1
|
Mikami K, Kozono Y, Masukawa M, Kobayashi S. A fast in situ hybridization chain reaction method in Drosophila embryos and ovaries. Fly (Austin) 2025; 19:2428499. [PMID: 39639000 PMCID: PMC11633216 DOI: 10.1080/19336934.2024.2428499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The in situ hybridization chain reaction (isHCR) is a powerful method for visualizing mRNA in many species. We present a rapid isHCR method for Drosophila embryos and ovaries. Ethylene carbonate was added to the hybridization buffer to facilitate the hybridization reaction, and a modified short hairpin DNA was used in the amplification reaction; these modifications decreased the RNA staining time from 3 days to 1 day. This method is compatible with immunohistochemistry and can detect multiple mRNAs. The proposed method could significantly reduce staining time for Drosophila researchers using isHCR.
Collapse
Affiliation(s)
- Kyohei Mikami
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Kozono
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Masukawa
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kobayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Koch P, Zhang Z, Genuth NR, Susanto TT, Haimann M, Khmelinskaia A, Byeon GW, Dey S, Barna M, Leppek K. A versatile toolbox for determining IRES activity in cells and embryonic tissues. EMBO J 2025; 44:2695-2724. [PMID: 40082722 PMCID: PMC12048685 DOI: 10.1038/s44318-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Widespread control of gene expression through translation has emerged as a key level of spatiotemporal regulation of protein expression. A prominent mechanism by which ribosomes can confer gene regulation is via internal ribosomal entry sites (IRESes), whose functions have however, remained difficult to rigorously characterize. Here we present a set of technologies in embryos and cells, including IRES-mediated translation of circular RNA (circRNA) reporters, single-molecule messenger (m)RNA isoform imaging, PacBio long-read sequencing, and isoform-sensitive mRNA quantification along polysome profiles as a new toolbox for understanding IRES regulation. Using these techniques, we investigate a broad range of cellular IRES RNA elements including Hox IRESes. We show IRES-dependent translation in circRNAs, as well as the relative expression, localization, and translation of an IRES-containing mRNA isoform in specific embryonic tissues. We thereby provide a new resource of technologies to elucidate the roles of versatile IRES elements in gene regulation and embryonic development.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Zijian Zhang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Teodorus Theo Susanto
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Epigenetic and Epitranscriptomic Systems, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Martin Haimann
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions", University of Bonn, Bonn, 53113, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, 53121, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Saurabh Dey
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Kathrin Leppek
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
3
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
4
|
Barman SD, Frimand Z, De Morree A. Absolute Quantification of mRNA Isoforms in Adult Stem Cells Using Microfluidic Digital PCR. Bio Protoc 2023; 13:e4811. [PMID: 37719075 PMCID: PMC10501916 DOI: 10.21769/bioprotoc.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 09/19/2023] Open
Abstract
Adult stem cells play key roles in homeostasis and tissue repair. These cells are regulated by a tight control of transcriptional programs. For example, muscle stem cells (MuSCs), located beneath the basal lamina, exist in the quiescent state but can transition to an activated, proliferative state upon injury. The control of MuSC state depends on the expression levels of myogenic transcription factors. Recent studies revealed the presence of different mRNA isoforms, with distinct biological regulation. Quantifying the exact expression levels of the mRNA isoforms encoding these myogenic transcription factors is therefore key to understanding how MuSCs switch between cell states. Previously, quantitative real-time polymerase chain reaction (qRT-PCR) has been used to quantify RNA expression levels. However, qRT-PCR depends on large amounts of RNA input and only measures relative abundance. Here, we present a protocol for the absolute quantification of mRNA isoforms using microfluidic digital PCR (mdPCR). Primary MuSCs isolated from individual skeletal muscles (gastrocnemius and masseter) are lysed, and their RNA is reverse-transcribed into cDNA and copied into double-stranded DNA. Following exonuclease I digestion to remove remaining single-stranded DNA, the samples are loaded onto a mdPCR chip with TaqMan probes targeting the mRNA isoforms of interest, whereupon target molecules are amplified in nanoliter chambers. We demonstrate that mdPCR can give exact molecule counts per cell for mRNA isoforms encoding the myogenic transcription factor Pax3. This protocol enables the absolute quantification of low abundant mRNA isoforms in a fast, precise, and reliable way.
Collapse
Affiliation(s)
| | - Zofija Frimand
- Department of Biomedicine, Aarhus University, Central Jutland, Denmark
| | - Antoine De Morree
- Department of Biomedicine, Aarhus University, Central Jutland, Denmark
| |
Collapse
|
5
|
Xie B, Gao D, Zhou B, Chen S, Wang L. New discoveries in the field of metabolism by applying single-cell and spatial omics. J Pharm Anal 2023; 13:711-725. [PMID: 37577385 PMCID: PMC10422156 DOI: 10.1016/j.jpha.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023] Open
Abstract
Single-cell multi-Omics (SCM-Omics) and spatial multi-Omics (SM-Omics) technologies provide state-of-the-art methods for exploring the composition and function of cell types in tissues/organs. Since its emergence in 2009, single-cell RNA sequencing (scRNA-seq) has yielded many groundbreaking new discoveries. The combination of this method with the emergence and development of SM-Omics techniques has been a pioneering strategy in neuroscience, developmental biology, and cancer research, especially for assessing tumor heterogeneity and T-cell infiltration. In recent years, the application of these methods in the study of metabolic diseases has also increased. The emerging SCM-Omics and SM-Omics approaches allow the molecular and spatial analysis of cells to explore regulatory states and determine cell fate, and thus provide promising tools for unraveling heterogeneous metabolic processes and making them amenable to intervention. Here, we review the evolution of SCM-Omics and SM-Omics technologies, and describe the progress in the application of SCM-Omics and SM-Omics in metabolism-related diseases, including obesity, diabetes, nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). We also conclude that the application of SCM-Omics and SM-Omics approaches can help resolve the molecular mechanisms underlying the pathogenesis of metabolic diseases in the body and facilitate therapeutic measures for metabolism-related diseases. This review concludes with an overview of the current status of this emerging field and the outlook for its future.
