171769 DOI: 10.1016/j.jinorgbio.2021.111521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is a common environmental pollutant with known toxic effects on the liver. Puerarin (PU), a natural flavonoid, has been shown to exert protective effect in numerous pathological processes. However, whether PU affords protection in Cd-induced liver damage is still equivocal. Therefore, 40 mice were treated with Cd and/or PU by gavage for 9 weeks, then the serum and liver samples were collected to verify this issue. In this study, Cd exposure triggered hepatic lipid metabolism disorders and resultant liver damage as evidenced by Oil Red O staining and total cholesterol (TC) and triglyceride (TG) levels in serum and liver, aspartate transaminase (AST) and alanine transaminase (ALT) levels in serum, and histopathology, which were significantly improved by PU. Moreover, PU also normalized the expression of Cd-disturbed lipid metabolism-related proteins to improve lipid accumulation, contributing to the alleviation of liver injury. Moreover, Cd-decreased antioxidative indices superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) as well as glutathione (GSH) in hepatic tissues were significantly attenuated by PU administration, while Cd-elevated hepatic malondialdehyde (MDA) and reactive oxygen species (ROS) levels were markedly down-regulated by PU treatment, demonstrating the antioxidant effect of PU against Cd exposure. In addition, PU supplementation increased the anti-inflammatory potential, and normalized the levels of proinflammatory cytokines during Cd exposure. In conclusion, these observations demonstrate that PU treatment decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced lipid metabolism disorder and consequent liver damage.
Collapse
Affiliation(s)
- Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Jing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China.
| |
Collapse
|
9
|
Silicon dioxide nanoparticles induced neurobehavioral impairments by disrupting microbiota-gut-brain axis. J Nanobiotechnology 2021; 19:174. [PMID: 34112173 PMCID: PMC8194163 DOI: 10.1186/s12951-021-00916-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background Silicon dioxide nanoparticles (SiO2NPs) are widely used as additive in the food industry with controversial health risk. Gut microbiota is a new and hot topic in the field of nanotoxicity. It also contributes a novel and insightful view to understand the potential health risk of food-grade SiO2NPs in children, who are susceptible to the toxic effects of nanoparticles. Methods In current study, the young mice were orally administrated with vehicle or SiO2NPs solution for 28 days. The effects of SiO2NPs on the gut microbiota were detected by 16S ribosomal RNA (rRNA) gene sequencing, and the neurobehavioral functions were evaluated by open field test and Morris water maze. The level of inflammation, tissue integrity of gut and the classical indicators involved in gut–brain, gut–liver and gut–lung axis were all assessed. Results Our results demonstrated that SiO2NPs significantly caused the spatial learning and memory impairments and locomotor inhibition. Although SiO2NPs did not trigger evident intestinal or neuronal inflammation, they remarkably damaged the tissue integrity. The microbial diversity within the gut was unexpectedly enhanced in SiO2NPs-treated mice, mainly manifested by the increased abundances of Firmicutes and Patescibacteria. Intriguingly, we demonstrated for the first time that the neurobehavioral impairments and brain damages induced by SiO2NPs might be distinctively associated with the disruption of gut–brain axis by specific chemical substances originated from gut, such as Vipr1 and Sstr2. Unapparent changes in liver or lung tissues further suggested the absence of gut–liver axis or gut–lung axis regulation upon oral SiO2NPs exposure. Conclusion This study provides a novel idea that the SiO2NPs induced neurotoxic effects may occur through distinctive gut–brain axis, showing no significant impact on either gut–lung axis or gut–liver axis. These findings raise the exciting prospect that maintenance and coordination of gastrointestinal functions may be critical for protection against the neurotoxicity of infant foodborne SiO2NPs. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00916-2.