Collapse
Affiliation(s)
- Baocai Xie
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Biqiang Zhou
- Department of Geriatric & Spinal Pain Multi-Department Treatment, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Shi Chen
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450014, China
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Rao X, Zheng L, Wei K, Li M, Jiang M, Qiu J, Zhou Y, Ke R, Lin C. Novel In Situ Hybridization Assay for Chromogenic Single-Molecule Detection of Human Papillomavirus E6/E7 mRNA. Microbiol Spectr 2023; 11:e0389622. [PMID: 36809088 PMCID: PMC10101027 DOI: 10.1128/spectrum.03896-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
RNA plays a vital role in the physiological and pathological processes of cells and tissues. However, RNA in situ hybridization applications in clinical diagnostics are still limited to a few examples. In this study, we developed a novel in situ hybridization assay for human papillomavirus (HPV) E6/E7 mRNA by taking advantage of specific padlock probing and rolling circle amplification, combined with chromogenic readout. We designed padlock probes for 14 types of high-risk HPV and demonstrated that E6/E7 mRNA could be visualized in situ as discrete dot-like signals using bright-field microscopy. Overall, the results are consistent with the clinical diagnostics lab's hematoxylin and eosin (H&E) staining and p16 immunohistochemistry test results. Our work thus shows the potential applications of RNA in situ hybridization for clinical diagnostics using chromogenic single-molecule detection, offering an alternative technical option to the current commercially available kit based on branched DNA technology. IMPORTANCE In situ detection of viral mRNA expression in tissue samples is of great value for pathological diagnosis to access viral infection status. Unfortunately, conventional RNA in situ hybridization assays lack sensitivity and specificity for clinical diagnostic purposes. Currently, the commercially available branched DNA technology-based single-molecule RNA in situ detection method offers satisfactory results. Here, we present our padlock probe- and rolling circle amplification-based RNA in situ hybridization assay for detecting HPV E6/E7 mRNA expression in formalin-fixed paraffin-embedded tissue sections, providing an alternative yet robust method for viral RNA in situ visualization that is also applicable to different types of diseases.
Collapse
Affiliation(s)
- Xuelian Rao
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kaipeng Wei
- Department of Pathology, The 910th Hospital, Quanzhou, Fujian, China
| | - Meiqing Li
- Department of Pathology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Jiang
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Jianlong Qiu
- Department of Pathology, The 910th Hospital, Quanzhou, Fujian, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Sadashivaiah V, Tippani M, Page SC, Kwon SH, Bach SV, Bharadwaj RA, Hyde TM, Kleinman JE, Jaffe AE, Maynard KR. SUFI: an automated approach to spectral unmixing of fluorescent multiplex images captured in mouse and post-mortem human brain tissues. BMC Neurosci 2023; 24:6. [PMID: 36698068 PMCID: PMC9878864 DOI: 10.1186/s12868-022-00765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Multispectral fluorescence imaging coupled with linear unmixing is a form of image data collection and analysis that allows for measuring multiple molecular signals in a single biological sample. Multiple fluorescent dyes, each measuring a unique molecule, are simultaneously measured and subsequently "unmixed" to provide a read-out for each molecular signal. This strategy allows for measuring highly multiplexed signals in a single data capture session, such as multiple proteins or RNAs in tissue slices or cultured cells, but can often result in mixed signals and bleed-through problems across dyes. Existing spectral unmixing algorithms are not optimized for challenging biological specimens such as post-mortem human brain tissue, and often require manual intervention to extract spectral signatures. We therefore developed an intuitive, automated, and flexible package called SUFI: spectral unmixing of fluorescent images. RESULTS This package unmixes multispectral fluorescence images by automating the extraction of spectral signatures using vertex component analysis, and then performs one of three unmixing algorithms derived from remote sensing. We evaluate these remote sensing algorithms' performances on four unique biological datasets and compare the results to unmixing results obtained using ZEN Black software (Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot, which is used to quantify individual RNA transcripts at single cell resolution in intact tissues and perform differential expression analysis, and thereby provide an end-to-end solution for multispectral fluorescence image analysis and quantification. CONCLUSIONS In summary, we provide a robust, automated pipeline to assist biologists with improved spectral unmixing of multispectral fluorescence images.
Collapse
Affiliation(s)
- Vijay Sadashivaiah
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Svitlana V Bach
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Rahul A Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Moissoglu K, Lockett SJ, Mili S. Visualizing and Quantifying mRNA Localization at the Invasive Front of 3D Cancer Spheroids. Methods Mol Biol 2023; 2608:263-280. [PMID: 36653713 PMCID: PMC10411857 DOI: 10.1007/978-1-0716-2887-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Localization of mRNAs at the front of migrating cells is a widely used mechanism that functionally supports efficient cell movement. It is observed in single cells on two-dimensional surfaces, as well as in multicellular three-dimensional (3D) structures and in tissue in vivo. 3D multicellular cultures can reveal how the topology of the extracellular matrix and cell-cell contacts influence subcellular mRNA distributions. Here we describe a method for mRNA imaging in an inducible system of collective cancer cell invasion. MDA-MB-231 cancer cell spheroids are embedded in Matrigel, induced to invade, and processed to image mRNAs with single-molecule sensitivity. An analysis algorithm is used to quantify and compare mRNA distributions at the front of invasive leader cells. The approach can be easily adapted and applied to analyze RNA distributions in additional settings where cells polarize along a linear axis.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, NIH, Frederick, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Gholikhani T, Kumar S, Valizadeh H, Mahdinloo S, Adibkia K, Zakeri-Milani P, Barzegar-Jalali M, Jimenez B. Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. Int J Mol Sci 2022; 23:ijms232214475. [PMID: 36430951 PMCID: PMC9695968 DOI: 10.3390/ijms232214475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aptamers are synthetic single-stranded oligonucleotides (such as RNA and DNA) evolved in vitro using Systematic Evolution of Ligands through Exponential enrichment (SELEX) techniques. Aptamers are evolved to have high affinity and specificity to targets; hence, they have a great potential for use in therapeutics as delivery agents and/or in treatment strategies. Aptamers can be chemically synthesized and modified in a cost-effective manner and are easy to hybridize to a variety of nano-particles and other agents which has paved a way for targeted therapy and diagnostics applications such as in breast tumors. In this review, we systematically explain different aptamer adoption approaches to therapeutic or diagnostic uses when addressing breast tumors. We summarize the current therapeutic techniques to address breast tumors including aptamer-base approaches. We discuss the next aptamer-based therapeutic and diagnostic approaches targeting breast tumors. Finally, we provide a perspective on the future of aptamer-based sensors for breast therapeutics and diagnostics. In this section, the therapeutic applications of aptamers will be discussed for the targeting therapy of breast cancer.
Collapse
Affiliation(s)
- Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- NanoRa Pharmaceuticals Ltd., Tabriz 5166-15731, Iran
| | - Shalen Kumar
- IQ Science Limited, Wellington 5010, New Zealand
| | - Hadi Valizadeh
- Drug Applied Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Somayeh Mahdinloo
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Balam Jimenez
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Correspondence:
| |
Collapse
|
10
|
Vu T, Vallmitjana A, Gu J, La K, Xu Q, Flores J, Zimak J, Shiu J, Hosohama L, Wu J, Douglas C, Waterman ML, Ganesan A, Hedde PN, Gratton E, Zhao W. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nat Commun 2022; 13:169. [PMID: 35013281 PMCID: PMC8748653 DOI: 10.1038/s41467-021-27798-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Multiplexed mRNA profiling in the spatial context provides new information enabling basic research and clinical applications. Unfortunately, existing spatial transcriptomics methods are limited due to either low multiplexing or complexity. Here, we introduce a spatialomics technology, termed Multi Omic Single-scan Assay with Integrated Combinatorial Analysis (MOSAICA), that integrates in situ labeling of mRNA and protein markers in cells or tissues with combinatorial fluorescence spectral and lifetime encoded probes, spectral and time-resolved fluorescence imaging, and machine learning-based decoding. We demonstrate MOSAICA's multiplexing scalability in detecting 10-plex targets in fixed colorectal cancer cells using combinatorial labeling of five fluorophores with facile error-detection and removal of autofluorescence. MOSAICA's analysis is strongly correlated with sequencing data (Pearson's r = 0.96) and was further benchmarked using RNAscopeTM and LGC StellarisTM. We further apply MOSAICA for multiplexed analysis of clinical melanoma Formalin-Fixed Paraffin-Embedded (FFPE) tissues. We finally demonstrate simultaneous co-detection of protein and mRNA in cancer cells.
Collapse
Affiliation(s)
- Tam Vu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Alexander Vallmitjana
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Joshua Gu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Kieu La
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qi Xu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jesus Flores
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697, USA
- CIRM Stem Cell Research Biotechnology Training Program at California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Jan Zimak
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jessica Shiu
- Department of Dermatology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Linzi Hosohama
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Christopher Douglas
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, CA, 92617, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anand Ganesan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Dermatology, University of California, Irvine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, 92697, USA
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, 92697, USA.
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Weian Zhao
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Atout S, Shurrab S, Loveridge C. Evaluation of the Suitability of RNAscope as a Technique to Measure Gene Expression in Clinical Diagnostics: A Systematic Review. Mol Diagn Ther 2021; 26:19-37. [PMID: 34957535 PMCID: PMC8710359 DOI: 10.1007/s40291-021-00570-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Objective To evaluate the application of RNAscope in the clinical diagnostic field compared to the current ‘gold standard’ methods employed for testing gene expression levels, including immunohistochemistry (IHC), quantitative real time PCR (qPCR), and quantitative reverse transcriptase PCR (qRT-PCR), and to detect genes, including DNA in situ hybridisation (DNA ISH). Methods This systematic review searched CINAHL, Medline, Embase and Web of Science databases for studies that were conducted after 2012 and that compared RNAscope with one or more of the ‘gold standard’ techniques in human samples. QUADAS-2 test was used for the evaluation of the articles’ risk of bias. The results were reviewed narratively and analysed qualitatively. Results A total of 27 articles (all retrospective studies) were obtained and reviewed. The 27 articles showed a range of low to middle risk of bias scores, as assessed by QUADAS-2 test. 26 articles studied RNAscope within cancer samples. RNAscope was compared to different techniques throughout the included studies (IHC, qPCR, qRT-PCR and DNA ISH). The results confirmed that RNAscope is a highly sensitive and specific method that has a high concordance rate (CR) with qPCR, qRT-PCR, and DNA ISH (81.8–100%). However, the CR with IHC was lower than expected (58.7–95.3%), which is mostly due to the different products that each technique measures (RNA vs. protein). Discussion This is the first systematic review to be conducted on the use of RNAscope in the clinical diagnostic field. RNAscope was found to be a reliable and robust method that could complement gold standard techniques currently used in clinical diagnostics to measure gene expression levels or for gene detection. However, there were not enough data to suggest that RNAscope could stand alone in the clinical diagnostic setting, indicating further prospective studies to validate diagnostic accuracy values, in keeping with relevant regulations, followed by cost evaluation are required. Supplementary Information The online version contains supplementary material available at 10.1007/s40291-021-00570-2.
Collapse
Affiliation(s)
- Sameeha Atout
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Room 202, Sir James Black Building, Glasgow, G128QQ, UK
| | - Shaymaa Shurrab
- Division of Biochemical Diseases, Department of Paediatrics, School of Medicine, BC Children's Hospital, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Carolyn Loveridge
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Room 202, Sir James Black Building, Glasgow, G128QQ, UK.
| |
Collapse
|
12
|
Shi H, Grodner B, De Vlaminck I. Recent advances in tools to map the microbiome. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100289. [PMID: 34151052 PMCID: PMC8208594 DOI: 10.1016/j.cobme.2021.100289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbes thrive in diverse habitats. They often form ecological niches with rich species diversity and complex spatial structure. These communities drive biogeochemical cycles in the environment and modulate host health in the human body. Much has been learned about the makeup of human and environmental microbiota via metagenomic DNA sequencing, but information on spatial interactions between microbes and between microbes and their environment remains scarce. Here, we review recent advances in tools to map the biogeography of microbiomes. We discuss methods to spatially map microbial genes, transcripts, and metabolites. We also examine future directions for microbiome mapping technologies that will allow improved understanding of both microbiome structure and function. Finally, we reflect on the impact of these methods in Biomedical Engineering.