Collapse
|
10
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. SnO 2-Doped ZnO/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway. Int J Nanomedicine 2021; 16:89-104. [PMID: 33447029 PMCID: PMC7802795 DOI: 10.2147/ijn.s285392] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Therapeutic selectivity and drug resistance are critical issues in cancer therapy. Currently, zinc oxide nanoparticles (ZnO NPs) hold considerable promise to tackle this problem due to their tunable physicochemical properties. This work was designed to prepare SnO2-doped ZnO NPs/reduced graphene oxide nanocomposites (SnO2-ZnO/rGO NCs) with enhanced anticancer activity and better biocompatibility than those of pure ZnO NPs. MATERIALS AND METHODS Pure ZnO NPs, SnO2-doped ZnO (SnO2-ZnO) NPs, and SnO2-ZnO/rGO NCs were prepared via a facile hydrothermal method. Prepared samples were characterized by field emission transmission electron microscopy (FETEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectrometer, and dynamic light scattering (DLS) techniques. Selectivity and anticancer activity of prepared samples were assessed in human breast cancer (MCF-7) and human normal breast epithelial (MCF10A) cells. Possible mechanisms of anticancer activity of prepared samples were explored through oxidative stress pathway. RESULTS XRD spectra of SnO2-ZnO/rGO NCs confirmed the formation of single-phase of hexagonal wurtzite ZnO. High resolution TEM and SEM mapping showed homogenous distribution of SnO2 and rGO in ZnO NPs with high quality lattice fringes without any distortion. Band gap energy of SnO2-ZnO/rGO NCs was lower compared to SnO2-ZnO NPs and pure ZnO NPs. The SnO2-ZnO/rGO NCs exhibited significantly higher anticancer activity against MCF-7 cancer cells than those of SnO2-ZnO NPs and ZnO NPs. The SnO2-ZnO/rGO NCs induced apoptotic response through the upregulation of caspase-3 gene and depletion of mitochondrial membrane potential. Mechanistic study indicated that SnO2-ZnO/rGO NCs kill cancer cells through oxidative stress pathway. Moreover, biocompatibility of SnO2-ZnO/rGO NCs was also higher against normal breast epithelial (MCF10A cells) in comparison to SnO2-ZnO NPs and ZnO NPs. CONCLUSION SnO2-ZnO/rGO NCs showed enhanced anticancer activity and better biocompatibility than SnO2-ZnO NPs and pure ZnO NPs. This work suggested a new approach to improve the selectivity and anticancer activity of ZnO NPs. Studies on antitumor activity of SnO2-ZnO/rGO NCs in animal models are further warranted.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| |
Collapse
|
11
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. Reduced graphene oxide mitigates cadmium-induced cytotoxicity and oxidative stress in HepG2 cells. Food Chem Toxicol 2020; 143:111515. [PMID: 32634506 DOI: 10.1016/j.fct.2020.111515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Numerous applications of reduced graphene oxide (RGO) and pervasive cadmium (Cd) have led concern about their co-exposure to the environment and human. We studied the combined effects of RGO and Cd in human liver (HepG2) cells. Initially, we found that RGO (up to 50 μg/ml) did not harm to HepG2 cells while Cd induced dose-dependent (1-10 μg/ml) cytotoxicity. Exciting observations were that a non-cytotoxic concentration of RGO (25 μg/ml) effectively mitigates the toxic effects of Cd (2 μg/ml) such as cell viability reduction, lactate dehydrogenase release, and irregular cell morphology. Cd-induced cell cycle arrest, induction of caspases (3 and 9) enzymes activity, and loss of mitochondrial membrane potential were also significantly alleviated by RGO co-exposure. Moreover, generation of pro-oxidants (reactive oxygen species and hydrogen peroxide levels) and depletion of antioxidants (glutathione level and superoxide dismutase activity) due to Cd exposure was effectively attenuated by RGO co-exposure. Mitigating effect of RGO could be due to strong adsorption of Cd on the large surface area of RGO sheets, which decrease the cellular uptake and bioavailability of Cd for HepG2 cells. This study warrants future research on potential mechanisms of mitigating effects of RGO against Cd-induced toxicity in animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|