Collapse
Affiliation(s)
- Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Lee CY, Myong S. Probing steps in DNA transcription using single-molecule methods. J Biol Chem 2021; 297:101086. [PMID: 34403697 PMCID: PMC8441165 DOI: 10.1016/j.jbc.2021.101086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptional regulation is one of the key steps in determining gene expression. Diverse single-molecule techniques have been applied to characterize the stepwise progression of transcription, yielding complementary results. These techniques include, but are not limited to, fluorescence-based microscopy with single or multiple colors, force measuring and manipulating microscopy using magnetic field or light, and atomic force microscopy. Here, we summarize and evaluate these current methodologies in studying and resolving individual steps in the transcription reaction, which encompasses RNA polymerase binding, initiation, elongation, mRNA production, and termination. We also describe the advantages and disadvantages of each method for studying transcription.
Collapse
Affiliation(s)
- Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois, USA.
| |
Collapse
|
14
|
Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Biosens Bioelectron 2021; 192:113507. [PMID: 34330037 DOI: 10.1016/j.bios.2021.113507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle amplification (RCA) had the prospect of assisting clinic diagnosis with advantage in in situ mRNA detection at single cell level. However, for direct mRNA detection, RCA had relatively low detection specificity and efficiency. Here, we introduced 4-(10, 15, 20-Triphenylporphyrin-5-yl)phenylamine (TPP) modified Au nanoparticle (Au-TPP) to improve the specificity of in-situ RCA. Through photothermal effect, Au-TPP acted as the specific heat source upon irradiation of 635 nm laser. The photothermal mediated RCA would be initiated only when the Au-TPP as well as the padlock anchored adjacently on the same target mRNA. Furthermore, we introduced 'C' form target-specific oligonucleotide linker probes to make generic padlock and Au-TPP for different mRNA targets, so that for a new mRNA target one does not have to redesign the padlock and the Au-TPP probe. By these strategies, we successfully developed a specific and photothermal mediated hyperbranched rolling circle amplification for direct in situ mRNA detection, suitable for both formalin-fixed paraffin-embedded (FFPE) tissue section and frozen tissue section.
Collapse
|
15
|
Annealed ZnO/Al 2O 3 Core-Shell Nanowire as a Platform to Capture RNA in Blood Plasma. NANOMATERIALS 2021; 11:nano11071768. [PMID: 34361154 PMCID: PMC8308134 DOI: 10.3390/nano11071768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
RNA analytical platforms gained extensive attention recently for RNA-based molecular analysis. However, the major challenge for analyzing RNAs is their low concentration in blood plasma samples, hindering the use of RNAs for diagnostics. Platforms that can enrich RNAs are essential to enhance molecular detection. Here, we developed the annealed ZnO/Al2O3 core-shell nanowire device as a platform to capture RNAs. We showed that the annealed ZnO/Al2O3 core-shell nanowire could capture RNAs with high efficiency compared to that of other circulating nucleic acids, including genomic DNA (gDNA) and cell-free DNA (cfDNA). Moreover, the nanowire was considered to be biocompatible with blood plasma samples due to the crystalline structure of the Al2O3 shell which serves as a protective layer to prevent nanowire degradation. Our developed device has the potential to be a platform for RNA-based extraction and detection.
Collapse
|
16
|
Roth R, Kim S, Kim J, Rhee S. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease. BMB Rep 2021. [PMID: 32684243 PMCID: PMC7473476 DOI: 10.5483/bmbrep.2020.53.8.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease. [BMB Reports 2020; 53(8): 393-399].
Collapse
Affiliation(s)
- Robert Roth
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Calvo L, Ronshaugen M, Pettini T. smiFISH and embryo segmentation for single-cell multi-gene RNA quantification in arthropods. Commun Biol 2021; 4:352. [PMID: 33742105 PMCID: PMC7979837 DOI: 10.1038/s42003-021-01803-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Recently, advances in fluorescent in-situ hybridization techniques and in imaging technology have enabled visualization and counting of individual RNA molecules in single cells. This has greatly enhanced the resolution in our understanding of transcriptional processes. Here, we adapt a recently published smiFISH protocol (single-molecule inexpensive fluorescent in-situ hybridization) to whole embryos across a range of arthropod model species, and also to non-embryonic tissues. Using multiple fluorophores with distinct spectra and white light laser confocal imaging, we simultaneously detect and separate single RNAs from up to eight different genes in a whole embryo. We also combine smiFISH with cell membrane immunofluorescence, and present an imaging and analysis pipeline for 3D cell segmentation and single-cell RNA counting in whole blastoderm embryos. Finally, using whole embryo single-cell RNA count data, we propose two alternative single-cell variability measures to the commonly used Fano factor, and compare the capacity of these three measures to address different aspects of single-cell expression variability. Here, the authors combine single-molecule inexpensive FISH (smiFISH) with cell membrane immunofluorescence and mathematical methods to enable whole embryo segmentation in 3D image stacks and mRNA quantification of multiple genes in each cell of the embryo.
Collapse
Affiliation(s)
- Llilians Calvo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Ronshaugen
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Tom Pettini
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
18
|
Lin C, Jiang M, Liu L, Chen X, Zhao Y, Chen L, Hong Y, Wang X, Hong C, Yao X, Ke R. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization. N Biotechnol 2020; 61:116-123. [PMID: 33301924 DOI: 10.1016/j.nbt.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022]
Abstract
An amplification-based single-molecule fluorescence in situ hybridization (asmFISH) assay is introduced that exploits improved probe design for highly specific imaging of individual transcripts in fixed cells and tissues. In this method, a pair of DNA ligation probes are ligated on RNA templates upon specific hybridization, followed by probe circularization based on enzymatic DNA ligation and rolling circle amplification for signal boosting. The method is more efficient and specific than the padlock probe assay for detection of the same RNA molecules and discrimination of single nucleotide polymorphisms. Moreover, asmFISH is a versatile method which can be applied not only to cultured cells, but also to fresh frozen and formalin-fixed, paraffin-embedded tissue sections.
Collapse
Affiliation(s)
- Chen Lin
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Meng Jiang
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Ling Liu
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Xiaoyuan Chen
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Chengye Hong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xihu Yao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Rongqin Ke
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China.
| |
Collapse
|
19
|
Badstöber J, Gachon CMM, Ludwig-Müller J, Sandbichler AM, Neuhauser S. Demystifying biotrophs: FISHing for mRNAs to decipher plant and algal pathogen-host interaction at the single cell level. Sci Rep 2020; 10:14269. [PMID: 32868853 PMCID: PMC7459097 DOI: 10.1038/s41598-020-70884-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Plant-pathogen interactions follow spatial and temporal developmental dynamics where gene expression in pathogen and host undergo crucial changes. Therefore, it is of great interest to detect, quantify and localise where and when key genes are active to understand these processes. Many pathosystems are not accessible for genetic amendments or other spatially-resolved gene expression monitoring methods. Here, we adapt single molecule FISH techniques to demonstrate the presence and activity of mRNAs at the single-cell level using phytomyxids in their plant and algal host in lab and field material. This allowed us to monitor and quantify the expression of genes from the clubroot pathogen Plasmodiophora brassicae, several species of its Brassica hosts, and of several brown algae, including the genome model Ectocarpus siliculosus, infected with the phytomyxid Maullinia ectocarpii. We show that mRNAs are localised along a spatiotemporal gradient, thus providing a proof-of-concept of the usefulness of single-molecule FISH to increase knowledge about the interactions between plants, algae and phytomyxids. The methods used are easily applicable to any interaction between microbes and their algal or plant host, and have therefore the potential to rapidly increase our understanding of key, spatially- and temporally-resolved processes underpinning complex plant-microbe interactions.
Collapse
Affiliation(s)
- Julia Badstöber
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
- UMR 7245 - Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, 75005, France
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217, Dresden, Germany
| | | | - Sigrid Neuhauser
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
20
|
González-Pérez M, Martins S, Manhita A, Caldeira AT, Pereira A. Coumarin Amine-Reactive DYE C392STP: an Efficient Building Block to Synthesize Single Labeled Oligonucleotides with Application as Fish Probes. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, Ruden DM, Levy PD. Single-Cell RNA Sequencing of the Cardiovascular System: New Looks for Old Diseases. Front Cardiovasc Med 2019; 6:173. [PMID: 31921894 PMCID: PMC6914766 DOI: 10.3389/fcvm.2019.00173] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease encompasses a wide range of conditions, resulting in the highest number of deaths worldwide. The underlying pathologies surrounding cardiovascular disease include a vast and complicated network of both cellular and molecular mechanisms. Unique phenotypic alterations in specific cell types, visualized as varying RNA expression-levels (both coding and non-coding), have been identified as crucial factors in the pathology underlying conditions such as heart failure and atherosclerosis. Recent advances in single-cell RNA sequencing (scRNA-seq) have elucidated a new realm of cell subpopulations and transcriptional variations that are associated with normal and pathological physiology in a wide variety of diseases. This breakthrough in the phenotypical understanding of our cells has brought novel insight into cardiovascular basic science. scRNA-seq allows for separation of widely distinct cell subpopulations which were, until recently, simply averaged together with bulk-tissue RNA-seq. scRNA-seq has been used to identify novel cell types in the heart and vasculature that could be implicated in a variety of disease pathologies. Furthermore, scRNA-seq has been able to identify significant heterogeneity of phenotypes within individual cell subtype populations. The ability to characterize single cells based on transcriptional phenotypes allows researchers the ability to map development of cells and identify changes in specific subpopulations due to diseases at a very high throughput. This review looks at recent scRNA-seq studies of various aspects of the cardiovascular system and discusses their potential value to our understanding of the cardiovascular system and pathology.
Collapse
Affiliation(s)
- Farhan Chaudhry
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Tejeshwar Bawa
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Dhruvil Patel
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - David E Lanfear
- Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, United States
| | - Phillip D Levy
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, United States
| |
Collapse
|
22
|
Vo HD, Fox Z, Baetica A, Munsky B. Bayesian Estimation for Stochastic Gene Expression Using Multifidelity Models. J Phys Chem B 2019; 123:2217-2234. [PMID: 30777763 DOI: 10.1021/acs.jpcb.8b10946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The finite state projection (FSP) approach to solving the chemical master equation has enabled successful inference of discrete stochastic models to predict single-cell gene regulation dynamics. Unfortunately, the FSP approach is highly computationally intensive for all but the simplest models, an issue that is highly problematic when parameter inference and uncertainty quantification takes enormous numbers of parameter evaluations. To address this issue, we propose two new computational methods for the Bayesian inference of stochastic gene expression parameters given single-cell experiments. We formulate and verify an adaptive delayed acceptance Metropolis-Hastings (ADAMH) algorithm to utilize with reduced Krylov-basis projections of the FSP. We then introduce an extension of the ADAMH into a hybrid scheme that consists of an initial phase to construct a reduced model and a faster second phase to sample from the approximate posterior distribution determined by the constructed model. We test and compare both algorithms to an adaptive Metropolis algorithm with full FSP-based likelihood evaluations on three example models and simulated data to show that the new ADAMH variants achieve substantial speedup in comparison to the full FSP approach. By reducing the computational costs of parameter estimation, we expect the ADAMH approach to enable efficient data-driven estimation for more complex gene regulation models.
Collapse
Affiliation(s)
- Huy D Vo
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Zachary Fox
- Keck Scholars, School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Ania Baetica
- Department of Biochemistry and Biophysics , University of California San Francisco , San Francisco , California 94158 , United States
| | - Brian Munsky
- Department of Chemical and Biological Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States.,Keck Scholars, School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
23
|
RollFISH achieves robust quantification of single-molecule RNA biomarkers in paraffin-embedded tumor tissue samples. Commun Biol 2018; 1:209. [PMID: 30511022 PMCID: PMC6262000 DOI: 10.1038/s42003-018-0218-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
Abstract
Single-molecule RNA fluorescence in situ hybridization (smFISH) represents a promising approach to quantify the expression of clinically useful biomarkers in tumor samples. However, routine application of smFISH to formalin-fixed, paraffin-embedded (FFPE) samples is challenging due to the low signal intensity and high background noise. Here we present RollFISH, a method combining the specificity of smFISH with the signal boosting of rolling circle amplification. We apply RollFISH to quantify widely used breast cancer biomarkers in cell lines and FFPE samples. Thanks to the high signal-to-noise ratio, we can visualize selected biomarkers at low magnification (20 × ) across entire tissue sections, and thus assess their spatial heterogeneity. Lastly, we apply RollFISH to quantify HER2 mRNA in 150 samples on a single tissue microarray, achieving a sensitivity and specificity of detection of HER2-positive samples of ~90%. RollFISH is a robust method for quantifying the expression and intratumor heterogeneity of biomarkers in FFPE tissues. Wu et al. introduce RollFISH, a method that enables quantification of single-molecule RNA with high specificity and sensitivity by combining smFISH with rolling circle amplification. RollFISH facilitated studying heterogeneity of biomarkers in formalin-fixed and paraffin-embedded breast cancer tissue, demonstrating its clinical application.
Collapse
|
24
|
Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Commun Biol 2018; 1:102. [PMID: 30271982 PMCID: PMC6123746 DOI: 10.1038/s42003-018-0106-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022] Open
Abstract
Orphan G-protein-coupled receptors (oGPCRs) possess untapped potential for drug discovery. In the brain, oGPCRs are generally expressed at low abundance and their function is understudied. Expression profiling is an essential step to position oGPCRs in brain function and disease, however public databases provide only partial information. Here, we fine-map expression of 78 brain-oGPCRs in the mouse, using customized probes in both standard and supersensitive in situ hybridization. Images are available at http://ogpcr-neuromap.douglas.qc.ca. This searchable database contains over 8000 coronal brain sections across 1350 slides, providing the first public mapping resource dedicated to oGPCRs. Analysis with public mouse (60 oGPCRs) and human (56 oGPCRs) genome-wide datasets identifies 25 oGPCRs with potential to address emotional and/or cognitive dimensions of psychiatric conditions. We probe their expression in postmortem human brains using nanoString, and included data in the resource. Correlating human with mouse datasets reveals excellent suitability of mouse models for oGPCRs in neuropsychiatric research. Aliza Ehrlich et al. report the fine-mapping of orphan GPCR (oGPCR) transcripts in the mouse brain using in situ hybridization and provide a public resource for data mining. The authors also mapped 25 selected oGPCRs in human brains, identifying oGPCRs with high correlation between species and potential roles in neuropsychiatric disorders.
Collapse
|
25
|
Chen J, McSwiggen D, Ünal E. Single Molecule Fluorescence In Situ Hybridization (smFISH) Analysis in Budding Yeast Vegetative Growth and Meiosis. J Vis Exp 2018. [PMID: 29889208 PMCID: PMC6101419 DOI: 10.3791/57774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Single molecule fluorescence in situ hybridization (smFISH) is a powerful technique to study gene expression in single cells due to its ability to detect and count individual RNA molecules. Complementary to deep sequencing-based methods, smFISH provides information about the cell-to-cell variation in transcript abundance and the subcellular localization of a given RNA. Recently, we have used smFISH to study the expression of the gene NDC80 during meiosis in budding yeast, in which two transcript isoforms exist and the short transcript isoform has its entire sequence shared with the long isoform. To confidently identify each transcript isoform, we optimized known smFISH protocols and obtained high consistency and quality of smFISH data for the samples acquired during budding yeast meiosis. Here, we describe this optimized protocol, the criteria that we use to determine whether high quality of smFISH data is obtained, and some tips for implementing this protocol in other yeast strains and growth conditions.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley
| | - David McSwiggen
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California, Berkeley
| | - Elçin Ünal
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley;
| |
Collapse
|
26
|
Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method. Cell Rep 2018; 20:251-263. [PMID: 28683318 DOI: 10.1016/j.celrep.2017.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/20/2017] [Accepted: 06/06/2017] [Indexed: 02/03/2023] Open
Abstract
Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.
Collapse
|
27
|
Gaspar I, Wippich F, Ephrussi A. Terminal Deoxynucleotidyl Transferase Mediated Production of Labeled Probes for Single-molecule FISH or RNA Capture. Bio Protoc 2018; 8:e2750. [PMID: 34179277 DOI: 10.21769/bioprotoc.2750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 11/02/2022] Open
Abstract
Arrays of short, singly-labeled ssDNA oligonucleotides enable in situ hybridization with single molecule sensitivity and efficient transcript specific RNA capture. Here, we describe a simple, enzymatic protocol that can be carried out using basic laboratory equipment to convert arrays of PCR oligos into smFISH and RAP probesets in a quantitative, cost-efficient and flexible way.
Collapse
Affiliation(s)
- Imre Gaspar
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Meyerhofstrasse 1, 69117 Germany
| | - Frank Wippich
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Meyerhofstrasse 1, 69117 Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Meyerhofstrasse 1, 69117 Germany
| |
Collapse
|
28
|
Schulz D, Zanotelli VRT, Fischer JR, Schapiro D, Engler S, Lun XK, Jackson HW, Bodenmiller B. Simultaneous Multiplexed Imaging of mRNA and Proteins with Subcellular Resolution in Breast Cancer Tissue Samples by Mass Cytometry. Cell Syst 2018; 6:25-36.e5. [PMID: 29289569 PMCID: PMC5791659 DOI: 10.1016/j.cels.2017.12.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/06/2017] [Accepted: 12/01/2017] [Indexed: 01/18/2023]
Abstract
To build comprehensive models of cellular states and interactions in normal and diseased tissue, genetic and proteomic information must be extracted with single-cell and spatial resolution. Here, we extended imaging mass cytometry to enable multiplexed detection of mRNA and proteins in tissues. Three mRNA target species were detected by RNAscope-based metal in situ hybridization with simultaneous antibody detection of 16 proteins. Analysis of 70 breast cancer samples showed that HER2 and CK19 mRNA and protein levels are moderately correlated on the single-cell level, but that only HER2, and not CK19, has strong mRNA-to-protein correlation on the cell population level. The chemoattractant CXCL10 was expressed in stromal cell clusters, and the frequency of CXCL10-expressing cells correlated with T cell presence. Our flexible and expandable method will allow an increase in the information content retrieved from patient samples for biomedical purposes, enable detailed studies of tumor biology, and serve as a tool to bridge comprehensive genomic and proteomic tissue analysis.
Collapse
Affiliation(s)
- Daniel Schulz
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vito Riccardo Tomaso Zanotelli
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; Systems Biology PhD Program, Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jana Raja Fischer
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Denis Schapiro
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Stefanie Engler
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Xiao-Kang Lun
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Bernd Bodenmiller
- Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Kocks C, Boltengagen A, Piwecka M, Rybak-Wolf A, Rajewsky N. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as. Methods Mol Biol 2018; 1724:77-96. [PMID: 29322442 DOI: 10.1007/978-1-4939-7562-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Individual mRNA molecules can be imaged in fixed cells by hybridization with multiple, singly labeled oligonucleotide probes, followed by computational identification of fluorescent signals. This approach, called single-molecule RNA fluorescence in situ hybridization (smRNA FISH), allows subcellular localization and absolute quantification of RNA molecules in individual cells. Here, we describe a simple smRNA FISH protocol for two-color imaging of a circular RNA, CDR1as, simultaneously with an unrelated messenger RNA. The protocol can be adapted to circRNAs that coexist with overlapping, noncircular mRNA isoforms produced from the same genetic locus.
Collapse
Affiliation(s)
- Christine Kocks
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Anastasiya Boltengagen
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Monika Piwecka
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Agnieszka Rybak-Wolf
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
30
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
31
|
Kwon S, Chin K, Nederlof M, Gray JW. Quantitative, in situ analysis of mRNAs and proteins with subcellular resolution. Sci Rep 2017; 7:16459. [PMID: 29184166 PMCID: PMC5705767 DOI: 10.1038/s41598-017-16492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
We describe here a method, termed immunoFISH, for simultaneous in situ analysis of the composition and distribution of proteins and individual RNA transcripts in single cells. Individual RNA molecules are labeled by hybridization and target proteins are concurrently stained using immunofluorescence. Multicolor fluorescence images are acquired and analyzed to determine the abundance, composition, and distribution of hybridized probes and immunofluorescence. We assessed the ability of immunoFISH to simultaneous quantify protein and transcript levels and distribution in cultured HER2 positive breast cancer cells and human breast tumor samples. We demonstrated the utility of this assay in several applications including demonstration of the existence of a layer of normal myoepithelial KRT14 expressing cells that separate HER2+ cancer cells from the stromal and immune microenvironment in HER2+ invasive breast cancer. Our studies show that immunoFISH provides quantitative information about the spatial heterogeneity in transcriptional and proteomic features that exist between and within cells.
Collapse
Affiliation(s)
- Sunjong Kwon
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Koei Chin
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Michel Nederlof
- Quantitative Imaging Systems, Inc., 1502 Fox Chapel Road, Pittsburgh, PA 15238, USA
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA.
| |
Collapse
|
32
|
Wadsworth GM, Parikh RY, Choy JS, Kim HD. mRNA detection in budding yeast with single fluorophores. Nucleic Acids Res 2017; 45:e141. [PMID: 28666354 PMCID: PMC5587780 DOI: 10.1093/nar/gkx568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 12/29/2022] Open
Abstract
Quantitative measurement of mRNA levels in single cells is necessary to understand phenotypic variability within an otherwise isogenic population of cells. Single-molecule mRNA Fluorescence In Situ Hybridization (FISH) has been established as the standard method for this purpose, but current protocols require a long region of mRNA to be targeted by multiple DNA probes. Here, we introduce a new single-probe FISH protocol termed sFISH for budding yeast, Saccharomyces cerevisiae using a single DNA probe labeled with a single fluorophore. In sFISH, we markedly improved probe specificity and signal-to-background ratio by using methanol fixation and inclined laser illumination. We show that sFISH reports mRNA changes that correspond to protein levels and gene copy number. Using this new FISH protocol, we can detect >50% of the total target mRNA. We also demonstrate the versatility of sFISH using FRET detection and mRNA isoform profiling as examples. Our FISH protocol with single-fluorophore sensitivity significantly reduces cost and time compared to the conventional FISH protocols and opens up new opportunities to investigate small changes in RNA at the single cell level.
Collapse
Affiliation(s)
- Gable M Wadsworth
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA
| | - Rasesh Y Parikh
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA
| | - John S Choy
- Department of Biology, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064, USA
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA
| |
Collapse
|
33
|
Ibragimov AN, Kozlov EN, Kurbidaeva AS, Ryabichko SS, Shidlovskii YV. Current technics for visualizing RNA in a cell. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Gaspar I, Wippich F, Ephrussi A. Enzymatic production of single-molecule FISH and RNA capture probes. RNA (NEW YORK, N.Y.) 2017; 23:1582-1591. [PMID: 28698239 PMCID: PMC5602115 DOI: 10.1261/rna.061184.117] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/22/2017] [Indexed: 05/20/2023]
Abstract
Arrays of singly labeled short oligonucleotides that hybridize to a specific target revolutionized RNA biology, enabling quantitative, single-molecule microscopy analysis and high-efficiency RNA/RNP capture. Here, we describe a simple and efficient method that allows flexible functionalization of inexpensive DNA oligonucleotides by different fluorescent dyes or biotin using terminal deoxynucleotidyl transferase and custom-made functional group conjugated dideoxy-UTP. We show that (i) all steps of the oligonucleotide labeling-including conjugation, enzymatic synthesis, and product purification-can be performed in a standard biology laboratory, (ii) the process yields >90%, often >95% labeled product with minimal carryover of impurities, and (iii) the oligonucleotides can be labeled with different dyes or biotin, allowing single-molecule FISH, RNA affinity purification, and Northern blot analysis to be performed.
Collapse
Affiliation(s)
- Imre Gaspar
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Frank Wippich
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| |
Collapse
|
35
|
Abstract
Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain.
Collapse
Affiliation(s)
- Hei Ming Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wai-Lung Ng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Steve M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Joint Laboratory of Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
van Gijtenbeek LA, Kok J. Illuminating Messengers: An Update and Outlook on RNA Visualization in Bacteria. Front Microbiol 2017; 8:1161. [PMID: 28690601 PMCID: PMC5479882 DOI: 10.3389/fmicb.2017.01161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/07/2017] [Indexed: 01/04/2023] Open
Abstract
To be able to visualize the abundance and spatiotemporal features of RNAs in bacterial cells would permit obtaining a pivotal understanding of many mechanisms underlying bacterial cell biology. The first methods that allowed observing single mRNA molecules in individual cells were introduced by Bertrand et al. (1998) and Femino et al. (1998). Since then, a plethora of techniques to image RNA molecules with the aid of fluorescence microscopy has emerged. Many of these approaches are useful for the large eukaryotic cells but their adaptation to study RNA, specifically mRNA molecules, in bacterial cells progressed relatively slow. Here, an overview will be given of fluorescent techniques that can be used to reveal specific RNA molecules inside fixed and living single bacterial cells. It includes a critical evaluation of their caveats as well as potential solutions.
Collapse
Affiliation(s)
- Lieke A van Gijtenbeek
- Department of Molecular Genetics, Faculty of Science and Engineering, University of GroningenGroningen, Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Faculty of Science and Engineering, University of GroningenGroningen, Netherlands
| |
Collapse
|
37
|
Simultaneous Single-Cell In Situ Analysis of Human Adenovirus Type 5 DNA and mRNA Expression Patterns in Lytic and Persistent Infection. J Virol 2017; 91:JVI.00166-17. [PMID: 28298601 DOI: 10.1128/jvi.00166-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
An efficient adenovirus infection results in high-level accumulation of viral DNA and mRNAs in the infected cell population. However, the average viral DNA and mRNA content in a heterogeneous cell population does not necessarily reflect the same abundance in individual cells. Here, we describe a novel padlock probe-based rolling-circle amplification technique that enables simultaneous detection and analysis of human adenovirus type 5 (HAdV-5) genomic DNA and virus-encoded mRNAs in individual infected cells. We demonstrate that the method is applicable for detection and quantification of HAdV-5 DNA and mRNAs in short-term infections in human epithelial cells and in long-term infections in human B lymphocytes. Single-cell evaluation of these infections revealed high heterogeneity and unique cell subpopulations defined by differential viral DNA content and mRNA expression. Further, our single-cell analysis shows that the specific expression pattern of viral E1A 13S and 12S mRNA splice variants is linked to HAdV-5 DNA content in the individual cells. Furthermore, we show that expression of a mature form of the HAdV-5 histone-like protein VII affects virus genome detection in HAdV-5-infected cells. Collectively, padlock probes combined with rolling-circle amplification should be a welcome addition to the method repertoire for the characterization of the molecular details of the HAdV life cycle in individual infected cells.IMPORTANCE Human adenoviruses (HAdVs) have been extensively used as model systems to study various aspects of eukaryotic gene expression and genome organization. The vast majority of the HAdV studies are based on standard experimental procedures carried out using heterogeneous cell populations, where data averaging often masks biological differences. As every cell is unique, characteristics and efficiency of an HAdV infection can vary from cell to cell. Therefore, the analysis of HAdV gene expression and genome organization would benefit from a method that permits analysis of individual infected cells in the heterogeneous cell population. Here, we show that the padlock probe-based rolling-circle amplification method can be used to study concurrent viral DNA accumulation and mRNA expression patterns in individual HAdV-5-infected cells. Hence, this versatile method can be applied to detect the extent of infection and virus gene expression changes in different HAdV-5 infections.
Collapse
|
38
|
A Novel Method to Quantify RNA-Protein Interactions In Situ Using FMTRIP and Proximity Ligation. Methods Mol Biol 2017; 1468:155-70. [PMID: 27662876 DOI: 10.1007/978-1-4939-4035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA binding proteins (RBP) and small RNAs regulate the editing, localization, stabilization, translation, and degradation of ribonucleic acids (RNAs) through their interactions with specific cis-acting elements within target RNAs. Here, we describe a novel method to detect protein-mRNA interactions, which combines FLAG-peptide modified, multiply-labeled tetravalent RNA imaging probes (FMTRIPs) with proximity ligation (PLA), and rolling circle amplification (RCA). This assay detects native RNA in a sequence specific and single RNA sensitive manner, and PLA allows for the quantification and localization of protein-mRNA interactions with single-interaction sensitivity.
Collapse
|
39
|
Abbaszadeh EK, Gavis ER. Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods 2016; 98:34-41. [PMID: 26827935 PMCID: PMC4808400 DOI: 10.1016/j.ymeth.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/21/2022] Open
Abstract
The ability to visualize RNA in situ is essential to dissect mechanisms for the temporal and spatial regulation of gene expression that drives development. Although considerable attention has been focused on transcriptional control, studies in model organisms like Drosophila have highlighted the importance of post-transcriptional mechanisms - most notably intracellular mRNA localization - in the formation and patterning of the body axes, specification of cell fates, and polarized cell functions. Our understanding of both types of regulation has been greatly advanced by technological innovations that enable a combination of highly quantitative and dynamic analysis of RNA. This review presents two methods, single molecule fluorescence in situ hybridization for high resolution quantitative RNA detection in fixed Drosophila oocytes and embryos and genetically encoded fluorescent RNA labeling for detection in live cells.
Collapse
Affiliation(s)
- Evan K Abbaszadeh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
40
|
Ferraro T, Lucas T, Clémot M, De Las Heras Chanes J, Desponds J, Coppey M, Walczak AM, Dostatni N. New methods to image transcription in living fly embryos: the insights so far, and the prospects. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:296-310. [PMID: 26894441 PMCID: PMC5021148 DOI: 10.1002/wdev.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022]
Abstract
The regulation of transcription is a fundamental process underlying the determination of cell identity and its maintenance during development. In the last decades, most of the transcription factors, which have to be expressed at the right place and at the right time for the proper development of the fly embryo, have been identified. However, mostly because of the lack of methods to visualize transcription as the embryo develops, their coordinated spatiotemporal dynamics remains largely unexplored. Efforts have been made to decipher the transcription process with single molecule resolution at the single cell level. Recently, the fluorescent labeling of nascent RNA in developing fly embryos allowed the direct visualization of ongoing transcription at single loci within each nucleus. Together with powerful imaging and quantitative data analysis, these new methods provide unprecedented insights into the temporal dynamics of the transcription process and its intrinsic noise. Focusing on the Drosophila embryo, we discuss how the detection of single RNA molecules enhanced our comprehension of the transcription process and we outline the potential next steps made possible by these new imaging tools. In combination with genetics and theoretical analysis, these new imaging methods will aid the search for the mechanisms responsible for the robustness of development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Teresa Ferraro
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Tanguy Lucas
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Marie Clémot
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Jose De Las Heras Chanes
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Jonathan Desponds
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Aleksandra M Walczak
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| |
Collapse
|
41
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|